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Single cell sequencing technologies have rapidly advanced in the last decade and
are increasingly applied to gain unprecedented insights by deconstructing
complex biology to its fundamental unit, the individual cell. First developed for
measurement of gene expression, single cell sequencing approaches have
evolved to allow simultaneous profiling of multiple additional features,
including chromatin accessibility within the nucleus and protein expression at
the cell surface. These multi-omic approaches can now further be applied to cells
in situ, capturing the spatial context within which their biology occurs. To extract
insights from these complex datasets, new computational tools have facilitated
the integration of information across different data types and the use of machine
learning approaches. Here, we summarize current experimental and
computational methods for generation and integration of single cell multi-
omic datasets. We focus on opportunities for multi-omic single cell
sequencing to augment therapeutic development for kidney disease, including
applications for biomarkers, disease stratification and target identification.

KEYWORDS

single-cell, multi-omic, scRNA-seq, kidney, integration

1 Single cell multi-omic assays

1.1 Single cell assays

The development of single cell sequencing technology focused initially on profiling the
transcriptome (Tang et al., 2009); however, the number of assays that can be adapted to
sequencing at the single cell level has undergone rapid growth. Importantly, multiple assays,
each measuring a different molecular property, can be performed concurrently on the same
cells, enabling a multi-omic deconstruction of individual cells (Figure 1). Collectively, these
assays have become a powerful new toolkit for probing myriad aspects of single cells,
including transcriptomic, epigenomic, and proteomic signatures. In this review, we will first
focus on three different single cell assays.

Single cell transcriptome profiling by RNA-sequencing (scRNA-seq) entails the
generation of a barcoded complementary DNA (cDNA) library from the total pool of
RNA transcripts present in a given cell at a given time. The chemistries commonly employed
for high-throughput single cell cDNA generation typically bias the assay towards the 5’ or 3’
end of the most abundant polyadenylated transcripts (Klein et al., 2015; Macosko et al., 2015;
Cao et al., 2017; Zheng et al., 2017), while lower-throughput chemistries offer higher
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sensitivity and full-length coverage, including non-polyadenylated
species (Hagemann-Jensen et al., 2020; Hahaut et al., 2022; Salmen
et al., 2022). Regardless of the chemistry used, the transcriptome of
each cell is effectively sampled via this assay, enabling interrogation

of gene expression without the need to pre-select a set of target
genes. A key benefit of this target-agnostic approach is the ability to
explore fundamental aspects of cell biology without the constraints
of a priori assumptions. For example, each cell’s “transcriptomic

FIGURE 1
Multi-omic single cell sequencing provides an integrated view of cell biology from heterogeneous tissue sources.
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signature” can be used for cell type classification, typically via
comparison with reference maps or by clustering and manual
inspection of expression of marker genes. With unbiased single-
cell resolution, novel cell types may be appreciated that were missed
by conventional classification schemes, typically relying on a
handful of pre-defined markers (Regev et al., 2017). Likewise,
changes in gene expression can be deconstructed to understand
biological activities and activated pathways in cells, enabling insights
to the functional roles and developmental trajectories of different
cells that may elude more biased approaches.

Single cell epigenomic profiling by assay for transposase-
accessible chromatin (scATAC) entails fragmentation and
tagging of the genome with barcoded adapters for high-
throughput sequencing by Tn5 transposase (Buenrostro et al.,
2015). Because the enzyme preferentially integrates DNA tags
into nucleosome-free regions of “open” chromatin, these regions
are enriched in scATAC-seq libraries, while regions of “closed”
chromatin are not. The enriched regions typically correspond to
active regulatory elements; namely, promoters and enhancers.
Thus, scATAC-seq provides genome-wide high-resolution maps
of regulatory activity on a cell-by-cell basis. These regulatory
maps are essential for pinpointing cell type-specific enhancers
that elude identification by bulk methods (Buenrostro et al., 2015;
Buenrostro et al., 2018). Transcriptional activity is typically
presaged by chromatin changes within a given locus (Ma
et al., 2020); thus, single cell regulatory maps derived from
scATAC-seq are complementary to transcriptomic profiles
derived from scRNA-seq and can likewise be used to
deconvolute cell types and states, and in some cases, more
effectively (Cusanovich et al., 2018; Shema et al., 2019).
Finally, the repertoire of active regulatory elements in a given
cell type can be interrogated at the primary sequence level to
identify over-represented transcription factor binding motifs
(Cusanovich et al., 2018)). These molecular “footprints,” in
turn, nominate master regulators of transcriptional activity
within each cell type. Thus, scATAC-seq offers a bias-free
approach for identifying upstream factors governing cell fate
and function.

