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Neutrophil extracellular traps (NETs), a network of DNA histone complexes and
proteins released by activated neutrophils, have been demonstrated to be
associated with inflammation, infection related immune response and
tumorigenesis in previous reports. However, the relationship between NETs
related genes and breast cancer remains controversial. In the study, we
retrieved transcriptome data and clinical information of BRCA patients from
The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus
(GEO) datasets. The expression matrix of neutrophil extracellular traps (NETs)
related genes was generated and consensus clustering was performed by
Partitioning Around Medoid (PAM) to classify BRCA patients into two
subgroups (NETs high group and NETs low group). Subsequently, we focus on
the differentially expressed genes (DEGs) between the two NETs-related
subgroups and further explored NETs enrichment related signaling pathways
by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis. In addition, we constructed a risk signature model by LASSO
Cox regression analysis to evaluate the association between riskscore and
prognosis. Even more, we explored the landscape of the tumor immune
microenvironment and the expression of immune checkpoints related genes as
well as HLA genes between two NETs subtypes in breast cancer patients.
Moreover, we found and validated the correlation of different immune cells
with risk score, as well as the response to immunotherapy in different
subgroups of patients was detected by Tumor Immune Dysfunction and
Exclusion (TIDE) database. Ultimately, a nomogram prognostic prediction
model was established to speculate on the prognosis of breast cancer patients.
The results suggest that high riskscore is associated with poor immunotherapy
response and adverse clinical outcomes in breast cancer patients. In conclusion,
we established a NETs-related stratification system that is beneficial for guiding
the clinical treatment and predicting prognosis of BRCA.
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1 Introduction

Breast cancer is one of the highest incidence of malignant
tumors around the world (Lei, et al., 2021; Qiu, et al., 2021;
Sung, et al., 2021). It occupies approximately 30% of new cancer
cases, making it a serious threat to women’s health (Hong, et al.,
2018; McDonald, et al., 2016). Drug resistance, recurrence and
metastasis are verified as the three main factors affecting the
prognosis of breast cancer patients (Harbeck, et al., 2019). The
conventional view considers that breast cancer is not an
immunogenic tumor. However, immunotherapy has become a
vital treatment since breast cancer was confirmed as an
immunogenic tumor recurrently (Vranic, et al., 2021). With the
development of immune agents, immunotherapy combined with
chemotherapy for triple-negative breast cancer (TNBC) with PD-L1
overexpression has been approved as a first-line treatment (Franzoi,
et al., 2021). At the same time, the marketing of some monoclonal
antibodies has proved that immunotherapy can significantly
improve the survival of HER2+ breast cancer patients. In
addition, immune checkpoint inhibitors (ICI) such as
Atezolizumab and Pembrolizumab have shown promising results
in the treatment of TNBC (Henriques, et al., 2021). Therefore,
personalized selection of immunotherapy based on different
breast cancer subtypes is extremely important to improve the
prognosis of breast cancer patients.

It is well known that human neutrophils are the most abundant
leukocyte type and an essential component of the host response to
different pathogens (Poto, et al., 2022). Recurrently, significant
advances have been made in the understanding of the role of
neutrophils in immune system regulation, pathogen clearance,
and disease pathology (Papayannopoulos, 2018). Studies in
humans and mice have shown that there are two types of
neutrophils: anti-tumor N1 neutrophils and native
N2 neutrophils (Fridlender, et al., 2009; Fridlender and Albelda,
2012) Most clinical evidence supports the idea that neutrophils
promote rather than inhibit progression (Templeton, et al., 2014).
Neutrophil elastase (NE) belongs to the serine protease family and is
mostly expressed in polymeric neutrophils (PMN) (Pulford et al.,
1988; Fouret, et al., 1989; Molldrem et al., 2002). During neutrophil
degranulation or neutrophil extracellular trap (NETs) formation, it
is released into the extracellular space, which called NETosis. NETs
are composed of DNA-histone complexes and proteins secreted by
activated neutrophils (Masucci, et al., 2020). Studies has shown that
it is involved in the progression and metastasis of cancer, both in
animal and in cancer patients. What’s more, the release of NETs
occurring during neutrophil regulatory death named NETosis, is a
pivotal functional pathway by which neutrophils mediate toxic
injury (Zhu, et al., 2022). NETosis is believed to be a source of
autoantigens and to maintain the maintenance of the inflammatory
environment that promotes autoimmune diseases (Klopf, et al.,
2021). Interestingly, NETs play a different role in pan cancer.
Higher NET scores were connected with favorable survival of
some kinds of cancer, such as kidney renal clear cell carcinoma
(KIRC) and lung adenocarcinoma (LUAD) (Shen, et al., 2022).
However, NETs have also been reported to be associated with better
survival in patients with head and neck squamous cell carcinoma
(Millrud, et al., 2017). At present, predicting the prognosis of
different tumors by scoring NETs-related genes datasets is still

