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Background: Cuproptosis and necroptosis represent two distinct programmed
cell death modalities implicated in neoplastic progression; however, the role of
combining cuproptosis and necroptosis in hepatocellular carcinoma (HCC)
remains to be elucidated.

Methods: A total of 29 cuproptosis-related necroptosis genes (CRNGs) were
identified, followed by an extensive analysis of their mutational characteristics,
expression patterns, prognostic implications, and associations with the tumor
microenvironment (TME). Subsequently, a CRNG subtype-related signature was
developed, and its value of prognostic prediction, TME, and therapeutic responses
in HCC were thoroughly investigated. Last, quantitative real-time PCR and
Western blotting were employed for investigating the signature gene
expression in 15 paired clinical tissue samples.

Results: Two distinct CRNG subtypes were discerned, demonstrating associations
between CRNG expression patterns, clinicopathological attributes, prognosis, and
the TME. A CRNG subtype-related prognostic signature, subjected to external
validation, was constructed, serving as an independent prognostic factor for HCC
patients, indicating poor prognosis for high-risk individuals. Concurrently, the
signature’s correlations with an immune-suppressive TME, mutational features,
stemness properties, immune checkpoint genes, chemoresistance-associated
genes, and drug sensitivity were observed, signifying its utility in predicting
treatment responses. Subsequently, highly accurate and clinically convenient
nomograms were developed, and the signature genes were validated via
quantitative real-time PCR and Western blotting, further substantiating the
stability and dependability of the CRNG subtype-related prognostic signature.

Conclusion: Overall, this investigation presented an extensive panorama of
CRNGs and developed the CRNG subtype-related prognostic signature, which
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holds potential for implementation in personalized treatment strategies and
prognostic forecasting for HCC patients.
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Introduction

Hepatocellular carcinoma (HCC), representing 80% of primary
liver cancer cases, accounts for a third of cancer-related fatalities
(Yang et al., 2019; Vogel et al., 2022). Surgical intervention remains
the optimal therapeutic strategy for HCC; however, high recurrence
rates persist as a challenge. Up to 80% of HCC patients experience
recurrence within 5 years post-radical resection, and liver
transplantation recurrence rates are approximately 15%.
Unfortunately, only a few patients qualify for liver
transplantation (Tabrizian et al., 2015; Vogel et al., 2022).
Despite the fact that systemic therapies are favored for advanced
or unresectable HCC, the treatment effects and options are limited.
Sorafenib can extend the median survival of patients by 2–3 months,
and lenvatinib demonstrates equal or superior potency (Llovet et al.,
2008; Kudo et al., 2018). Nevertheless, most agents fail to improve
patient survival with regorafenib being a rare exception (Bruix et al.,
2017). Immunotherapy emerges as a promising HCC treatment
option. Combined use of bevacizumab and atezolizumab results in
improved overall survival (OS) compared to sorafenib, which is the
sole approved immune checkpoint therapy for HCC. However,
immunotherapy cannot consistently implement the desired effect.
Consequently, delving into the heterogeneity and regulatory
mechanisms among HCC patients, accurately assessing their
clinical prognosis and enhancing the therapeutic outcomes of
HCC are the current foci in the field of HCC research. The
identification of novel biomarkers serves as a crucial approach to
achieve these objectives and has been extensively employed in the
stratification, prognostic evaluation, and treatment guidance of
HCC patients. Cuproptosis, a novel programmed cell death
(PCD) pathway linked to copper homeostasis, transpires through
the following processes: intracellular copper directly binds to
lipoylated components in the tricarboxylic acid cycle, thus
inducing lipoylated DLAT oligomerization and iron–sulfur (Fe/S)
cluster loss. Subsequently, proteotoxic stress activation triggers
HSP70 induction, resulting in cell death (Tsvetkov et al., 2022).
In recent years, some research studies have revealed associations
between copper homeostasis and cancer development, suggesting
that elevated copper levels promote malignant cancer behaviors and
phenotypes, also called “cuproplasia” (Babak and Ahn, 2021; Ge
et al., 2022). In HCC, the upregulated intracellular copper has been
reported to confer radiotherapy resistance and contribute to
malignant transformation in Wilson disease (Gunjan et al., 2017;
Yang M. et al., 2022). Given cancer’s copper dependence, targeting
cuproptosis may serve as a potential therapeutic strategy (Ge et al.,
2022). Indeed, copper-based nanocarriers have demonstrated
practical prospects for HCC treatment, potentially related to
cuproptosis (Cai et al., 2021). Necroptosis shares similarities with
cell apoptosis and necrosis (Vandenabeele et al., 2010; Oberst et al.,
2011; Kaczmarek et al., 2013). Morphologically and

immunologically, necroptosis manifests as membrane rupture,
cytoplasmic concentration, organelle swelling, and robust
immune response induced by damage-associated molecular
pattern (DAMP) release. Molecularly, necroptosis is initiated by
intracellular and extracellular stimuli akin to apoptosis, with
pathway switching contingent upon caspase-8 status (caspase-
8 inhibition activates necroptosis). Necroptosis exerts a dual
influence on hepatocellular carcinoma progression. Some data of
mice indicate necroptosis is associated with HCC risk factors,
including chronic liver inflammation and fibrosis (Mohammed
et al., 2021; Thadathil et al., 2022). On the contrary,
downregulated RKIPs have been observed to foster HCC
progression via immunosuppression and chemoresistance
induction (Wu et al., 2020; Nicolè et al., 2022). Targeting
necroptosis may also constitute an alternative HCC treatment,
with preliminary evidence supporting this notion (Lan et al.,
2020). Although the regulatory mechanisms of cuproptosis and
necroptosis have been investigated independently, and several
biomarkers based on cuproptosis or necroptosis-associated genes
have been established as prognostic and therapeutic predictors, few
studies have systematically examined the combined effects of these
two cell death modalities in HCC. Moreover, it remains unknown
whether the concomitant application of cuproptosis-related genes
(CRGs) and necroptosis-related genes (NRGs) can serve as
predictive factors for patient outcomes and treatment efficacy.
Consequently, we identified 29 cuproptosis-associated necroptosis
genes (CRNGs) by integrating CRGs and NRGs, performing an
extensive analysis of their prognostic value, tumor
microenvironment (TME) associations, and treatment responses
in HCC with the aim of elucidating the collaborative roles of these
two programmed cell death pathways in this malignancy.

Materials and methods

Collection and processing of data

The gene expression profiles and clinical information of three
independent HCC cohorts (TCGA-LIHC, ICGC-LIRI-JP, and
GSE14520) were acquired from The Cancer Genome Atlas
(TCGA) (https://portal.gdc.cancer.gov/), the International Cancer
Genomics Consortium (ICGC) (https://icgc.org/), and Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/).
For all the RNA-seq data, transformation of fragments per kilobase
million (FPKM) values into transcripts per kilobase million (TPM)
values has been conducted using the “limma” package. Batch effect
elimination between different cohorts was performed using the
“SVA” package, and all data underwent log2 transformation. In
total, 365 patients of TCGA-LIHC with gene expression profiles,
somatic mutation information, copy number variation (CNV), and
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clinicopathological information were utilized as an entire data
cohort for the subsequent analyses. In addition, 231 ICGC-LIRI-
JP patients and 200 GSE14520 patients served as external validation
cohorts.