Single cell proteomic profiling by sequencing entails labeling
cells with DNA-barcoded antibodies against protein targets,
enabling quantitative measurement of their expression. Targets
profiled can include those on the cell surface (e.g., CITE-seq,
REAP-seq) (Peterson et al., 2017; Shahi et al., 2017; Stoeckius
et al., 2017; O’Huallachain et al., 2020; Hwang et al., 2021; Sheng
et al., 2022), as well as those within the cytosolic (van Buggenum
et al., 2018; Gerlach et al., 2019) and nuclear (Chung et al., 2021)
compartments. Sequencing-based single cell proteomic profiling is
orthogonal to flow or mass cytometry, which use fluorophore or
isotope-coupled antibodies, respectively, to probe antigens on a
single-cell level. In contrast to these methods, sequencing-based
proteomic profiling allows for as many as 10-fold more proteins to
be profiled simultaneously, with studies
demonstrating >100 proteins profiled (Su et al., 2020;
Nettersheim et al., 2022). The number of proteins profiled, in
practice, for sequencing-based single cell proteomic profiling is
limited by the availability and inclusion of high-quality
antibodies, and thus contrasts somewhat from the assays
discussed previously. Nevertheless, sequencing-based single-cell

proteomic profiling, even with a limited number of targets, is
quite capable of resolving cell types and states (Shahi et al.,
2017). Many cell types, especially immune cells, are defined by
the proteins they express on their surface, and thus proteomic
profiling by sequencing enables more direct relating of data to
classic immunophenotyping, e.g., flow cytometry. Finally,
sequencing-based single cell proteomic profiling has the capacity
to detect post-translational modifications, allowing signaling events
to be directly observed, rather than inferred from expression of
pathway constituent and/or target genes (van Buggenum et al., 2018;
Gerlach et al., 2019).

1.2 Integration of multiple single cell assay
formats

The conversion of transcript expression, protein expression,
and chromatin accessibility to a common sequence-based
readout makes it possible to simultaneously obtain multiple
modalities from individual cells in a single experiment. The first
reports of multi-omic single cell profiling involved the
combined profiling of transcriptomes and proteins. These
early multi-omic assays included Cellular Indexing of
Transcriptomes and Epitopes by Sequencing (CITE-seq)
(Stoeckius et al., 2017), and RNA expression and Protein
Sequencing (REAP-seq) (Peterson et al., 2017). Several
additional variations on this theme have since emerged
(Peterson et al., 2017; Gerlach et al., 2019; Chung et al.,
2021; Hwang et al., 2021). Joint profiling of protein and
transcript expression in the same cells effectively increases
the overall amount of information available for unsupervised
clustering/neighborhood mapping, thus providing enhanced
ability to resolve cell types and states (Stoeckius et al., 2017).
Additionally, it allows functional inferences to be drawn
between expression of nuclear proteins and the potential
impact on gene expression (Chung et al., 2021).

Joint profiling of transcript expression and chromatin
accessibility was described shortly after the introduction of
CITE-seq and REAP-seq (Cao et al., 2018), and this was
likewise followed by several variations (Chen et al., 2019;
Zhu et al., 2019; Ma et al., 2020). As with paired protein and
transcript expression, the integration of paired chromatin
accessibility and transcript expression from single cells can
enhance resolution and identification of cell types and states.
Importantly, the ability to directly link the regulatory landscape
of a single cell with its transcriptome has powerful implications
for deconvoluting gene regulatory networks. Changes in a
gene’s transcriptional activity can be directly correlated with
changes in accessibility of specific regions in the surrounding
locus, allowing assignment of regulatory elements to their
cognate target genes to be made with much greater accuracy.
This, in turn, leads to more robust hypotheses about how
common disease-associated variants mapping to such
regulatory elements may be exerting their effects (Ma et al.,
2020; Kartha et al., 2022).

Joint single cell profiling of chromatin accessibility and
protein expression has been described more recently
(Mimitou et al., 2021; Swanson et al., 2021). These methods
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were developed in connection with methods that additionally
profile transcriptomes from single cells (Mimitou et al., 2021;
Swanson et al., 2021). Together with a similar, recently
developed trimodal single cell assay (Chen et al., 2022), these
methods herald a sea change in our approach to cell biology.
These trimodal methods make it possible, for the first time, to
directly observe how changes within the nucleus propagate to
the cell surface, and vice versa. These methods are still in their
infancy, and further refinements will be necessary to aid their
widespread adoption; however, they offer a glimpse of what
promises to be a more holistic era in cell biology.

1.3 Opportunities and challenges for single
cell assays in kidney disease

Kidney is an inherently challenging organ for single cell
analysis, owing to the need to first dissociate cells from the
matrix in which they are embedded. This typically entails
enzymatic digestion and/or mechanical disruption, processes
that can result in cell death and/or stress responses. The latter
can be particularly confounding for single cell analysis, as
transcriptional responses to stress may obscure native
cellular phenotypes (Adam et al., 2017; O’Flanagan et al.,
2019). Use of cold-activated proteases can alleviate this
somewhat; however, the greater challenge in sequencing
single cells from the kidney is that some cell types are more
refractory than others to enzymatic dissociation (Wu et al.,
2018). When these refractory cell types are also rare, they can be
severely under-represented in single cell datasets. Glomerular
cells, including podocytes, mesangial cells, and epithelial cells
are a classic example of this conundrum (Wu et al., 2019). This
can be overcome to some degree by scaling up the number of
cells profiled and adapting the method to target a particular cell
type (Chung et al., 2020); however, these approaches are not
always feasible, especially with clinical samples.