controversial. The effect of NETs-related genes on prognosis in
BRCA patients remains unclear. Moreover, there is few reports
about the effects of NETs-related genes on tumor-related immune
cell infiltration and prognosis of breast cancer.

In this study, we aimed to search for NETs-related biomarkers and
construct a NETs risk model to predict the tumor-associated immune
microenvironment, prognosis and response to immunotherapy in
BRCA patients. The research could help doctors to make treatment
decisions for different types of BRCA in the future.

2 Materials and methods

2.1 Database and data preprocessing

Firstly, we retrieved the RNA-seq transcriptome data (FPKM
format) of a total of 1,211 samples from TCGA database, and then
converted the FPKM (Frequencies Per Kilobase per Million) format
RNA-seq data into TPM (scripts per million reads) format and
following converted the log2 to obtain the matrix of samples and
gene expression. It is worth mentioning that the samples with
missing expression value, short overall survival time (overall
survival equals zero and missing clinical information were
excluded from this study. Finally, 1,093 samples were included in
this research, including 107 normal paracancerous tissue and
986 tumor tissues. The complete TCGA cohort clinical
information is summarized in Supplementary Table S1. Most of
the patients were female (99.1%), and the median age was 58 (48,
67). The TCGA cohort data are reliable because the TCGA-BRCA
data adhere to strict follow-up criteria. Additionally, we downloaded
the microarray data (accession number is GSE21653) containing
266 breast cancer samples from the Gene Expression Omnibus
(GEO) database as the validation set of this study after the same
pre-processing as the TCGA database training set. Additionally, the
clinical data in the two data sets are indispensable in this study.

2.2 Validation of hub genes

To further confirm the difference of hub gene expression
between breast cancer tumor tissues and normal breast tissues,
we downloaded the breast tissue sections of BRCA and healthy
people from the Human Protein Atlas (HPA) database. The
immunohistochemical result of LTF (Antibody:CAB008646),
ENO1(Antibody: CAB080034), LCP1(Antibody: HPA019493) and
AZU1 (Antibody: HPA075964) were shown. Additionally, in order
to analyze the variations of various hub genes across tumor tissues
and normal tissues, we acquired the total protein expression data of
hub genes from the UALCAN database.

2.3 NETs-related gene set and consensus
clustering

In our research, we obtain 23 genes of NET protein released by
human neutrophils identified in previous studies (Gardinassi, et al.,
2017; Wither, et al., 2018; O’Donoghue, et al., 2013). Since DEFA3 is
not retrieved in the RNA-Seq matrix, the expression quantity of
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22 NETs-related genes in tumor tissues was extracted for further
analysis. ConsensusClusterPlus tool in R software was applied for
consensus cluster analysis (Wilkerson and Hayes, 2010).
Partitioning Around Medoid (PAM) clustering with 1-pearson
correlation distance was performed and 80% of the samples were
repeated for 1,000 times to ensure the stability of the results. An
empirical cumulative distribution function plot was used to
determine the optimal number of clusters. According to the
evaluation of the area under the line of the cumulative
distribution function (CDF) curve, when the increase of K value
is the gradual increase of the area under the line of the CDF curve, we
need to keep the area under the line as large as possible under the
premise, according to the evaluation of the CDF delta downward
trend, try to keep the delta downward the slowest, combine the
above two factors compromise to choose the number of clusters. We
determined the ideal clusters in molecular subtypes related to NETs
(k = 2). The “pheatmap” tool in R is used to generate the cluster
graph.