The cuproptosis-related genes (Supplementary Table S1) and
necroptosis-related genes (Supplementary Table S2) were sourced
from previous studies (Zhao et al., 2021; Peng X. et al., 2022) and the
GeneCards website (https://www.genecards.org/).

Identification of cuproptosis-related
necroptosis genes and unsupervised
clustering analysis

In total, 29 CRNGs were identified by the correlation analysis of
CRG and NRG expression in HCC patients, adhering to the
following criteria: |R|>0.6 and p-value <0.001 (Supplementary
Tables S3-S4). Consensus unsupervised clustering analysis was
conducted by the “Consensus Cluster Plus” package based on
CRNG expressions, and principal component analysis (PCA) was
applied for showing the differences in CRNG subtypes.
Subsequently, R packages “survival” and “survminer” were
employed for survival analysis, and differences in
clinicopathological features were visualized using the “pheatmap”
package. Meanwhile, immune checkpoint genes (ICGs) and
chemoresistance-related genes (CRRGs) were extracted from
several previous research studies (Marin et al., 2020; Hu et al.,
2021) and the GeneCards website. Differential expression patterns
of these genes were compared among HCC patients. In addition,
single-sample gene set enrichment analysis (ssGSEA) was used for
estimating immune cell infiltration levels.

Analysis of functional enrichment

To compare the biological functions and signaling pathways in
patients with different CRNG subtypes, Gene Set Variation Analysis
(GSVA) was conducted with terms such as “h.all.v7.2. symbols” and
“c2. cp.kegg.v7.5. symbols” via the “GSVA” package. Gene Set
Enrichment Analysis (GSEA) was performed with terms
including “h.all.v7.2. symbols” and “c2. cp.kegg.v7.5. symbols”
following the criteria p-value <0.05, FDR <0.25, and NES >1.
Subsequently, the “limma” package was applied for identifying
differentially expressed genes (DEGs) between CRNG subtypes,
adhering to the criteria |lg FC| > 0.585 and p-value <0.05. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were conducted using the R
“clusterProfiler” package then.

Identification of differentially expressed
genes related to overall survival and
consensus unsupervised clustering analysis

Of all CRNG subtype-related DEGs, over-survival-related DEGs
(OS-related DEGs) were identified via Cox regression analysis with
univariate variables. Consensus unsupervised clustering analysis and
PCA analysis were carried out as previously described. A

comparison of overall survival and clinicopathological features
between gene clusters was then performed.

Construction and evaluation of the
prognostic signature related to the
cuproptosis-related necroptosis gene
subtype

Here, a novel cuproptosis-related necroptosis gene subtype-
related signature was developed by Lasso Cox regression analysis.
Patients of the TCGA-LIHC cohort were randomly allocated to two
cohorts (test and training cohorts at a ratio of 2:3) using the “caret”
package first. The Lasso Cox regression analysis was performed
using the “glmnet” package, and the penalty parameter lambda was
selected based on the minimum criteria through 10-fold cross
validation. Key genes of the CRNG subtype-related prognostic
signature were determined through Cox regression analysis with
multivariate variables, and GSEA analysis was performed
immediately afterward. Next, risk scores were calculated for each
HCC patient following the formula risk score � ∑∞

i�1(Coef i × Expi)
(Coefi representing the coefficient and Expi representing key gene
expressions). Patients were classified as high or low risk by
comparing their own risk scores to the median risk score. To
evaluate the predictive value of the prognostic signature, survival
analysis was performed using the “survival” and “suvminer”
packages. Receiver operating characteristic (ROC) analysis was
conducted by the R “timeROC” package, and signature gene
expression levels as well as OS in patients of the two groups were
visualized by the heatmap and scatter chart. In addition, ICGC-
LIRI-JP and GSE14520 cohorts were utilized for external validation
of the CRNG subtype-related prognostic signature with the same
analyses performed as described previously.

Analysis of independent prognostic factors
and construction of clinical nomograms

Here, Cox regression analysis with univariate, multivariable
variables, and concordance index (C-index) analysis were
performed to identify independent prognostic factors. Based on
the CRNG subtype-related signature and clinical characteristics,
clinical nomograms were constructed through the “rms” and
“regplot” packages for patients in three cohorts, respectively.
Curves of calibration and ROC were generated for evaluating the
accuracy of the clinical nomograms.

Correlation analysis of the prognostic
signature, immune status, and stemness
characteristics in HCC patients

GSEA analysis was executed to identify significant discrepancies
in biological functions and signaling pathways between high-risk
and low-risk patients. The immune cells’ infiltration levels in
patients of the TCGA-LIHC cohort were assessed utilizing the
CIBERSORT algorithm. Subsequently, correlation analyses
between this signature and immune cell infiltration levels were
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performed, as was an evaluation of the tumor microenvironment
scores using the “ESTIMATE” package. In addition, a broader
landscape of immune cell infiltration was explored through
multiple methods, such as CIBERSORT-ABS, TIMER, and
XCELL. Concerning immune functionality, disparities between
the two patient groups were determined by employing the R
package “GSVA” and the single-sample GSEA (ssGSEA)
algorithm. Last, tumor stem cell attributes of patients in the
TCGA-LIHC cohort were extracted from “StemnessScores_
RNAexp_20170127.2. tsv,” and a correlation analysis on stemness
characteristics and risk scores was conducted.

Correlation analysis of the prognostic
signature, immune checkpoint genes, and
tumor mutation burden

The “maftools” package was applied for displaying gene
mutational features in patients with different risk profiles. Next,
the tumor mutation burden (TMB) score was calculated, and a
correlation analysis was conducted, involving the TMB score,
prognostic signature, gene clusters, and overall survival. In
addition, a correlation analysis between the prognostic signature
and ICGs was conducted.

Validation of the prognostic signature in
immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm (http://tide.dfci.harvard.edu/) was employed for
comparing immunotherapy response between patients with
different risk profiles. Another four cohorts, GSE120644,
GSE78220, checkmate, and IMvigor210, were employed for
further corroborating the predictive capacity of the prognostic
signature in determining immunotherapy outcomes.

Correlation analysis of the prognostic
signature, chemoresistance-related genes,
and drug sensitivity

A comprehensive correlation analysis was performed to examine
the interplay between chemoresistance-associated gene expression
profiles and prognostic signatures. The “oncoPredict” package was
employed for estimating the differential sensitivity to prevalent
hepatocellular carcinoma chemotherapeutic agents among
patients with distinct risk stratifications.