Single nucleus RNA sequencing (snRNA-seq) has emerged
as a helpful alternative to single cell sequencing in cases where
cell dissociation is necessary and poses a challenge (Grindberg
et al., 2013; Habib et al., 2016; Krishnaswami et al., 2016; Lacarr
et al., 2016; Lake et al., 2016; Habib et al., 2017; Martin et al.,
2023). Nuclei are more resistant to lysis than cells and contain
abundant pre-spliced mRNA, in addition to housing the
genomic material. Thus, harsher mechanical disruption
techniques can be applied to recover nuclei from difficult
tissues without compromising the integrity of their contents.
As with scRNA-seq, snRNA-seq can be adapted to profile
chromatin accessibility in parallel (Cao et al., 2018; Chen
et al., 2019; Zhu et al., 2019; Ma et al., 2020); however,
profiling surface protein expression is precluded with this
approach. At least one study has shown that snRNA-seq is
superior to scRNA-seq for recovery of glomerular cells (Wu
et al., 2019). An additional advantage of single nucleus
sequencing is its applicability to frozen tissues, thus enabling
information to be extracted at single-cell resolution from
frozen/archived clinical samples that would otherwise not be
amenable to single cell sequencing (Lake et al., 2019; Rousselle
et al., 2022).

2 Computational approaches for
integrated analyses of multi-omic
single cell datasets

2.1 Overview of integration approaches

The availability of multiple assays, or modalities, for single
cell sequencing can provide a much deeper understanding of the
biological processes compared to single modalities. On their own,
individual modalities can present complementary evidence or
serve as independent validation of biological findings. To unlock
a greater potential of multi-omic datasets, the modalities need to
be explicitly integrated, which can then substantially expand the
insights that can be obtained from the individual modalities.

A range of integration approaches and tools have been
developed for multi-omic single cell datasets. Some of these were
developed for specific combinations of modalities, while others can
handle a broad range of modality combinations. Here we outline the
key distinguishing features of these tools noting that the selection of
an optimal tool is largely determined by the nature of the data and
the biological insights that are sought.

Data frommultiple modalities can be from the same cells (paired
data) or from different but similar cells (unpaired data) (Argelaguet
et al., 2021). Paired data provides a direct mapping between the
modalities at the cell-to-cell level, and thus allow the most direct
integration. Obtaining paired data, however, may not be
straightforward or even possible for all combinations of
modalities. Additionally, datasets from altogether different origins
may need to be combined, such as scATAC-seq and scRNA-seq of
PBMCs from different laboratories on different dates. Consequently,
there is a need for integration approaches that can handle both
paired and unpaired datasets, and computational methods have
been developed for handling either situation.

Another principal distinction between various integration
methods is the analysis stage when integration is performed:
early stage and late stage (Miao et al., 2021a). For early-stage
integration methods, the different modality datasets are
integrated at the beginning of the analyses (Figure 2).
Effectively this creates a new, hybrid modality dataset that can
then be used for downstream analysis, thus enabling application
of other analysis tools commonly applied to unimodal data.
Whereas single cell data is typically high dimensional (e.g.,
each gene in a scRNA-seq dataset is represented by one
dimension), the hybrid dataset is low dimensional. For
example, the TotalVI method for integrating transcriptomic
and protein data uses a neural network to place the combined
data in a 20-dimensional reduced space (Gayoso et al., 2021).
Downstream analysis, such as differential expression analysis,
can be performed in this space. The generative component of the
neural network can be used to relate the results in the reduced
dimensionality space back to the original RNA and protein
identities. These early-stage approaches lend themselves well
to integration of unpaired assays as the hybrid space can
accommodate data from either assay type (Miao et al., 2021b).

In contrast, late-stage integration does not explicitly combine
the different modality datasets, but rather combines analysis results
obtained for the individual modalities. For example, a typical step in
single cell analysis is the construction of a neighbor-graph that
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describes the similarities of the cells. The neighbor-graph is then
used as input for clustering analysis or reduced dimensionality
visualization, such as a uniform manifold approximation and
projection (UMAP) or t-distributed stochastic neighbor
embedding (t-SNE) map. In a multi-modal context, neighbor-
graphs can be constructed for the individual assays, which can
then be merged and subsequently used for integrated clustering
analysis, visualization, and possibly cell type and state annotation
(Figure 2) (Hao et al., 2021).

A third example, which can be regarded as late stage as well, is
the identification of subpopulations using one modality, which
are then extracted and further analyzed using the second
modality (Figure 2). This allows for cell type or state specific
analysis of the second modality. As an example, cell types can be
determined using a transcriptomic assay (e.g., scRNA-seq),
followed by cell type-specific analysis of surface protein
abundance (e.g., using CITE-seq) or regulatory landscapes
(e.g., using scATAC-seq).

Finally, methods are either designed to handle specific
combinations of modalities (see next paragraphs for examples),
or for any combination of modalities. Examples of the latter that
have been used extensively include the Weighted Nearest Neighbor
(WNN) approach implemented in the widely used Seurat package

(Hao et al., 2021), MOFA + which constructs a hybrid modality
from paired modalities (Argelaguet et al., 2020), and LIGER which
constructs a hybrid modality from unpaired data (Welch et al.,
2019). While many challenges exist to improve multi-omic data
integration methods, one key challenge is the inherent correction for
differences between the modalities, including batch effects. More so
than batch correction in unimodal single cell datasets it is a challenge
to distinguish technical noise from biological variability. Although
not many benchmarking studies are available, a recent study showed
that WNN is particularly successful at integrating scRNA-seq and
snATAC-seq data even in the presence of complex batch effects (Lee
et al., 2023).

2.2 Transcriptome and surface proteome

The availability of commercial kits and protocols has increased
the accessibility of combined profiling of the transcriptome and
surface proteome. Computational approaches for the integration of
paired transcriptome and surface proteome data have been
increasingly needed for analyzing these datasets.