2.4 Differential gene expression and
function enrichment analysis

The “limma” package in R (Ritchie, et al., 2015) was applied to
analyze the differential gene expression between tumor samples and
paracancerous tissue samples to obtain the differential gene expression

between different tumors and normal tissues. In order to exclude false-
positive TCGA data, we set the p values < 0.05, | log2FC | > 1.5 genes for
DEGs to control the number of differential genes and reduce the
likelihood of false-positive results. Subsequently, GO and KEGG
analyses were performed to compare the signaling pathways and
biological processes between the upregulated NETs group and the
downregulated NETs group. For gene set functional enrichment
analysis, we used KEGG test API. Up-to-date KEGG pathway gene
annotations were obtained and genes were mapped to background sets.
The R package clusterprofiler (v.3.14.3) was used for enrichment
analysis, and the gene set enrichment results were obtained. The
minimum gene set was set at 5, and the maximum gene set was set
at 5,000. p< 0.05 and FDR< 0.25were considered statistically significant.

2.5 Gene Set Enrichment Analysis (GSEA)

For GSEA (Subramanian, et al., 2005), we downloaded the
GSEA software (v.3.0) from the website and defined the gene
rank in advance and from Molecular Signatures database
(MsigDB) (Liberzon, et al., 2011), “C2. Cp. Reactome. V7.4.
Symbols” [29]. The “Gmt” subset was powered to evaluate
related pathways and molecular functions. According to the
predetermined gene rank, the smallest gene set was 5 and the
largest gene set was 5,000. Finally, p < 0.05, FDR < 0.25 were
statistically significant.

FIGURE 1
Consensus clustering of NETs-related subgroups (A) Protein-Protein Interaction Network (PPI) of NETs-related genes was generated by Cytoscape
software (B) Heatmap of NETs-related gene expression between normal and tumor tissues (C)The relative change of the area under the cumulative
distribution function (CDF) curve for k = 2 to 10 (D) A heatmap shows the consensus clustering solution of 22 NETs-related genes in breast cancer
samples when k = 2 (E) Delta area reflects relative change in area under the CDF curve when k = 2 to 10 (F) PCA analysis of two NETs-related
subgroups in TCGA database (G) Heatmap of NETs-related gene expression between C1 and C2 subgroups (H) Kaplan-Meier curve of OS prognosis
between NETs high and NETs low subgroups.
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2.6 Prognosis survival analysis

R package “maxstat” (v.0.7–25) was utilized to determine the
optimal cutoff value of riskscore. We determined the optimal cut-off
value of RiskScore by setting the minimum sample size to be greater
than 25% and the maximum sample size to be less than 75%, and
then determining the optimal cut-off value. Patients were divided
into high and low categories based on this result. Furthermore, we
analyzed the prognosis difference between the two subgroups using
the R package “survival” to evaluated the significance of the
prognosis between different groups of samples by the Log-rank
test. We concentrated on the prognosis difference. In addition,
Univariate and Multivariate Cox regression analysis were used to
independent prognostic factors affecting overall survival (OS) of
BRCA patients.

2.7 NETs-related risk signature model and
immunotherapy prediction

Least absolute shrinkage and selection operator (LASSO)
regression analysis is a linear regression method using L1-
regularization. Compared with the traditional Cox regression
analysis, LASSO Cox regression analysis can solve collinearity
problem. The R package “glmnet” was used for LASSO Cox

regression analysis of status, survival time, survival and RNA-seq
data. Besides, we set a 10-fold cross-check to obtain the optimal
model. Riskscore was calculated according to the formula:

Riskscore = ∑
n

i�1
(Coef i * Expi). In addition, Tumor Immune

Dysfunction and Exclusion (TIDE) was applied to detect BRCA
patient’s response to immunotherapy (http://tide.dfci.harvard.edu/).
TIDE database is an analytical tool that effectively predicts the
response to immune checkpoint inhibition based on two major
tumor immune escape mechanisms: T-cell exhaustion and T-cell
infiltration.

2.8 Tumor associated immune cell
landscape of NETs-Related genes

Based on our expression profile, we used the R software package
“IOBR” to select “ESTIMATE” method to calculate the estimate
score, immune score and stromal score (Yoshihara et al., 2013).
Besides, CIBERSORT was powered to compute the scores of
22 kinds of immune infiltrating cells between the two NETs
subgroups (Newman, et al., 2015). The results of tumor immune
cell infiltration are presented by landscape map.