Clinical tissue sample collection,
quantitative real-time PCR, andWestern blot
analysis

A total of 15 matched hepatocellular carcinoma tissue specimens
and para-tumor tissues were procured from the Affiliated Tongji
Hospital, Huazhong University of Science and Technology, China.
Ethical approval was granted by the Tongji Hospital Research Ethics

Committee. The clinicopathological information of patients is
presented in Supplementary Table S5. Total RNA extraction from
clinical tissue samples was extracted using TRIzol™ reagent (Invitrogen,
Catalog #15596026), followed by complementary DNA synthesis using
PrimeScript™ RT Master Mix (Takara Bio Inc., Catalog #RR036A) in
accordance with the manufacturer’s guidelines. Quantitative real-time
PCR (qRT-PCR) was executed employing a SYBR Premix EX Taq kit
(Takara Bio Inc., Catalog #RR420A), adhering to the prescribed
protocol. The results were analyzed as previously delineated (Yang
T. et al., 2022). Western blotting (WB) was carried out in accordance
with previously established methodologies (Dobin et al., 2013). Image
Lab software facilitated the quantification of specific band intensities.
The primers and antibodies involved here are detailed in
Supplementary Table S6.

Statistical analysis

Statistical computations were performed using R software
(v.4.1.3) and GraphPad Prism (v.8.0.1). GSEA analysis was
completed using GSEA software (v.4.2.3). Quantitative data are
expressed as mean ± standard deviation (SD). Independent
Student’s t-test was used to determine the significance of
differences between two groups. Spearman’s correlation test was
applied for correlation analysis. Survival analysis was conducted
using the Kaplan–Meier method. The “maftools” package facilitated
the establishment of the variation features of CRNGs. Segmentation
analysis, the GISTIC algorithm, and the “RCircos” package were
utilized for the comprehensive analysis of CNV.
p-value <0.05 indicated statistical significance.

Results

Mutation and expression features of CRNGs
in HCC

The flowchart of this work is delineated in Supplementary
Figure S1. Through Spearman’s correlation analysis, 29 CRNGs
were identified, and their interaction network is shown in Figure 1A.
The differential expression of CRNGs is shown in Figure 1B,
wherein 17 CRNGs were significantly upregulated in tumor
tissues, and two CRNGs exhibited significant downregulation.
The gene mutation landscape of 29 CRNGs is shown in
Figure 1C with 61 patients (16.44%) in the TCGA-LIHC cohort
exhibiting CRNG mutations, and CDKN2A and NFE2L2 emerged
as the most frequently mutated genes. CNV frequency is shown in
Figure 1D, where AIM2, FASLG, NFE2L2, TRAF5, and CFLAR
demonstrated elevated frequencies, while TNFRSF1B, CDKN2A,
DNMT1, NFKB1, and CASP6 exhibited higher loss frequencies;
Figure 1E establishes the alterations and chromosomal locations of
CNV in 29 CRNGs. The interaction network of the 29 CRNGs is
shown in Figure 1F. In addition, 15 CRNGs related to prognosis
were identified via survival analysis employing the Kaplan–Meier
method and univariate Cox regression (Supplementary Figure S2,
Supplementary Table S7). Further analysis revealed CHMP4B as an
independent prognostic factor for HCC patients using multivariate
Cox regression, as indicated in Supplementary Table S8.
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Correlations of CRNG subtypes with clinical
features, CRRGs and ICGs, and immune cell
infiltration

According to 29 CRNGs expression levels, consensus clustering
analysis was executed, thus resulting in the classification of patients
into CRNG subtype A (subtype A = cluster A) and CRNG subtype B
(subtype B = cluster B) (Supplementary Figure S3A-H). Principal

component analysis unveiled a marked distinction between the two
CRNG subtypes (Supplementary Figure S3I). Subsequently, an
exhaustive correlation analysis was undertaken. Divergent CRNG
expression patterns and clinicopathological features in the two
CRNG subtypes are shown in Figure 2A, indicating that CRNG
subtype B is associated with elevated CRNG expression levels and
advanced clinical staging. The survival curves revealed that patients
of CRNG subtype B experienced inferior overall survival compared

FIGURE 1
Mutation and expression features of CRNGs in HCC. (A) Identification of CRNGs based on the correlations between the expression of CRGs and
NRGs. (B) Differential expression of 29 CRNGs in HCC. (C) Landscape of CRNGs mutations in HCC patients. (D) CNV analysis on CRNGs of HCC patients.
(E)Chromosomal location of CNV alteration in CRNGs. (F) Interactions among CRNGs in HCC (*p-value <0.05, **p-value <0.01, and ***p-value <0.001).
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to those of CRNG subtype A (Figure 2B). These findings implied
that CRNG subtype B was associated with a detrimental prognosis.
Meanwhile, patients of CRNG subtype B exhibited augmented
expression levels of ICGs and CRRGs (Figures 2C,D). In
addition, distinct immune cell infiltration levels were observed
between the two subtypes. Through “ssGSEA” algorithms, it was
determined that CRNG subtype B correlated with increased
infiltration levels of five immune cells, while only eosinophils
demonstrated enhanced infiltration in CRNG subtype A
(Figure 2E).

Comparative analysis of functional
enrichment in patients with two CRNG
subtypes

To delineate the distinct biological function characteristics
between patients of CRNG subtype A and B, GSVA, GSEA, and
CO/KEGG analyses were conducted. Both GSVA and GSEA
analyses revealed a significant enrichment of biological processes
and signaling pathways implicated in cuproptosis, necroptosis, and
oncogenesis within patients of CRNG subtype B (Figures 3A, B, F)

FIGURE 2
Correlations of CRNG subtypes with clinical features, CRRGs, ICGs, and immune cell infiltration. (A) Different CRNG expression patterns and
clinicopathological features between two CRNG subtypes. (B) Survival analysis on patients of two subtypes. (C) Different ICG expression patterns and
clinicopathological features in patients of two subtypes. (D) Different CRRG expression patterns between patients of two subtypes. (E) Different immune
cell infiltration patterns between patients of two subtypes (*p-value <0.05, **p-value <0.01, and ***p-value <0.001).
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(Supplementary Tables S9–S10). Furthermore, 7,028 differential
genes between CRNG subtypes were identified and GO/KEGG
analyses were performed. As a result, an enrichment of biological
processes associated with malignant cancer phenotypes or
immunological responses was observed, including cell cycle,
epithelial-to-mesenchymal transition (EMT), angiogenesis,
checkpoint pathway, and Th1/Th2 cell differentiation. The
enrichment of processes associated with cuproptosis and
necroptosis, such as protein polymerization, protein
degradation, protein acylation, TNF, and TLR signaling
pathways was also observed (Figures 3C–E) (Supplementary
Table S11).