An example of a late-stage integration approach developed
specifically for transcriptomic data and the surface proteome is

FIGURE 2
Examples of different stages of integration. The separate modalities (left panel) can be combined into a hybrid space for downstream analysis (top
panel), processed separately and combined further downstream (middle-right panel), or the first modality can be used for a cell type-specific analysis of a
second modality.
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CiteFuse (Kim et al., 2020). Cell-to-cell similarity matrices for both
modalities are fused, which can then be used for clustering and
dimensionality reduction. Results demonstrate that the integrated
data enhances cell typing and other downstream analyses relative to
single modality data (Kim et al., 2020). In contrast to CiteFuse,
TotalVI (Gayoso et al., 2021) and sciPENN (Lakkis et al., 2022) are
early-stage integration approaches and are based on neural network
machine learning. Although these approaches were designed for
integration of paired data, they do allow different cells to have
different antibody panels in the protein modality. The neural
network is used to impute the missing protein data, in effect
relaxing the requirement of the data to be paired. This feature
allows for adjusting the antibody panel in the lifetime of a project,
while retaining the ability to integrate data obtained from different
stages of the project.

2.3 Transcriptome and chromatin
accessibility

Integration of transcriptomic and ATAC data is a special case as it
can take advantage of ‘feature correspondence’ (Rautenstrauch et al.,
2022). The scATAC peaks can be related to specific genes, and thus
merged with the transcriptomic data. The result is a hybrid modality that
can be used for downstream analysis, but unlike most other hybrid
modalities, retains the ability for interpretation in the context of the genes.
Many algorithms have been developed specifically for integration of
transcriptomic data with scATAC-seq (see (Rautenstrauch et al., 2022)
for an overview of the approaches). These variousmethods employ early-
and late-stage frameworks and operate on both paired and unpaired data.

The combination of scRNA-seq and scATAC-seq modalities has
proven useful in various ways, as illustrated in a recent study on mouse
kidneys (Miao et al., 2021a). First, the combined modalities were able to
define more distinct cell types compared to scRNA-seq analysis.
Second, as an example of late-stage integration of scRNA-seq and
scATAC modalities, the scRNA-seq and/or scATAC-seq modality can
be used to annotate the cells, allowing identification of cell-type specific
regulatory elements. Gene regulatory networks can then be inferred by
relating active genes to active regulatory elements in each cell type (Cao
et al., 2018).

2.4 Outlook on multi-omic integration
methods

With the advent of single-cell methods came efforts to build cell
atlases for tissues or even entire species (Regev et al., 2017).More recently,
large datasets or reference maps of multi-modal data are also becoming
available (Network, 2021). This introduced the need for multi-modal
mapping of query datasets to reference maps. Several approaches have
been developed specifically for this purpose (Lotfollahi et al., 2022a;
Lotfollahi et al., 2022b), while other recent,more generalmethods are able
to map very large datasets that involve different modalities (Hao et al.,
2022). Development of such approaches will further expand the use of
multi-omic single cell sequencing.

Community efforts such as the Multimodal single cell data
integration challenge (Lance et al., 2022) can play important
roles in guiding further method development. Notably, the

competition winner, as well as recently developed integration
approaches such as bridge learning (Hao et al., 2022), both lessen
the distinction of paired and unpaired dataset: Small paired datasets
are used to guide integration of the unpaired datasets, with an overall
improved performance.

3 Overview of single cell studies in
kidney diseases

Advances in single-cell sequencing technologies have
enabled the analysis of individual cells obtained from tissues,
such as kidney biopsies, and biofluids, such as urine and blood,
at an unprecedented resolution, revealing cellular signatures of
inflammation, cellular injury, and fibrosis in various kidney
diseases. These signatures enable a deeper understanding of
pathophysiology and can also facilitate development of
precision therapeutics for these diseases. Single-cell profiling
of kidney biopsies, PBMCs, urine samples and skin lesions from
patients with lupus nephritis, acute kidney injury, diabetic
nephropathy and focal segmental glomerulosclerosis present
potential novel approaches for the diagnosis and monitoring of
disease activity (Table 1). These approaches, when performed
on urinary cells and PBMCs, in contrast to kidney biopsy, are
non-invasive and could be repeated multiple times as needed.
Several examples of studies performed using human samples are
discussed below.

3.1 Lupus nephritis (LN)

LN is a form of glomerulonephritis that constitutes one of
the most severe organ manifestations of systemic lupus
erythematosus (SLE). Despite increased knowledge of disease
pathogenesis and improved treatment options, LN remains a
substantial cause of morbidity and death among patients with
SLE. Conventional markers of disease activity and response to
therapy typically consist of measuring auto-antibody levels,
markers of complement activity and laboratory parameters
like proteinuria and estimated glomerular filtration rate
(eGFR).

Single cell transcriptomics and urine proteomics were used
to identify biomarkers that are upregulated in LN, including IL-
16, which is found to be highly expressed at sites of kidney
injury (Fava et al., 2022). Other studies using scRNA-seq on
kidney biopsy and urinary cells have found evidence of
upregulation of IFN response genes, fibrotic ECM proteins
and chemokine receptors such as CXCR4 and CX3CR1
(Arazi et al., 2019; Der et al., 2019). These findings help our
understanding of the pathogenesis of a complex disease like LN
and may further help in predicting patients who may better
respond to specific therapies.