R package “ggplot2” was utilized for visualization of stack, violin
and bar plots in immune cell landscape. Furthermore, Sangerbox

FIGURE 2
Differentially expressed genes and Gene Set Enrichment Analysis between NETs subgroups (A, B) Volcano plot and heatmap are used to show
differentially expressed genes (DEGs) between NETs high and NETs low subgroups (C, D) KEGG and GO analysis of DEGs between two subgroups (E, H)
GSEA analysis respectively suggested that upregulated DEGs in neutrophil degranulation (E), adaptive immune system (F), extracellular matrix
organization (G) and enrichment of PD-1signaling pathway (H).
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tool was conducted to assist in describing the immune cell landscape
(Weitao, et al., 2022).

2.9 Somatic mutation

For somatic mutation, we downloaded “maf” format data for

somatic mutations in breast cancer patients from the TCGA

database. “Maftools” package in R was applied to generate

waterfall map for the visualization of somatic mutant genes.

2.10 Statistics

All statistical analysis was conducted using R software (v.4.2.1).
Sangerbox, an online analysis and auxiliary drawing tool, is used to
visualize some of the images. The TCGA-BRCA training set and the
GSE21653 test set were standardized by zero-mean normalization.
Kaplan-Meier analysis was powered to analyze the difference in
survival outcomes between NETs-high group and NETs-low
group. Log-rank test was used to calculate statistical significance
between the two groups. In addition, the receiver operating
characteristic (ROC) curve was applied to measure prognostic
prediction performance by area under the curve (AUC) of NETs-

associated genes and the prediction model. p-value < 0.05 was
considered statistically significant.

3 Result

3.1 Consensus clustering of NETs-Related
subgroups

NETs related genes in the previous literature reports summarize
(Shen, et al., 2022). Based on the STRING database, Cytoscape (https://
cytoscape.org/) was utilized to generate the Protein-Protein Interaction
Network (PPI) of NETs-related genes to further understand the
associations between NETs-related genes (Figure 1A). To understand
the differences in gene expression between tumor and normal tissues, we
generated a heat-map to analyze differentially expressed genes between
tumor and normal tissues. Most of the NETs-related genes are
downregulated in BRCA compared to normal tissues, including CAT,
CTSG, ELANE, LTF, MPO, PADI4, ACTN1, MYH9, S100A12, TKT. A
few of NETs-related genes are highly expressed in breast cancer, such as
ACTB, ACTG1, KRT10 (Figure 1B). Aim to investigate differences
among different NETs expression subgroups, consensus clustering was
applied to divide BRCA patients into two clusters (k = 2). After
k-medoids clustering, the TCGA-BRCA cohort was divided into two

FIGURE 3
Tumor microenvironment landscape in BRCA patients (A–C) Violin plot is generated to show the estimate score (A), immune score (B) and somatic
score (C) between NETs high and NETs low subtypes (D, E) Stack and box plots were used to represent 22 types of tumor-related immune cells between
the two NETs subgroups in BRCA (F–G) Violin plot and box plot showed the expression of immune checkpoint related genes (F) and HLA genes (G)
between two different NETs subgroups, respectively (*p < 0.05, **p < 0.01, ***p < 0.001. ****p < 0.0001).
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NETs-related subgroups with different expression patterns (C1 and C2)
(Figure 1D). CDF delta area plot was generated to evaluate the area
under the distribution curve and sample consistency of different number
of subgroups (k = 2–10) (Figure 1C, E). Besides, principal component
analysis (PCA) of TCGA training set showed that different NETs related
subsets were independent of each other (Figure 1F). In order to analyze
the expression of NETs related genes between C1 and C2 subgroups,
22 NETs-related genes were visualized by heatmap (Figure 1G). The
results showed that the expression of NETs related genes was higher in
cluster C2 than in cluster C1. Therefore, we define C1 cluster as NETs
low group and C2 cluster as NETs high group. Furthermore, Kaplan-
Meier plot was powered to evaluate the overall survival time between the
two subgroups. Interestingly, the NETs high group was associated with
favorable clinical prognosis and the NETs low group was associated with
adverse clinical prognosis in the TCGA cohort (Figure 1H).