Identification of the gene subtype in HCC
patients

Through univariate Cox regression analysis, 3,855 overall
survival-related differentially expressed genes were identified.
Subsequently, consensus clustering analysis was performed,
categorizing patients into gene subtype A (subtype A = cluster
A), gene subtype B (subtype B = cluster B), and gene subtype C
(subtype C = cluster C) (Supplementary Figure S4A-H). PCA
analysis demonstrated significant distinctions among these three
molecular subtypes (Supplementary Figure S4I). A heatmap and
survival curves were applied to compare OS-DEG expression

FIGURE 3
Comparative analysis of functional enrichment in patients with two CRNG subtypes. (A) GSVA analysis with HALLMARK terms between patients of
two subtypes. (B) GSVA analysis with KEGG terms between patients of two subtypes. (C–E) Analysis of GO and KEGG enrichment on DEGs between
patients of two subtypes. (F) GSEA analysis on DEGs between patients of two subtypes.
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levels, clinicopathological features, CRNG clusters, and OS
among patients within the three clusters (Figures 4A, B), in
addition to comparing CRNG expression (Figure 4C). Notably,
patients within gene subtype B exhibited the poorest prognosis,
while those within subtype C displayed the most favorable
outcomes. Furthermore, CRNG expression progressively
increased from gene subtypes C to A and B.

Construction and validation of the CRNG
subtype-related prognostic signature

In the TCGA-LIHC cohort, patients were categorized as test
and training cohorts randomly at a 2:3 ratio (Table 1). A CRNG
subtype-related prognostic signature was constructed through
Lasso and multivariate Cox analyses. This signature

FIGURE 4
Identification and construction of gene subtypes and the CRNG subtype-related prognostic signature in HCC patients. (A) Correlation analysis on
gene subtypes with OS-related DEGs, clinicopathological features, and CRNG subtypes. (B) Survival analysis on patients in three gene subtypes. (C)
Different CRNG expression patterns among three gene subtypes. (D) CRNG expression patterns between patients with different risk profiles. (E)
Correlation analyses on the risk score with CRNG subtypes and gene subtypes. (F) Correlation analyses of this prognostic signature with CRNG
subtypes, gene subtypes, and survival status (*p-value <0.05, **p-value <0.01, and ***p-value <0.001).
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encompassed six key genes, and GSEA analysis of key genes was
performed, revealing the enrichment of biological processes
associated with cancer initiation and progression, immune
responses, and multiple metabolic pathways (Supplementary
Figure S7) (Supplementary Table S12-17). The risk score was
calculated as follows: risk score � CBX2*0.348049685 −
FMO3*0.13238182 − IL7R*0.42489971 + LDHA*0.42036947+
SPP1*0.108648316 + ZC4H2*0.388943111 (Table 2). Patients were
identified as different risk profiles based on the comparison with the
median risk score. Moreover, correlation analysis on the prognostic
signature, CRNG subtypes, and gene subtypes was performed. We
observed elevated CRNG expression levels in high-risk patients, with
risk scores increasing fromCRNG subtype A to B and from gene subtype
C to A and B (Figures 4D, E). A Sankey diagram was employed to
illustrate the distribution of patient subtypes across different risk levels
and survival statuses (Figure 4F). Next, internal validation of the
prognostic signature was performed. Heatmaps were utilized for
visualizing key gene expression patterns, revealing the increased
expression of CBX2, SPP1, LDHA, and ZC4H2 in patients at high
risk, while IL-7R and FMO3 expression decreased in these patients
(Figure 5A). Distribution plots of the prognostic signature

demonstrated that the number of death cases rose with increasing risk
scores, and survival curves depicted poorer OS in high-risk patients
(p-value<0.001) (Figures 5B–D). ROC curves exhibited AUC values of
0.783, 0.755, and 0.743 for 1, 3, and 5 years, respectively, in the entire
cohort, 0.825, 0.789, and 0.826 in the training cohort, and 0.723, 0.670,
and 0.624 in the testing cohort (Figure 5E). Collectively, these results
indicated a robust performance of this prognostic signature for HCC
patients. By external validation, we further confirmed the prediction
value.HCCpatients were also divided into high- and low-risk groups, as
previously described. In the ICGC-LIRI-JP cohort and
GSE14520 cohorts (Supplementary Table S18), survival curves
described poorer OS in high-risk patients. ROC curves displayed
AUC values of 0.743, 0.743, and 0.886 for 1, 3, and 5 years,
respectively, in the ICGC-LIRI-JP cohort and 0.673, 0.699, and
0.657 for 1, 3, and 5 years in the GSE14520 cohort (Supplementary
Figure S8A-B) (Supplementary Figure S9A-B).

Independent prognostic analysis and
construction of clinical nomograms

To further evaluate the prognostic signature, analyses of Cox
regression with univariate and multivariate variables were
performed. In the TCGA-LIHC cohort, both the prognostic
signature and clinical stage emerged as independent prognostic
indicators (Figures 6A, B). In addition, the concordance index
(C-index) curve exhibited superior performance in prognostic
prediction of the signature (Figure 6F). In the ICGC-LIRI-JP and
GSE14520 cohorts, the prognostic signature also served as an
independent prognostic predictor, demonstrating optimal
predictive performance (Supplementary Figure S8C-D, H)
(Supplementary Figure S9C-D, H). Next, clinical nomograms
were developed for patients in each of the three cohorts
separately (Figure 6C, Supplementary Figure S8E, Supplementary

TABLE 1 Clinicopathological information of patients in the TCGA-LIHC cohorts.

Characteristics Entire cohort Training cohort Test cohort p-value

Age <=65 227 62.19% 134 61.19% 93 63.70% 0.708

>65 138 37.81% 85 38.81% 53 36.30%

Gender FEMALE 119 32.60% 74 33.79% 45 30.82% 0.6322

MALE 246 67.40% 145 66.21% 101 69.18%

Grade G1 55 15.07% 34 15.53% 21 14.38% 0.8927

G2 175 47.95% 105 47.95% 70 47.95%

G3 118 32.33% 72 32.88% 46 31.51%

G4 12 3.29% 6 2.74% 6 4.11%

unknow 5 1.37% 2 0.91% 3 2.05%

Stage Stage I 170 46.58% 100 45.66% 70 47.95% 0.979

Stage II 84 23.01% 50 22.83% 34 23.29%

Stage III 83 22.74% 50 22.83% 33 22.60%

Stage IV 4 1.10% 2 0.91% 2 1.37%

unknow 24 6.58% 17 7.76% 7 4.79%

TABLE 2 Key genes for the cuproptosis-related necroptosis gene subtype-
related prognostic signature.