3.2 Acute kidney injury (AKI)

AKI is a major health issue, the outcome of which depends primarily
on damage and reparative processes of tubular epithelial cells. According
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TABLE 1 Examples of multi-omic single cell sequencing studies in kidney diseases.

Condition Technique Source of
samples

Key findings Reference

Lupus Nephritis scRNA-seq and urine
proteomics

Kidney biopsy &
Urine

• Identified 237 urinary biomarkers associated with lupus nephritis as
compared to controls. Amongst these biomarkers IL-16, CD163,
and TGF-β mirrored intrarenal nephritis activity

Fava et al. (2022)

• IL-16 was found to be highly expressed at key sites of kidney injury
and highlight its role in LN pathogenesis and a potentially treatable
target and biomarker

scRNA-seq Kidney biopsy &
Urine

• The analysis identified multiple subsets of leukocytes including
myeloid cells, T cells, natural killer cells and B cells that
demonstrated both pro and anti-inflammatory properties, such as
CD16+ macrophages, CD4+ TFH cells and FoxP3+Helios +
regulatory T cells

Arazi et al. (2019)

• Two chemokine receptors, CXCR4 and CX3CR1, were broadly
expressed, suggesting a key role in cell trafficking

• Interferon response was observed in dividing CTLs and NK cells

scRNA-seq Kidney & Skin
biopsy

• Type I IFN-response genes in tubular cells and keratinocytes were
much more highly expressed than those of healthy controls and was
higher in non-responders, compared to treatment responders

Der et al. (2019)

• Patients non-responsive to treatment demonstrate higher
expression of fibrotic ECM proteins compared with responders

FSGS scRNA-seq Urine • Shed podocytes in the urine had loss of canonical podocyte markers,
which are required for normal podocyte function, such as NPHS1,
NPHS2, and PODXL.

Latt et al. (2022)

• Patients with FSGS had higher expression of genes for epithelial-to-
mesenchymal transition (EMT) compared to patients with MCD.
These markers were relatively higher in treatment non-responders
compared to responders

scRNA-seq Kidney biopsy • Highest glomerular endothelial cells (GEC) scores were observed in
patients with FSGS

Menon et al.
(2020)

• Molecular endothelial signatures suggested 2 distinct FSGS patient
subgroups with α-2 macroglobulin (A2M) as a key downstream
mediator of the endothelial cell phenotype and was shown to have
prognostic significance

AKI scRNA-seq Urine • Patients with pre-renal AKI excreted mainly myeloid cells, whereas
urine samples from patients with AKI had higher expression of
immune and epithelial cells

Klocke et al. (2022)

• Tubular epithelial cells from urine samples of patients with AKI did
not express characteristic segment markers, and instead showed
injury-related dedifferentiation and adaptive phenotypes

scRNAseq, snRNAseq and
spatial transcriptomics

Kidney biopsy • This study localized the transcriptomic signature of various immune
cells to spatial transcriptomic spots of known renal epithelial cells in
ischemia reperfusion injury and cecal ligation puncture models
of AKI

Melo Ferreira et al.
(2021)

• A subpopulation of injured proximal tubule cells with Activating
Transcription Factor 3 (ATF3) and Midkine (Mdk) expression were
identified, which may be responsible for neutrophil chemotaxis to
the site of injury

Fibrosis scRNA-seq, ATAC-seq and
spatial transcriptomics

Human & mouse
kidney biopsy

• This study enabled mapping of all matrix-producing cells at high
resolution, revealing distinct subpopulations of pericytes and
fibroblasts as the major cellular sources of scar forming
myofibroblasts during fibroblasts

Kuppe et al. (2021)

• Using these data, myofibroblast-expressed Nkd2 was identified as a
potential therapeutic target

(Continued on following page)
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to a recentmeta analysis, 1 in 5 adults (21.6%) and 1 in 3 children (33.7%)
experienced AKI worldwide (Susantitaphong et al., 2013). Mechanisms
underlying AKI remain incompletely understood, effective therapies are
lacking and monitoring the course of AKI in clinical routine is limited to
measuring urine output and plasma levels of filtration markers. Hence,
high-resolution approaches are needed to facilitate a better understanding
of the pathogenesis of AKI and to potentially identify therapeutic targets
in preventing and treating AKI.

In a recent study (Klocke et al., 2022), scRNA-seq analysis
revealed that urinary cells from patients with established AKI
had different transcriptional profiles compared to patients with
pre-renal AKI, including markers of cellular dedifferentiation.
Although single cell sequencing studies have improved our
understanding of the transcriptomic signature of different
cell types within the kidney, the spatial distribution of injury
can be limited to certain regions in the kidney. In another study
(Melo Ferreira et al., 2021), investigators were able to localize
the transcriptomic signature of various immune cells to spatial
transcriptomic spots of known renal epithelial cells in murine
models of AKI. The analysis was able to detect a subpopulation
of injured proximal tubule cells with Activating Transcription
Factor 3 (ATF3) expression which may be responsible for
neutrophil chemotaxis to the site of injury.