3.2 Differentially expressed genes and gene
set enrichment analysis between NETs
subgroups

According to the above results, high expression of NETs-related
genes suggests favorable prognosis, while low expression of NETs
suggests poor prognosis. Therefore, we aimed to further explore the

differences in gene expression between NETs subgroups and the related
signaling pathways enriched by DEGs. The “limma” package in R
software was used to analyze the DEGs between NETs high group and
NETs low group. Volcano plot was generated to show DEGs, including
293 significantly upregulated genes (|log FC|>1.5) and
108 downregulated genes (|log2FC|<1.5) (Figure 2A). Representative
upregulated and downregulated genes are shown in a heatmap
(Figure 2B). KEGG analysis showed that NETs-related DEGs was
mainly associated with IL-17 signaling pathway, various hormones
(including renin, epinephrine, oxytocin, estrogen) signaling pathway,
myocardial contraction and bacterial infection (Figure 2C). GO analysis
showed that DEGs are related to extracellular vesicle, extracellular
exosome, extracellular organelles, bacterial defense and human
immune system (Figure 2D). These results suggest that these NETs-
related DEGs are involved in the regulation of extracellular substance
composition and human immune system. In order to further explore
the signaling pathways associated with NETs and human health, GSEA
was applied to analyze the signaling pathways of differential gene
enrichment between NETs high group and NETs low group. GSEA
analysis results showed that there were differences in the enrichment of
gene sets among NETs subgroups. High expression of NETs-related
genes was associated with neutrophil degranulation, adaptive immune
system, extracellular matrix organization and PD-1signaling pathway
(Figure 2E–H).

FIGURE 4
Somatic mutation and construction of NETs-related risk signature model (A, B) LASSO Cox regression analysis revealed four NETs-related genes
associated with the OS prognosis (C) Venn diagram was generated to show 4 NETs-related genes related to the prognosis of OS (D) Survival time and
status distribution heatmap of 4 NETs genes associated with OS prognosis (E–F) Kaplan-Meier curves associated with OS prognosis of the TCGA cohort
(E) and the GSE21653 (F) cohort in different risk score subgroups (G) Waterfall plot of somatic mutations in the TCGA cohort.
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3.3 Tumor microenvironment landscape in
BRCA patients

The infiltration of immune cells in the tumor immune
microenvironment of BRCA has been confirmed to play an
important role in tumor genesis, progression, invasion and drug
resistance, which is related to the clinical prognosis of BRCA
patients (Yuan, et al., 2021). To understand the tumor
microenvironment landscape between different subtypes of
NETs in breast cancer patients, ESTIMATE algorithm was
performed to determine the estimated score, immune score, and
stromal score between the two groups, respectively (Figures
3A–C). The results showed that the estimated score, immune
score, and stromal score of the NETs high group were higher
than those of the NETs low group, suggesting that the NETs high
group has a favorable tumor microenvironment, which may be
related to a beneficial clinical prognosis. Additionally, we
generated stacking plot and box plots by the CIBERSORT
algorithm for visualization of 22 kinds of tumor associated
immune cells (Figure 3D, E). From the results, most of the
NETs high subgroup had a higher level of immune cell

infiltration than NETs low group. Specifically, CD8T cell,
CD4T cell memory activated cell follicular helper, γδT cell,
macrophage M1, dendritic cell, and mast cell. Immune
checkpoint inhibitors are important targets of immunotherapy.
Violin plots were generated to determine the expression of
immune checkpoint genes between NETs subtypes (Figure 3F).
Obviously, the expression of most immune checkpoint related
genes in NETs high expression group was higher than that in NETs
low expression group, such as CTLA4, CD274, HAVCR2, TIGIT,
PDCD1, PDCD1LG2, LAG3. Furthermore, box plots were used to
demonstrate the expression quantity of human leukocyte antigen
(HLA) genes between NETs subgroups (Figure 3G). The results
showed that HLA related genes in the NETs high group were
significantly upregulated compared with those in the NETs group.

3.4 Somatic mutation and construction of
NETs-related risk signature model

In order to further screen NETs genes related to prognosis, we
performed LASSO analysis on 22 NETs-related genes. To obtain the

