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Background: The dipeptide-alkylated nitrogen-mustard compound is a new kind
of nitrogen-mustard derivative with a strong anti-tumor activity, which can be
used as a potential anti-osteosarcoma chemotherapy drug.

Objective: 2D- and 3D-QSAR (structure–activity relationship quantification)
models were established to predict the anti-tumor activity of dipeptide-
alkylated nitrogen-mustard compounds.

Method: In this study, a linear model was established using a heuristic method
(HM) and a non-linear model was established using the gene expression
programming (GEP) algorithm, but there were more limitations in the 2D
model, so a 3D-QSAR model was introduced and established through the
CoMSIA method. Finally, a series of new dipeptide-alkylated nitrogen-mustard
compounds were redesigned using the 3D-QSAR model; docking experiments
were carried out on several compounds with the highest activity against tumors.

Result: The 2D- and 3D-QSAR models obtained in this experiment were
satisfactory. A linear model with six descriptors was obtained in this
experiment using the HM through CODESSA software, where the descriptor
“Min electroph react index for a C atom” has the greatest effect on the
compound activity; a reliable non-linear model was obtained using the GEP
algorithm model (the best model was generated in the 89th generation cycle,
with a correlation coefficient of 0.95 and 0.87 for the training and test set,
respectively, and a mean error of 0.02 and 0.06, respectively). Finally, 200 new
compounds were designed by combining the contour plots of the CoMSIA model
with each other, together with the descriptors in the 2D-QSAR, among which
compound I1.10 had a high anti-tumor and docking ability.

Conclusion: Through the model established in this study, the factors influencing
the anti-tumor activity of dipeptide-alkylated nitrogen-thaliana compounds were
revealed, providing direction and guidance for the further design of efficient
chemotherapy drugs against osteosarcoma.
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1 Introduction

Osteosarcoma originates from mesenchymal tissues and is
characterized by osteoid matrixes produced by spindle tumor
cells, which usually occurs in the epiphysis of the distal femur,
proximal tibia, and proximal humerus, with pains, swelling, and
local mass as the main symptoms. Pathological fractures are
occasionally seen, meanwhile X-ray manifestations coexist with
osteogenic and lytic lesions in the epiphysis of the affected
diaphysis (Wittig et al., 2002). Before the 1970s, osteosarcoma
was treated with amputation, but its 5-year survival rate was only
15%–20% (Marcove et al., 1970a; Marcove et al., 1970b). With the
introduction of adjuvant chemotherapy in 1978, the disease-free
survival rate of patients with primary osteosarcoma at the
extremities has improved to 66%–75% (Bacci et al., 1998; Bacci
et al., 2006). With further advances in chemotherapies, surgical
techniques, and radiological staging, 90%–95% of patients with
osteosarcoma can now receive limb salvage surgery and a
functional reconstruction. The long-term survival rate and cure
rate of local patients with tumors have reached 60%–80% (Wittig
et al., 2002).

At present, first-line chemotherapy drugs against osteosarcoma
mainly include methotrexate (MTX), Adriamycin (ADM), cisplatin
(DDP), and ifosfamide (IFO) (Ferrari et al., 2014), which may play
an important role in the treatment of osteosarcoma if combined in
different ways. However, we should not ignore the side effects of
these chemotherapy drugs, such as liver and kidney failure, severe
gastrointestinal reactions, and bone marrow suppression (Becher
et al., 1980; Allen, 1992; Tanihata et al., 2004). At the same time, the
long-term use of a single chemotherapeutic agent may lead to drug
resistance for tumor cells, which can ultimately be very harmful to
patients with osteosarcoma (Lilienthal and Herold, 2020). Being
disappointing in the past few decades, drug toxicity or drug
resistance in chemotherapies for osteosarcoma recurrence and
metastasis-related molecular mechanisms is not clear, e.g., the
osteosarcoma chemotherapeutic progress has been stalled.
Therefore, in order to further improve the cure rate of
osteosarcoma, it is necessary to develop a less toxic and more
effective chemotherapy drug against it.