3.3 Focal segmental glomerulosclerosis
(FSGS)

FSGS and minimal change disease (MCD) are common causes
of nephrotic syndrome and share many common features, such as
diffusely effaced podocytes. However, the response to treatment is
variable in FSGS, and there is a higher risk of progression to chronic

kidney disease (CKD) in patients with FSGS, compared to patients
with MCD, who typically have a benign course. Multiple single cell
studies (Menon et al., 2020; Latt et al., 2022) have identified specific
markers such as α-2 macroglobulin (A2M), elevated glomerular
endothelial cell score and loss of canonical podocyte markers in
patients with FSGS compared to patients with MCD. These findings
may help in differentiating FSGS from MCD and in predicting
response to treatment (Menon et al., 2020).

3.4 Deconvoluation of kidney fibrosis

Fibrosis is a characteristic feature in all forms of CKD.
Deposition of pathological matrix in the interstitial space and
within the walls of glomerular capillaries as well as the cellular
processes resulting in this deposition are increasingly recognized as
principal factors resulting in progressive kidney damage. It has been
challenging to study kidney fibrosis in patients, since kidney biopsies
are usually not performed in patients with established CKD. Use of
multi-omic techniques (Kuppe et al., 2021) have helped in
identifying a population of scar-forming myofibroblasts. These
techniques may help in identifying potential therapeutic targets
for preventing fibrosis, such as the myofibroblasts identified in
the aforementioned study.

3.5 Diabetic kidney disease (DKD)

DKD has a high global disease burden and substantially increases
the risk of kidney failure and cardiovascular events. Despite treatment,
there is substantial residual risk of disease progression with existing
therapies. There is an urgent need to better understand the molecular

TABLE 1 (Continued) Examples of multi-omic single cell sequencing studies in kidney diseases.

Condition Technique Source of
samples

Key findings Reference

Diabetic kidney
Disease

snRNA-seq Kidney biopsy • snRNAseq performed on cryopreserved human diabetic kidney
samples.

Wilson et al.
(2019)

• It was seen that diabetic thick ascending limb, late distal convoluted
tubule, and principal cells adopted a gene expression signature
consistent with increased potassium secretion, including alterations
in Na+/K+-ATPase, WNK1, mineralocorticoid receptor, and
NEDD4L expression, along with increases angiogenic signaling

scRNA-seq and spatial
transcriptomics

Kidney biopsy • There was enrichment of specific cell subpopulations consisting of
venous endothelial cells and fibroblasts with elevated expression of
CCL21 and IGFBP5.

Chen et al. (2022)

• Spatial analysis revealed that most of the immune cells were
localized in areas of renal fibrosis

snRNA-seq & snATAC-seq Kidney biopsy • snRNA-seq and snATACseq performed on human DKD and non-
diabetic kidney biosy samples and DKD was associated with an
increased proportion of VCAM1+ proximal tubule cells
(PT_VCAM1) and infiltrating leukocytes compared to non-
diabetics

Wilson et al.
(2022)

• PT_VCAM1 cell is pro-inflammatory phenotype characterized by
enhanced NFkB signaling and failed repair that may underlie
transition from acute kidney injury to CKD
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mechanisms driving DKD to help identify new therapies that slow
progression and reduce associated risks (Tuttle et al., 2022). snRNA-seq
analysis of cryopreserved diabetic kidney samples showed upregulation
of angiogenic and mineralocorticoid markers, consistent with the
clinical manifestation of fluid overload and neo angiogenesis seen in
patients with DKD (Wilson et al., 2019). Multi-omic techniques
incorporating scRNA-seq and spatial transcriptome analyses have
been used to generate an atlas of diabetic kidney disease. For
example, in one study the investigators identified enrichment of
specific cell subpopulations consisting of venous endothelial cells
and fibroblasts with elevated expression of CCL21 and IGFBP5
(Chen et al., 2022). Furthermore, spatial analysis revealed that most
of the immune cells were localized in areas of renal fibrosis. In another
recent study, the investigators performed snRNA-seq, snATACseq and
spatial transcriptomics on human DKD kidney biopsy samples and
were able to identify increased proportion of VCAM1+ proximal tubule
cells (PT_VCAM1) and infiltrating leukocytes compared to non-
diabetics. These changes have adverse implications as they increase
the pro-inflammatory milieu and facilitate AKI to CKD transition
(Wilson et al., 2022). Thus, single cell sequencing technologies are
helping to elucidate the underlying mechanisms of DKD.

4 Therapeutic development for kidney
disease in single cell era

4.1 Target discovery: Genetic variants and
gene perturbation

Single cell sequencing provides rich and complex phenotypic
portraits of the cellular and molecular circuits involved in disease.
These large datasets lead to the identification of an array of cellular
and molecular features which are upregulated, downregulated or, in
some cases, unique to disease states. Differences observed in disease
vs. control samples provide hypotheses of new therapeutic targets,
which may have become dysregulated at the cellular or molecular
level. Nevertheless, challenges remain in deciphering which
observed changes drive pathogenic processes versus those that
are passenger effects.