FIGURE 5
Association of riskscore signature with tumor associated immune cells and immunotherapy prediction of NETs subgroups (A) Scatter plot of risk
score correlation between native B cell and macrophage M1 in TCGA cohort (B) Box plots are used to represent risk score related immunotherapy
responses predicted by the TIDE database in TCGA cohort (C) Scatter plot of risk score correlation between native B cell and macrophage M1 in
GSE21653 cohort (D) Box plots are used to represent risk score related immunotherapy responses predicted by the TIDE database in
GSE21653 cohort (E–F) Forest plots were generated to show clinical features and risk score associated with OS in univariate regression analysis (E) and
multivariate regression analysis (F) (***p < 0.001).
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optimal model. The Lambda value was set to 0.012 and we finally
identified four genes: LTF, LCP1, AZU1 and ENO1 (Figures 4A, B).
To ensure reliable hub genes, we screened common hub genes from
LASSO Cox regression analysis of GSE21653 validation set and
TCGA training set and drew Venn diagram (Figure 4C). Finally, we
obtain the calculation formula of Riskscore: Riskscore=
((0.012*ENO1 exp) + (−0.059*AZU1 exp) + (−0.073*LCP1 exp)
+ (−0.033) *LTF exp). Moreover, a heatmap was generated to
evaluate the relationship between Risk Score and overall survival
(Figure 4D). The results showed that high Risk Score predicted a
poor prognosis. Low Riskscore indicates a favorable prognosis. In
addition, we also use the GSE21653 verification set to verify this
result (Figure 4E). Furthermore, heatmaps were generated to show
the distribution between risk score and OS event between NETs
subtypes (Figure 4F). The accumulation of somatic mutations is a
feature of malignant tumors (Shibata, et al., 2021. Aim to further
understand the somatic mutation of BRCA, we download the
mutation omics data of BRCA from TCGA database to generate
a waterfall map (Figure 4G). The results showed that TP53, PIK3CA
and TTN were the main mutation genes, accounting for 39.3%,
35.8% and 22.0% in total. The incidence of TP53 and PIK3CA
mutations in NETs high expression group was higher than that in
NETs low expression group.

3.5 Association of risk signature with tumor
associated immune cells and
immunotherapy prediction of NETs
subgroups

To explore the relationship of riskscore with tumor immune cell
infiltration, scatter plot was generated to the correlation of riskscore
with immune cells for visualization in TCGA training set
(Figure 5A). Similarly, we obtained same results in the
GSE21653 dataset (Figure 5C). The results showed that riskscore
was negatively correlated with B cell naive and macrophage M1. The
higher the riskscore, the less B cell naive and macrophage M1.
Additionally, we predicted the response of BRCA patients to
immunotherapy by in TIDE Database (Figures 5B,D). All
samples were divided into immunotherapy-response group and
non-response group. Interestingly, we found a significantly lower
riskscore in the group that responded to immunotherapy than in the
group that did not respond to immunotherapy. This suggests that
patients with lower riskscore would benefit more from
immunotherapy. Univariate and Multivariate Cox regression
analysis forest plots were drawn to analyze the risk factors
associated with prognosis (Figures 5E,F). The results indicated
that age and riskscore were significantly associated with

FIGURE 6
Construction of prognosis related risk model (A) Nomogram is generated to predict 1-,3-, and 5-year overall survival in patients with BRCA patients
(B) Calibration curves were powered to evaluate the reliability of the model (C) ROC curves were drawn to evaluate the accuracy of the model in
predicting 1-, 3- and 5-year overall survival.
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FIGURE 7
Validation of hub genes (A–D) Expression levels of LFT (A), LCP1 (B), AZU1 (C), and ENO1 (D) in paired breast cancer samples from the TCGA
database. Expression levels of LFT (E), LCP1 (F), AZU1 (G), and ENO1 (H) in unpaired breast cancer samples from the TCGA database (***p < 0.001).

FIGURE 8
Validation of hub gene protein level (A–D) Total protein levels of LFT (A), LCP1 (B), AZU1 (C), and ENO1 (D) in paired breast cancer samples from the
CPTAC database (E–H) Expression of LTF (E), LCP1 (F), AZU1 (G), and ENO1 (H) in various grades of BRCA patients (*p < 0.05, **p < 0.01, ***p < 0.001.
****p < 0.0001).
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prognosis in both Univariate and Multivariate Cox regression
analyses.