Key genes Coefficient

CBX2 0.348049685

FMO3 −0.13238182

IL7R −0.42489971

LDHA 0.42036947

SPP1 0.108648316

ZC4H2 0.388943111
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Figure S9E). The calibration curves described an excellent
consistency between predicted and observed outcomes
(Figure 6D, Supplementary Figure S8F, Supplementary Figure
S9F). ROC curves demonstrated the high accuracy of the
nomograms for prognostic prediction. In TCGA-LIHC cohort
patients, the AUC values were 0.759, 0.751, and 0.778 for 1, 3,
and 5 years, respectively (Figure 6E); in the ICGC-LIRI-JP cohort,
AUC values were 0.871, 0.754, and 0.824 for 1, 3, and 5 years
(Supplementary Figure S8G); and in the GSE14520 cohort, AUC
values were 0.749, 0.775, and 0.756 for 1, 3, and 5 years
(Supplementary Figure S9G).

Correlations of the prognostic signature
with immune function, immune cell
infiltration, and stemness characteristics
in HCC

To investigate biological function characteristics associated
with different risk profiles, GSEA analysis was performed. The
results revealed enrichment of cancer-related pathways and
biological processes, including G2M checkpoint, E2F targets,
cell cycle, genomic stability, and various metabolic pathways
in high-risk patients (Figure 7A) (Supplementary Table S19).

FIGURE 5
Validation of the prognostic signature in the TCGA-LIHC cohort. (A) Key gene expression patterns between patients with different risk profiles. (B)
Distribution of survival time and status in patients with different risk profiles. (C) Distribution of the risk score in patients with different risk profiles. (D)
Survival analyses of patients with different risk profiles. (E) ROC analyses of patients with different risk profiles.
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As shown in Figures 7B, C, lower stromal scores and estimate
scores were observed in high-risk patients, while no significant
difference in immune scores was detected here. In high-risk
patients, most immune functions were suppressed, but
checkpoint-related functions exhibited no significant
differences between the groups. For a broader landscape,
multiple algorithms were employed to compare immune cell
infiltration levels in patients with different risk profiles
(Figure 7D, Supplementary Figure S6). Based on the
CIBERSORT algorithm, a positive correlation was observed
between M0 macrophages and risk score, while naive B cells
and CD4+ memory resting T cells displayed negative correlations
with the risk score (Figures 7E–G). In addition, a positive
association was identified between risk score and stemness
score, which could lead the poor clinical outcomes in high-
risk patients (Figure 7H).

Correlations of the prognostic signature
with the gene mutation landscape and ICGs
in HCC

As shown in Figures 8A, B, high-risk patients exhibited a
higher frequency of gene mutations with TP53 mutation
frequency being notably elevated compared to low-risk
patients. Meanwhile, higher TMB scores were observed in
high-risk patients, increasing alongside risk score elevation
(Figures 8C, D). Moreover, patients with higher TMB scores
experienced poorer OS (p-value<0.031), and those with both
higher TMB scores and risk scores exhibited the worst OS
(p-value<0.001) (Figures 8F, G). Moreover, a correlation
analysis has been conducted for assessing the relationship
between immune checkpoint gene expression and the
prognostic signature. The expression of 29 ICGs were

FIGURE 6
Independent prognostic analysis and construction of the clinical nomogram. (A) Analysis of Cox regression with univariate variables on the
prognostic signature and clinical characteristics of patients in the TCGA-LIHC cohort. (B) Analysis of Cox regression with multivariate variables on the
prognostic signature and clinical characteristics of patients in the TCGA-LIHC cohort. (C) Construction of clinical nomograms for predicting the OS
probability of patients in the TCGA-LIHC cohort. (D) Assessment of the predictive value of clinical nomograms for patients in the TCGA-LIHC cohort
with calibration curves. (E) Assessment of the predictive value of clinical nomograms for patients in the TCGA-LIHC cohort with ROC curves. (F) C-index
analysis for independent prognostic value on the prognostic signature of patients in the TCGA-LIHC cohort.
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observed to be significantly correlated with the risk score
(Supplementary Table S20), with 21 displaying positive
correlations and eight exhibiting negative correlations
(Figure 8E). In total, nine ICGs with expression levels
positively correlated with the risk score were selected for
visualization and survival analysis based on their correlation
coefficients (Figure 8H, Supplementary Figure S10). The
findings indicated patients with higher risk scores and higher
elevated levels of eight of the aforementioned genes experienced
worse OS. However, patients with higher risk scores and lower
TNFRSF9 expression levels exhibited poorer OS.

Confirming the predictive value of the
prognostic signature in the immunotherapy
response for HCC

To comprehensively evaluate the predictive capacity of the
prognostic signature for immunotherapy responsiveness, the
TIDE algorithm was utilized. High-risk patients exhibited a
lower TIDE score (p < 0.001), signifying a heightened
probability of immunotherapy responsiveness (Figure 9A).
Concurrently, these patients demonstrated increased exclusion
scores and diminished dysfunction scores (Figures 9B, C).

FIGURE 7
Correlations of the prognostic signature with immune function, immune cell infiltration, and stemness characteristics in HCC. (A)GSEA analysis with
HALLMARK and KEGG terms of patients with different risk profiles. (B) TME score in patients with different risk profiles. (C) Immune function in patients
with different risk profiles. (D) Correlations of immune cell infiltration with the prognostic signature. (E–G) Correlation analysis of immune cell infiltration
and risk score. (H) Correlation analysis of the stemness score and risk score (*p-value <0.05, **p-value <0.01, and ***p-value <0.001).
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Moreover, superior overall response rates were observed among
high-risk patients (Figures 9D, E). Furthermore, patients with
higher risk scores and elevated TIDE scores experienced the most
unfavorable overall survival outcomes (Figure 9F). Next, four
independent cohorts were employed for validation purposes. In
the GSE78220 and IMvigor210 cohorts, immunotherapy
response rates among high-risk patients were elevated,
consistent with prior findings; however, no discernable
differences were observed in the remaining two cohorts

(Figures 10A–F). A Sankey diagram was employed to delineate
the distribution of immunotherapy responses in patients with
different risk levels and survival statuses within the
IMvigor210 cohort (Figure 10G). In the same cohort
(IMvigor210), we explored the correlation among the risk
score, immune phenotypes, tumor cell levels (TC-levels), and
immune cell levels (IC-levels) (Figures 10H–J). Herein, a
preliminary correlation between immune infiltration levels and
risk scores is delineated.