Genetic variants and their loci from genome-wide association
studies (GWAS) provide complementary evidence to single cell
sequencing datasets for the involvement of genes in the
development of diseases. A challenge, however, in identifying
specific targets from genomic variant studies is that the large
majority of disease-associated loci are in non-coding regions,
thus complicating their linkage to specific gene products or cell
types that could be candidates for therapies. By integrating single cell
sequencing datasets with GWAS candidate genes/loci, greater
linkages can be established to identify genes, pathways or cell
types with causal relationships to disease. In one analytical
framework, genes near disease-associated loci from GWAS
studies are compared to various cell subsets identified by scRNA-
seq to nominate disease-relevant cell subtypes and pathways. This
framework led to the identification of cell clusters enriched for
expression of TLR7 (nucleic acid sensing), HIP1 (endocytic
participating protein implicated in DC regulation), and LBH
(modulates synovial hyperplasia) in LN patients (Arazi et al.,
2019). When multiple genes in a shared pathway are implicated

for a disease, a gene signature incorporating a panel of genes, rather
than an individual gene, can be used to identify potential disease-
relevant cell types and pathways in single cell data. For example,
multiple loci related to the type I interferon pathway have been
implicated in SLE disease activity by GWAS studies (Rice et al., 2017;
Psarras et al., 2022) and gene signature modules of interferon-
stimulated genes (ISG) have been shown to correlate with SLE
disease activity. When these modules were assessed for
enrichment in cell clusters identified in pediatric SLE patients by
scRNA-seq, multiple distinct subpopulations were identified
(Nehar-Belaid et al., 2020).

Since functionally important gene regulatory regions are
mostly nucleosome-free, chromatin accessibility data can be
used to aid understanding of candidate risk loci in non-coding
regions. Additionally, expressed quantitative loci (eQTL)
approaches are commonly used to map variants to causal
genes. However, a critical limitation in chromatin accessibility
and eQTL analyses for mapping causal genes arises from cell type
heterogeneity; bulk methods capture aggregated expression or
accessibility across multiple cell types, with cell type diversity and
proportionality complicating interpretation [reviewed in (Maria
et al., 2022)]. In a pioneering study for kidney disease, Sheng,
et al. used single cell multi-omics (scRNA-seq and snATAC-seq),
human genetic information, and advanced computational
approaches to demonstrate how genetic variants render a
functional effect on cell types and specific gene/pathway
programs, resulting in the identification of more than
200 genes involved in kidney function and hypertension
(Sheng et al., 2021). More recent studies have expanded on
this work, providing further mapping of risk alleles to specific
cell types, pathways, and genes (Liu et al., 2022; Sandholm et al.,
2022), which can augment identification of new targets (Doke
et al., 2021a; Doke et al., 2021b). In another study, whole kidney
and single cell epigenomic information of hundreds of samples
was used with GWAS data to define the genetic association of
kidney function in 1.5 million individuals, resulting in
identification of 878 loci (126 novel), with prioritized target
genes for 87% of the loci (Liu et al., 2022). Collectively, the
results have provided meaningful insights to pathologic cell types
and disease-causing pathways, which can guide identification of
new therapeutic targets.

To further facilitate target identification and drug discovery,
single cell profiling has been combined with gene perturbation
methods as a forward genetics screening approach to explore
phenotypic impacts of gene modulation. Perturb-seq and
related approaches integrate pooled CRISPR screening with
single cell profiling, enabling systematic determination of the
impact of inhibitory and activating perturbations to large
numbers of candidate genes (Adamson et al., 2016; Dixit
et al., 2016; Jaitin et al., 2016). The phenotypic readouts can
identify cell states that are desirable for therapeutic
intervention, and can be applied in more complex biological
systems, including co-cultures, organoids and in animal models.
Perturb-seq methods have been extended to understand the role
of non-coding genetic variants associated with disease
(Gasperini et al., 2019) and, in combination with CITE-seq,
define mechanisms of cancer immune evasion (Frangieh et al.,
2021). These forward genetic methods provide complementary
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information for a deeper phenotypic understanding of the
impact of candidate genes as potential therapeutic targets.

4.2 High-resolution diagnostics and
biomarkers in kidney disease

A high-resolution picture of all cell types from a disease tissue
sample provides a comprehensive and deep interpretation of the
underlying biology and should be informative to diagnostics and
prognostics. Single cell sequencing can provide a comprehensive
capturing of all cell types, as well as information regarding their
molecular pathways, thereby providing greater detail of disease
endotypes and potential for therapy responsiveness. Indeed,
studies have used single-cell profiling of peripheral blood
immune cells to identify correlates of anti-PD1 responsiveness in
cancer patients (Wu et al., 2020; Luoma et al., 2022).

For diagnostics and biomarkers, a high-resolution molecular
picture of the kidney would be of great value, however, a key
challenge in molecular diagnostics, including single cell profiling,
for kidney disease is the limited ability to obtain kidney biopsy
samples for such analyses. As performing a kidney biopsy carries
some risk of complications for patients, they are commonly
performed at time of diagnosis and at limited additional
timepoints, as needed for patient care. Core biopsies contain a
relatively low number of cells (single digit thousands for single
cell profiling). Moreover, the tissue must be dissociated to single cell
suspension, which can introduce artifacts, such as protease-induced
changes in gene expression, and lead to biased loss of cell types. To
address these key challenges in diagnostics and biomarkers,
emerging studies have begun to analyze surrogate tissue sources
of cells from urine for single cell profiling, as well as spatial profiling
from limited tissue derived from kidney biopsy cores.