3.6 Construction of prognosis related risk
model

To further understand and predict the overall survival of BRCA
patients, a nomogram was utilized to calculate the prognosis of
BRCA patients (Figure 6A). Total score was calculated according to
the scores corresponding feature of each patient, including age,
gender, lymph node metastasis, tumor size, distant metastasis and
riskscore to speculate on 1-, 3-, and 5-year overall survival rates of
BRCA patients. For example, a 45-year-old woman has a tumor with
TMN grade (T2N2M1) and a calculated risk score of −0.2. Then the
patient calculated a total score of 184. According to the risk
prediction model, the 1 −, 3 −, and 5-year survival rates were
92%, 60%, and 38%, respectively. The prediction model was
adjusted to observe the accuracy of the model in predicting the
prognosis of breast cancer (Figure 6B). Additionally, ROC curves
were generated to evaluate the reliability of this prediction model
(Figure 6C). From the results, the area under ROC curve of 1−, 3-

and 5-year are 0.73, 0.80 and 0.78, respectively. The consistency
index (C-index) of the prediction model is 0.75, and the reliability of
the model is medium.

3.7 Validation of hub genes between tumor
tissue and normal tissue

Based on above results, BRCA patients with high-risk scores
have a worse prognosis. To observe the expression of hub genes at
mRNA level in BRCA patients, we analyzed the mRNA levels of
TCGA paired samples, and the results suggested that AZU1 and
ENO1 were not significantly different between tumor tissues and
normal tissues (Figure 7C, D), while LTF was significantly
downregulated and LCP1 was upregulated (Figure 7A, B).
Similarly, similar results were obtained in the unpaired samples
(Figure 7E–H). In addition, we used the in breast tumor and normal
tissue derived from LTF, LCP1, AZU1, and ENO1 differences in
total protein expression data analysis. The total protein levels of LTF,
LCP1, AZU1, and ENO1 were all shown to be downregulated in
tumor tissues. To further understand the expression of key genes in
different tumor grades, we obtained total protein levels from the

FIGURE 9
Validation of hub genes between breast tumor and normal tissue (A–D) Representative results of immunohistochemistry for LTF (A), ENO1 (B),
LCP1 (C) and AZU1 (D).
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Clinical Proteomic Tumor Analysis Consortium (CPTAC) for
BRCA patients at various stages. The findings imply that LTF,
AZU1, and ENO1 are related to tumor grade (Figure 8E–H),
while LCP1 is not substantially different among tumor stages
(Figure 8F). To further validate the difference in hub genes’
expression between BRCA patients and normal controls, we
downloaded the immunohistochemical results of hub genes from
normal and tumor tissues using the HPA Database. The results
suggested that LTF, LCP1 and AZU1 were undetectable (Figures
9A,C,D) and ENO1 was significantly reduced in BRCA patients
(Figure 9B). Moreover, GeneMANIA database was powered to
construct protein-protein interaction networks of LTF, LCP1,
AZU1 and ENO1 (Figure 10). The results suggested that the four
hub genes may be involved in promoting protein synthesis, myeloid

leukocyte differentiation, defense response to bacterium, human
immune response, etc.

4 Discussion

Neutrophil extracellular traps are produced by neutrophils by
expelling citrullinated histone H3, myeloperoxidase and other
intracellular molecules. Since it was discovered in 2004, a large
number of literatures about the formation mechanism of NETs and
its relationship with innate immunity and inflammation have
emerged (Tan et al., 2021). NETs not only has antibacterial
effect, but also may damage organs or tissues due to
overexpression. NETs is not only a host defense response, but

FIGURE 10
PPI networks of LTF, LCP1, AZU1, and ENO1 from GeneMANIA database.
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also plays an important role in infectious and non-infectious
diseases (Leliefeld, et al., 2015; Pruchniak, et al., 2019).

In addition, NETs can be found in human and various animal
malignancies, such as breast cancer, gastric cancer, colorectal cancer
and liver cancer. With the research and deepening of the
relationship between NETs and tumor, NETs has been confirmed
to be related to tumor invasion, metastasis and immune escape of
tumor cell. Among many tumor cells, neutrophils play a role in
promoting tumor progression in animal models and cancer patients
(Kaltenmeier, et al., 2021). Moreover, and NETs also directly affect
tumor related immune microenvironment (Teijeira, et al., 2021).
NETs in serum can indicate the occurrence of liver metastasis of
early breast cancer (Yang et al., 2020). It is a vicious circle model that
metastatic breast cancer cells induce neutrophils to form NETs,
which further promotes the growth of tumor cells in target organs
(Liang, et al., 2021).