FIGURE 8
Correlations of the prognostic signature with the landscape of gene mutation and ICGs in HCC. (A–B) Gene mutation patterns between patients
with different risk profiles. (C) Correlation analyses of the TMB score, prognostic signature, and gene subtypes. (D) TMB score between patients with
different risk profiles. (E) Correlation analyses of the prognostic signature and ICG expression levels. (F) Survival analysis on patients with different TMB
profiles. (G) Survival analyses on patients in four groups categorized by the TMB score and risk score. (H) Correlation analysis on ICG expression
levels and the risk score (*p-value <0.05, **p-value <0.01, and ***p-value <0.001).
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Evaluation of the predictive value of the
prognostic signature in drug sensitivity of
HCC patients

In this part, we evaluated the prognostic signature’s performance
in predicting drug susceptibility. Expression levels of 11 CRRGs
demonstrated a positive correlation with risk scores (Supplementary
Table S21) (Figure 11A). A visualization featuring nine CRRGs was
generated based on correlation coefficients (Figure 11B).
Subsequently, we ascertained the predictive value of the
prognostic signature for drug sensitivity via the R package
“oncoPredict.” Lower sensitivity scores signified enhanced drug
responsiveness in HCC patients. Figure 11C reveals that high-risk
patients exhibit heightened sensitivity to agents such as paclitaxel,
cediranib, and osimertinib, while low-risk patients may demonstrate
favorable responses to sorafenib and oxaliplatin. These findings
suggest that the prognostic signature holds potential for predicting
chemosensitivity in patients and informing HCC chemotherapy
strategies.

Validation of prognostic signature genes

Here, we verified the expression levels of prognostic signature
genes in HCC clinical tissue samples by qRT-PCR and Western blot
analyses. The qRT-PCR results revealed a significant upregulation of
CBX2, SPP1, and ZC4H2, alongside a notable downregulation of
FMO3 in tumor tissues. Conversely, no significant differences were

observed in IL7R and LDHA expression (Figure 12A). Consistent
findings were obtained from WB analysis. Significant disparities in
protein expression levels of CBX2, SPP1, ZC4H2, and FMO3 were
detected between tumor tissues and matched para-tumor tissues.
Simultaneously, heterogeneous IL7R expression was identified, with
a marked upregulation at the protein expression level of IL-7R in six
paired clinical samples and no significant differences in the
remaining samples (Figures 12B–E).

Discussion

Nowadays, HCC poses a significant challenge to global health
due to the rising incidence and mortality rates, compounded by the
scarcity of effective treatment options (Villanueva, 2019; Vogel et al.,
2022). Recently, the integration of bioinformatics and omics
technologies has established the groundwork for precision
medicine in HCC management. High-throughput molecular
profiling engenders optimistic expectations for the identification
of novel therapeutic targets and biomarkers, thereby catalyzing
advancements in targeted and immunotherapeutic approaches for
HCC treatment (Forner et al., 2018). However, it remains an
intractable issue of resistance to the aforementioned therapies in
HCC, potentially correlated with the inherent apoptotic resistance
exhibited by cancer cells (Mohammad et al., 2015; Llovet et al.,
2018). Programmed cell death serves as the principal mechanism for
eliminating aberrant cells within the human body, playing a crucial
role in biological processes. Simultaneously, an extensive corpus of

FIGURE 9
Assessing the predictive value of the prognostic signature in immunotherapy response for HCC patients of the TCGA cohort. (A) TIDE score between
patients with different risk profiles. (B) Dysfunction score between patients with different risk profiles. (C) Exclusion score between patients with different
risk profiles. (D)Correlation analysis of the risk score and immunotherapy response. (E)Distribution of immunotherapy response in patients with different
risk profiles. (F) Survival analysis of patients in four groups categorized by the risk score and TIDE score.
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the scientific literature corroborates the pivotal role of PCD in the
initiation and advancement of oncogenic malignancies (Peng F.
et al., 2022). Cellular apoptosis represents one of the most archetypal
programmed cell death pathways. Since its discovery, apoptosis has
been harnessed as a primary method for cancer therapy by
promoting the apoptotic demise of malignant cells (Singh et al.,
2019). However, considering apoptotic resistance, targeting
alternative non-apoptotic programmed cell death pathways may
prove to be a more efficacious approach (Mohammad et al., 2015;
Carneiro and El-Deiry, 2020). Ferroptosis, a novel non-apoptotic

programmed cell death, not only directly inhibits tumor progression
but also exerts antitumor effects by modulating the tumor
microenvironment. Studies have demonstrated that in transgenic
mouse models of lung cancer and HCC, inducing ferroptosis in
tumor-associated macrophages effectively suppresses tumor
formation and metastasis, while enhancing the efficacy of anti-
PD-L1 therapy (Tang et al., 2023a; Tang et al., 2023b). In HCC,
pyroptosis primarily exerts antitumor effects (Zou et al., 2023).
Sorafenib was reported to inhibit HCC progression by inducing
macrophage pyroptosis and enhancing the tumoricidal activity of

FIGURE 10
Validating the predictive value of the prognostic signature in immunotherapy response for HCC patients of more cohorts. (A–D) Distribution of
immunotherapy response in patients with different risk profiles. (E–F) Correlation analyses of the risk score and immunotherapy response in the
IMvigor210 cohort. (G) Correlations of the prognostic signature with binary response, over-response, and survival status in the IMvigor210 cohort. (H–J)
Correlation analysis of the risk score, IC level, TC level, and immune phenotypes in the IMvigor210 cohort.
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NK cells (Hage et al., 2019). Cuproptosis and necroptosis, as
previously mentioned, are closely related to the development of
HCC. Notably, before cuproptosis was identified as an independent
cell death form highly associated with mitochondrial respiration and
the lipoic acid (LA) pathway, the link between copper ions and
tumor progression and programmed cell death had already attracted
the attention of researchers. Researchers previously attributed this
cell death to copper’s effect on mitochondria, resulting in ROS
production, which is highly similar to ferroptosis, until Tsvetkov
et al. (2022) confirmed the unique mechanism of copper-induced
cell death. Intriguingly, numerous investigations have revealed that
diverse programmed cell death pathways form intricate networks of
cellular demise, characterized by their adaptability and interplay

with one another. In addition, it is possible to identify central
signaling hubs for diseases by investigating the joint role of
multiple PCD pathways (Bedoui et al., 2020). Although no
reports currently exist regarding the potential synergistic effects
of cuproptosis and necroptosis in tumor initiation and progression,
we have noted evidence suggesting crosstalk between these two cell
death modalities at the level of regulatory factors and signaling
pathways. XIAP, a potent apoptotic suppressor, is involved in the
regulation of both necroptosis and cellular copper homeostasis,
thereby affecting cuproptosis (Burstein et al., 2004; Wicki et al.,
2016). The regulation of cuproptosis is associated with numerous
oncogenic signaling pathways because copper is directly binding and
activating key molecules within these pathways. These pathways