Urine sedimentary analysis has been used for decades to
inform diagnoses for kidney diseases, however, until the
development of single cell profiling approaches, robust and
accessible methods to generate an unbiased determination of
cell types and their molecular features were lacking. Single cell
profiling of urinary cells from DKD patients demonstrated an
ability to detect nearly all cell types of the kidney (Abedini et al.,
2021). Emerging studies applying single cell sequencing to
urinary cells in FSGS (Latt et al., 2022), lupus nephritis (Arazi
et al., 2019), and AKI (Cheung et al., 2022; Klocke et al., 2022)
have underscored the potential of using this non-invasive cell
source for diagnostic and other disease insights. TCR analyses of
patients with immune checkpoint-associated nephritis revealed
the T cell clonotypes in the kidney are enriched in urine,
supporting a direct linkage between T cells in urine and
kidney (Singh et al., 2022). In a recent study of acute cell
rejection (ACR) of kidney transplantation, investigators
applied single cell RNA and TCR sequencing to biopsies from
allografts as well as urinary cells (Shi et al., 2023). Interestingly,
TCR sequences associated with the expanded CD8 T cell
population were also observed in matching urine samples.
These results underscore a linkage between immune cellular
phenotypes from urine and kidney tissue, and relate this
information to treatment response. Collectively, while initial
studies showcase the opportunity to be harnessed by applying

single cell sequencing to urinary cells, additional research is
needed to better define the relationships between urinary cells
and disease biology and progression.

Spatially resolved omic profiling methods, largely rooted in
transcriptomics, address multiple challenges with the limited tissue
from kidney biopsies. These methods do not require dissociation of
tissue, thereby retaining the spatial biological context of cells and
eliminating sample biases and loss of cells from dissociation
methods. Furthermore, spatial profiling methods often require
limited tissue amounts and can be compatible with formalin-fixed,
paraffin-embedded (FFPE) tissues, making themmore amenable to the
limited material of kidney core biopsies from clinical settings that use
FFPE as standard of practice. Commercialization of spatial
transcriptomic methods has reduced the technical barriers of access
to these complex methods, with FFPE-compatible platforms including
from 10x Genomics (Visium and Xenium), Nanostring (GeoMx,
nCounter, CosMx), Vizgen (MERSCOPE), among others. The
technologies are rooted in one of two fundamental methods: in situ
hybridization (ISH) and next-generation sequencing (NGS)-based
methods. ISH methods can provide subcellular localization
information but are limited to a selected (and therefore biased) set
of several hundred gene probes. In contrast, NGS-based spatial
transcriptomics methods combine scRNA-seq technology with
spatial barcodes on a specialized slide, enabling amplification of
copied transcripts while retaining localization information. The
NGS-method provides unbiased, genome-wide transcriptomics but is
limited in spatial resolution due to the spot size on the slide. The current
10x Visium methodology incorporates spot sizes of 55 μm, which falls
short of single-cell resolution. To improve the resolution, separate
conventional (non-spatial) scRNA-seq data can be integrated with
the spatial data, and combined with computational deconvolution
methods, used to estimate single cell contributions (see reviews
(Melo Ferreira et al., 2021; Rao et al., 2021; Zhang et al., 2023).
Studies incorporating spatial transcriptomic profiling methods on
human kidney samples are emerging, with examples including AKI
to understand immune cell infiltration in histological context (Melo
Ferreira et al., 2021), development of an atlas across multiple kidney
diseases (Lake et al., 2021), cell-mediated rejection in kidney
transplantation (Salem et al., 2022), and small RNA involvement in
FSGS (Williams et al., 2022). Multi-omic single cell approaches
incorporating spatial profiling have been reported, for example, to
understand fibrosis microenvironments in diabetic and hypertensive
diseased human kidneys (Abedini et al., 2022). Spatial profiling
methods are a powerful emerging technology compatible with
kidney biopsy samples that will bring greater understanding of
disease processes and treatments.

5 Summary and outlook

Multi-omic single cell sequencing has facilitated the
creation of high-resolution cellular and molecular maps in
the context of kidney disease, providing new insights into
disease mechanisms and opportunities for therapeutic
intervention. New experimental methods enable
measurement of multiple molecular features simultaneously,
including gene expression, surface protein expression, TCR/
BCR sequences and chromatin accessibility. Computational
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tools to integrate these large and diverse datasets have enabled
derivation of rich biological insights, from pathogenic
mechanisms to new therapeutic targets. And while most
studies applying single cell sequencing methods in the
context of kidney diseases have utilized single modality
datasets (i.e., gene expression), increasingly multi-omic
approaches are being pursued.

Single cell profiling is increasingly accessible to researchers,
due to developments of more user-friendly experimental
workflows (e.g., with commercial kits) and data analysis tools
(e.g., graphical interface software). However, tissue availability
from kidney core biopsies has been a major limitation for single
cell profiling in the context of kidney disease. Emerging
alternative approaches compatible with single cell profiling
are being developed, including urinary cell analysis and
spatial profiling. With studies in which nearly all kidney cell
types can be identified in urine by single cell profiling, the
potential for routine, non-invasive monitoring of biological
changes of individual diseased patients is an exciting one,
with ramifications for more optimal treatment selections
(e.g., therapeutic classes and doses). These developments
portend a future of collection of these high-resolution
datasets in a variety of clinical settings, from observational
studies to therapeutic interventional trials. Collectively, these
advancements are heralding new opportunities for precision
medicine in kidney disease, from diagnostics and patient
segmentation to prognostics and new targeted therapies, with

the potential to better match the right therapies with the right
patients at the right time.
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