In our study, we found for the first time a BRCA clustering
classification method for NETs-related genes. The risk score
calculated based on the expression level of related genes can
predict whether they will respond to immunotherapy, which has
important implications for the selection of treatment modalities
for breast cancer patients. Although many studies have
confirmed that high NETs expression indicates poor tumor
prognosis (Snoderly, et al., 2019; Martins-Cardoso, et al.,
2020), the high expression of 22 NETs-related genes in this
study suggests that BRCA patients respond better to
immunotherapy, which is not contrary to the evidence of
previous studies. The reason is not all of 22 NETs-related
genes in this study promote the release of NETs, which
implies that the NETs high subgroup do not release more
NETs than the NETs low subgroup. Specifically, TCGA
cohorts were divided into two subgroups (C1 and C2) based
on PAM clustering of Net-related genes. Subsequently, heat
maps of the two subpopulations in C1 showed higher expression
of Nets-related genes in C2. Therefore, we define the C1 cluster
as the NETs low group and the C2 cluster as the NETs high
group. It is worth mentioning that NET high here is intended to
replace cluster 2 and does not mean that NET high promotes
NETs formation or related NETs protein secretion. The same
goes for NET low. From this perspective, we do not think the
results of this study contradict previous studies. Of note, the risk
signature model constructed by different NETs-related gene
sets may show different results.

22 NETs-related genes in our research were summarized from
previous literature. Firstly, we analyzed the expression profiles of
22 NETs related genes in BRCA and normal tissues and found that
most of the genes were downregulated in BRCA while there were also a
small proportion of genes that were highly expressed in BRCA.
Secondly, consensus clustering analysis was utilized to divide BRCA
patients into two clusters (C1 and C2), which respectively represents the
NETs low group andNETs high group.Moreover, KEGG andGOwere
applied to analyze the functional enrichment of DEGs between the two
subgroups, andGSEAwas used to analyze the enriched related signaling
pathways. Reports have suggested that NETs formation by neutrophils
in the tumor microenvironment plays an active tumor-promoting role
during disease progression (Tohme, et al., 2016; van der Windt, et al.,
2018; Wu, et al., 2019).

NETs can also activate the NF-κB signaling pathway to directly
stimulate the proliferation of tumor cells (Sangaletti, et al., 2014).
To observe the differences of tumor immune cell infiltration in
different NETs subgroups, we search for the tumor
microenvironment landscape of BRCA patients, utilizing
ESTIMATE and CIBERSORT to assess the level of BRCA
tumor associated immune infiltration and immune scores and
also further analyzed immune checkpoint and HLA related genes.
Waterfall plot was generated for visualization by analyzing the
Somatic mutation data. Additionally, we screened out 4 genes
related to prognosis by LASSO Cox regression analysis. And then a
risk signature model based on 22 NETs-related genes was
established and validated. Besides, a riskscore versus immune
cell correlation scatter plot was generated to visualization.
Notably, we also utilized the TIDE database to predict BRCA
response to immunotherapy. As a result, we found that a lower risk
score predicted a better prognosis and a more beneficial response
to immunotherapy, which suggests that risk scores can be used to
cluster BRCA patients and guide clinical treatment strategies.

In conclusion, this study establishes and validates a NETs-
related stratification system that is beneficial for predicting
clinical outcomes and guiding immunotherapy for BRCA
patients, which is particularly necessary for individualized
treatment of BRCA patients.

Nonetheless, there are some limitations to the research. Firstly,
the BRCA samples included in this study were all types of breast
cancer. As different types of breast cancer need different clinical
treatments, there will be heterogeneity of BRCA samples in the
research, which will affect the accuracy of the results. Secondly, there
was no obvious difference in the prognosis between two NETs
subgroups because the sample of GSE21653 is not enough. Thus,
larger cohort study is needed to validate the accuracy of this
stratification system and risk model for NETs in the future. Last
but not least, more experiments in vivo and in vitro should be
performed to confirm the feasibility of the research.

5 Conclusion

In this study, we found that two distinct breast cancer subtypes
(NETs high group and NETs low group) could be obtained by PAM
clustering method. We discovered significant prognostic differences
between the two subgroups (NETs low indicated poor prognosis)
and performed KEGG and GO analyses. In addition, a risk score
model based on NETs gene set was established by LASSO regression
analysis. Notably, we also found that the riskscore was associated
with the response to immunotherapy, suggesting that the riskscore
can be used to predict whether a patient will respond to
immunotherapy. Therefore, our study provides some useful
perspectives for future breast cancer research and clinical treatment.
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