FIGURE 11
Evaluation of the predictive value of the prognostic signature in drug sensitivity of HCC patients. (A)Correlations analysis of the prognostic signature
and CRRG expression patterns. (B) Correlation analysis of CRRG expression levels with the risk score. (C) Drug sensitivity between patients with different
risk profiles (*p-value <0.05, **p-value <0.01, and ***p-value <0.001).
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primarily are PI3K-AKT, MAPK, autophagy, HIF-1α, NF-κB, and
notch signaling pathways (Xie et al., 2023). Among these, the HIF-
1α and NF-κB signaling pathways play crucial roles in the regulation
of necroptosis (Dondelinger et al., 2015; Karshovska et al., 2020).
These observations suggest a connection between cuproptosis and
necroptosis at the molecular basis and signaling regulation levels,
thus providing insights for our study. Subsequently, we ascertained
29 CRNGs to elucidate the concomitant roles of cuproptosis and
necroptosis in HCC. These genes were discerned via correlation
analysis premised on the expression of CRGs and NRGs in HCC
patients, adhering to the criteria of |R|>0.6 and p-value <0.001. An
exhaustive investigation of gene mutation characteristics and CRNG
expression patterns was conducted, leading to the development of a
CRNG subtype-related prognostic signature comprising six pivotal

genes. Subsequently, clinical nomograms integrating the prognostic
signature and clinicopathological features were devised for HCC
patients. Collectively, the CRNG subtype-related prognostic
signature exhibited satisfactory efficacy in prognostic prediction
and clinical application. In this study, we initially delineated the
mutational and expression landscapes of CRNGs. The results
revealed mutations in CRNGs among 61 patients with CDKN2A
and NFE2L2 displaying the highest mutational frequency. It is
noteworthy that CDKN2A and NFE2L2 are concurrently
involved in both cuproptosis and necroptosis. Moreover,
17 CRNGs were upregulated in tumor tissues, while only AIM2,
AXL, and TLRL4 were downregulated. Concurrently, we found that
elevated CRNG expression predominantly correlated with
unfavorable HCC prognosis. Based on CRNG expression

FIGURE 12
Validation of prognostic signature genes. (A) The relative expression levels of six prognostic signature genes in HCC tumor tissues and para-tumor
tissues at the mRNA level. (B) The relative expression levels of six prognostic signature genes in HCC tumor tissues and para-tumor tissues at the protein
level. (C–E) The WB results of six prognostic signature genes.
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patterns, patients were stratified into two distinct subtypes with
patients in subtype B experiencing inferior prognoses and elevated
CRNG expression. To explore potential treatment response
disparities between the two subtypes, we compared
chemoresistance-related gene and immune checkpoint gene
expression levels. In total, 18 differentially expressed CRRGs were
identified, implicating diverse mechanisms of chemoresistance in
HCC. For example, aberrant EGFR activation mediates sorafenib
resistance in HCC, which may be potentiated by an EGFR-KLF4
positive feedback loop (Blivet-Van Eggelpoël et al., 2012; Pang et al.,
2019), while polymorphisms in VEGFA and VEGFC similarly
confer sorafenib resistance (Scartozzi et al., 2014). Also,
significant disparities in ICG expression were observed between
the two subtypes. Subsequently, we evaluated immune cell
infiltration disparities among patients, identifying significant
differences in activated CD4+ T-cell, activated dendritic cell, and
Treg infiltration levels between the subtypes, potentially
contributing to divergent clinical outcomes here. CD4+ T cells
are crucial for suppressing HCC progression (Ma et al., 2016).
Dendritic cells function as vital antitumor immune cells, whose
depletion impairs CD8+ T-cell recruitment and immune checkpoint
therapy responsiveness (Salmon et al., 2016). Tregs are implicated in
establishing an immunosuppressive tumor microenvironment and
engendering chemoresistance in HCC (Liu et al., 2022). In summary,
our findings here underscore a potential association between CRNG
expression, clinical features, and immune cell infiltration levels,
indicating a cooperative contribution of cuproptosis and
necroptosis in shaping the immune TME and regulating HCC
progression.

Next, a comprehensive functional enrichment examination was
performed. Through GSVA and GSEA analysis, we identified
conspicuous disparities in processes linked to protein degradation
and mitochondrial function among patients from two distinct
subtypes, such as ubiquitin-mediated protein degradation,
proteasome and lysosome function, and oxidative
phosphorylation function, which corrected with cuproptosis
(Tsvetkov et al., 2022). In addition, variations in processes
pertinent to necroptosis, including inflammatory responses,
TNFA, and TLR signaling pathways, were observed (Seo et al.,
2021). Furthermore, we discerned numerous cancer-related
biological functions and signaling pathways enriched in patients
of subtype B, such as p53, Wnt/β-catenin signaling pathways,
epithelial–mesenchymal transition (EMT), angiogenesis, and cell
cycle regulation, potentially resulting in a dismal prognosis for
patients of subtype B. Analogous outcomes were attained via GO/
KEGG analyses. The differences were observed in cancer-associated
signaling pathways, cellular proliferation and division (e.g.,
chromosomal segregation, DNA replication, and mitosis), protein
degradation, inflammatory response, energy metabolism, etc. These
results revealed potential mechanisms underlying HCC progression,
mediated conjointly by cuproptosis and necroptosis, and
demonstrate the utility of CRNGs for characterizing their
synergistic role. In a word, this section provides preliminary
evidence for the synergistic involvement of cuproptosis and
necroptosis in the pathogenesis and progression of HCC. The
cuproptosis-related necroptosis genes may possess the capacity to
concurrently regulate cuproptosis and necroptosis in HCC, thereby
further orchestrating the progression of HCC. This finding offers

critical insights into the cooperative roles of cuproptosis and
necroptosis in hepatocellular carcinoma, thereby facilitating a
deeper understanding of these two non-apoptosis pathways in
HCC development. In order to further investigate the roles of
CRNG subtypes, we performed a transcriptomic analysis and
identified 3,855 OS-DEGs by univariate Cox regression. We then
discovered three OS-DEG expression patterns associated with
clinical characteristics. Next, we constructed a CRNG subtype-
related prognostic signature composed of CBX2, FMO3, IL7R,
LDHA, SPP1, and ZC4H2. CBX2, a constituent of PcG
complexes, has been implicated in the facilitation of HCC cell
proliferation (Mao et al., 2019). FMO3, an inhibitory factor in
HCC, has been observed to enhance the survival and growth of
HCC cells upon downregulation (Hlady et al., 2019). For IL7R, a
recent investigation revealed that the hepatitis B virus could augment
HCC cell proliferation and migration by elevating IL7R expression
levels (Kong et al., 2016). In HCC, LDHA silencing has been
demonstrated to impede tumor development and promote CD4+

T-cell infiltration (Serra et al., 2022). SPP1, which contributes to
tumor cell evolution and TME reprogramming, has been reported to
be a valuable therapeutic target for HCC (Ma et al., 2021). The role of
ZC4H2 in HCC is still unclear, and our investigation may illuminate
the potential significance of ZC4H2 in this context. Through qRT-
PCR and WB analyses, we furnished additional substantiation,
underscoring the plausible functions of these signature genes in
HCC, with particular emphasis on ZC4H2. Here, our findings
demonstrated an upregulation of ZC4H2 expression in HCC
tumor tissues, insinuating its potential involvement in
accelerating HCC progression. Furthermore, through functional
enrichment analysis, we found a significant correlation between
four signature genes (CBX2, LDHA, SPP1, and ZC4H2) and
malignant tumor biology, exhibiting upregulation in high-risk
patients. Conversely, FMO3 and IL7R, downregulated in high-risk
patients, were implicated in multiple metabolic pathways,
inflammatory responses, and immune processes. Enhanced
metabolism has been associated with improved prognoses in
HCC patients, suggesting a potential mechanism by which
FMO3 may hinder HCC progression (Gao et al., 2019). Although
IL-7R has been identified as a risk factor for hepatitis B virus (HBV)-
related HCC in previous studies, some comprehensive studies have
revealed its potential protective role in HCC cases beyond solely
HBV-related instances (Kong et al., 2016; Yin et al., 2020; Zhuang
et al., 2021). Our investigation supports IL-7R as a protective factor
in HCC, despite observing no significant differences in expression
levels between tumor and para-tumor tissues. The confusing role of
IL7R may be attributable to heterogeneous expression patterns
among distinct HCC patient populations (HBV-related HCC
patients and non-viral-related HCC patients), and more clinical
samples are needed for the specific role of IL-7R in HCC. Based
on the CRNG subtype-related prognostic signature, we found that
HCC patients with elevated risk scores suffered poorer OS and had
higher CRNGs expression levels, consistent with those who were in
CRNG subtype B or gene subtype B. Furthermore, a correlation
analysis among risk scores, CRNG subtypes, gene subtypes, and
survival status was conducted, verifying the consistency and stability
of this signature in prognostic prediction. With advanced evaluation
and validation, we confirmed the precision and applicability of the
CRNG subtype-related prognostic signature. Survival curves and
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distribution plots demonstrated the ability of this signature in
predicting and discriminating the prognosis for HCC patients.
ROC curves exhibited high accuracy of the signature in
predicting outcomes for HCC patients. Univariate and multiple
regression analysis and C-index analysis established the CRNG
subtype-related prognostic signature as a strong independent
prognostic determinant for HCC patients. Subsequently, we
developed clinical nomograms incorporating the CRNG subtype-
related prognostic signature and clinicopathological features of HCC
patients, facilitating the signature’s practical implementation in
clinical settings. The nomograms’ accuracy was appraised using
calibration and ROC curve analyses. Subsequently, we conducted
a comprehensive analysis encompassing multiple dimensions to
scrutinize potential factors associated with divergent prognoses
among patients with two risk profiles. The HCC immune
microenvironment is a complex mixture consisting of stromal
cells, tumor cells, and immune cells. The infiltration of particular
immune cells imparts immunosuppressive attributes in HCC, with
the archetypal instances being Tregs and TAMs, which confer an
unfavorable prognosis (Sangro et al., 2021). For the results, we found
an upregulation of inflammation-associated immune functionality
and elevated stromal estimate scores in low-risk patients. We also
observed a positive correlation between high- risk scores and
immune cell infiltration, such as monocytes, M0, M2-TAMs,
neutrophils, Tregs, and naive B cells, while M1-TAMs, NK cells,
and T lymphocytes, excluding Tregs, were associated with lower risk
scores. It has been reported that neutrophil not only potentiates HCC
progression by mediating TAMs and FOXP3+ Tregs infiltration but
also induces resistance to sorafenib (Zhou et al., 2016). Naive B cells
have been demonstrated to impede HCC development, with
diminished infiltration levels in HCC and higher infiltration levels
signifying improved prognoses and T-cell activation (Zhang et al.,
2019). The abundance and functionality of NK cells are positively
correlated with prognosis but their suppression frequently occurs in
HCC (Cai et al., 2008). These findings indicated that the formation of
an immunosuppressive microenvironment could precipitate
unfavorable prognoses in high-risk patients. Concurrently, we
identified a positive correlation between risk scores and stemness
scores, which could engender poor prognoses in HCC patients (Lee
et al., 2022). Moreover, high-risk patients exhibited enrichment in
cancer-associated signaling pathways, cell cycle regulation, protein
degradation, genomic stability, nucleotide metabolism, and energy
metabolism, insinuating the potential molecular mechanisms
correlating with poor prognosis. Finally, we probed the predictive
capacity of the CRNG subtype-related prognostic signature in
treatment response. TMB has been linked to the prognosis of
various cancer patients and immune checkpoint therapy
outcomes (Valero et al., 2021). In our study, we observed an
elevated gene mutation frequency in high-risk patients, with
TP53 mutation frequency exhibiting the most pronounced
disparity between the two patient groups. Mutation in the TP53
gene represents a prevalent event in HCC, thus culminating in
advanced clinicopathological attributes and poor prognosis
(Calderaro et al., 2017). Meanwhile, our results exhibited a
correlation between elevated TMB scores and poor prognosis,
indicating immune checkpoint therapy could potentially
ameliorate the unfavorable prognosis of high-risk patients. In
addition, 29 ICGs were identified as correlating with the CRNG

subtype-related prognostic signature, suggesting their potential as
predictive markers for immune checkpoint therapy also. These
results above showed the preliminary evidence in the predictive
value of the signature for immune checkpoint therapy, and a further
validation has been performed by TIDE algorithms. In TCGA-LIHC
and another four cohorts, we observed a higher treatment response
rate in high-risk patients, underscoring the signature’s predictive
capacity and its applicability in guiding immune checkpoint therapy
for HCC. Similarly, the CRNG subtype-related prognostic signature
could be applied to guide chemotherapy for HCC. With the
signature, we could forecast drug sensitivity in patients of two
groups. It was shown that paclitaxel, cediranib, and osimertinib
were sensitive in high-risk patients, whereas sorafenib and
oxaliplatin were sensitive in other patients. Moreover, CRRGs
exhibited significant associations with the CRNG subtype-related
prognostic signature, suggesting the signature could be a biomarker
for chemoresistance in HCC patients. Overall, our study unveiled the
role of synergizing cuproptosis and necroptosis in HCC for the first
time. The CRNG subtype-related prognostic signature possesses
potential utility for both prognosis prediction and therapeutic
guidance in HCC patients. However, several caveats warrant
attention in this study. First, we constructed the CRNG subtype-
related prognostic signature based on public databases. We need
more data from prospective studies to confirm these outcomes. Also,
more clinical tissue samples and verification experiments are needed
to explore the functions of signature genes in HCC. Second, several
samples were excluded because of incomplete data, which could
affect the accuracy of subsequent analysis. Third, we introduced
multiple cohorts to further validate the predictive value in the
CRNG-related prognostic signature of immune checkpoint
therapy response, but not all the cohorts are based on HCC;
more evidence is needed.

Conclusion

This investigation established a CRNG subtype-related
prognostic signature, thus exhibiting significant associations with
overall survival, clinicopathological traits, tumoral immune
microenvironment, stemness attributes, tumor mutational
burden, and treatment susceptibility. This signature possesses
potential utility for prognostic forecasting and therapeutic
direction in HCC.
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