The mechanism of nitrogen-mustard anti-tumor drugs is that
they can form electron-deficient dimethylimine ions in the body and
then covalently combine with electron-rich groups in biological
macromolecules (such as DNA and RNA). Finally, nitrogen-
mustard compounds destroy tumor-target DNA fragments, thus
achieving the goal of eliminating tumor cells. (Liu et al., 2008). At the
same time, nitrogen-mustard compounds have advantages,
including simple synthesis and low cost, which have broad
prospects in the clinical use of malignant tumor drugs

In recent years, a dipeptide-alkylated nitrogen-mustard
compound has been found with a high anti-tumor activity, which
brings new hope for the design of chemotherapy drugs against
osteosarcoma (Chen et al., 2018; Singh et al., 2018).

In order to evaluate and design the activity of novel drugs more
effectively and quickly, computer-aided experiment methods have
been widely used. The structure–activity relationship quantification
(QSAR) is an excellent experimental method for computer-aided
drug design, through which the mathematical relationship between
the chemical structure of a series of compounds and their

pharmacological activity or other properties can be found in a
quantitative way (Roy et al., 2015; Dearden, 2017).

In this study, we hope to establish a satisfactory prediction
model of the anti-osteosarcoma activity of nitrogen-mustard
compounds by using the QSAR method. This model can design
chemotherapy drugs for osteosarcoma in the future.

2 Experiment

2.1 Dataset for analysis

In this experiment, all the 22 alkylated dipeptide nitrogen-
mustard derivatives are from the study by Gullbo et al. (2003).
The structure and bioactivity value of the 22 compounds are shown
in Table 1.

2.2 D-QSAR research

2.2.1 Data processing and structure optimization
In order to obtain reliable experimental results, 22 compounds

were grouped under random conditions using system time, 18 of
which were in the training set for model construction, training, and
optimization. The test set contained four compounds, which would
be used to assess the predictive power of the model.

The key to building a good predictive QSAR model is to use and
define molecular descriptors properly. So, the optimization of
compounds is extremely important.

In this experiment, all compounds were constructed using
ChemDraw software, which were then imported into HyperChem
software. First, an MM + molecular mechanic field was used for
rough optimization. In the second step, a precise optimization was
performed using semi-empirical AM1 or PM3 methods using
HyperChem, and the molecular structure was optimized using
the Polak–Ribiere algorithm, until the root mean square gradient
was 0.01 (Stewart, 1989; HyperChem, 1994). Finally, the results were
imported into CODESSA software (Katritzky et al., 2001) to
calculate five classes of molecular descriptors: constitutional,
geometrical, topological, electrostatic, and quantum chemical.

2.2.2 Linear model through a heuristic method
(Cao and Lin, 2003)

Feature selection is used to reduce the number of descriptors and
delete those that have less impact on the result. The remaining
descriptors should represent the molecular structure and various
properties as much as possible. The HM implemented in CODESSA
software is used to calculate molecular descriptors and build linear
models, and there is no software limitation on the size or speed of the
dataset.

The detailed steps to establish a linear model through HM are as
follows: selecting a parameter descriptor according to R2, F-test,
t-test, and R2cv. After obtaining the two-parameter correlation
coefficient with the best statistical characteristics, we added
descriptors that are not used in the previous selection process.
We repeat this step until the established correlation equation
contains the most parameters. As a result, a linear model with
six descriptors was developed through HM.
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TABLE 1 Structure and activity values of 22 compounds.

Structure Substituent IC50(µM) NO

R= -H / 1.7 I1

R= -CH2CH3 / 6.1 I2

R = -CH(CH3)2 / 5.3 I3*

R1= -CH2CH3 X= -F 2.6 I4*

R1= -CH2CH3 X= -H 1.9 I5

R1= -CH2CH3 X= -OH 2.5 I6

R1= -CH2CH3 X= -OCH3 1.8 I7

R1= -CH2CH3 X= -NH2 2.7 I8

R1= -CH2CH3 X= -NO2 2.0 I9

R1= -CH2CH3 X= -N(CH2CH2Cl)2 2.5 I10

R1= -CH(CH3)2 X= -F 1.9 I11

R2= -CH2-3-indoyl / 4.6 I12

R2= -CH2OH / 19 I13

R2= -CH2CH(CH3)2 / 4.2 I14*

R2= -CH(CH3)2 / 12 I15

/ / 17 I16

R3= -p-fluorobenzyl / 5.7 I17

R3= -CH(CH3)2 / 4.7 I18

(Continued on following page)
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2.2.3 Non-linear model through GEP
The principles of gene expression programming (GEP) are as

follows: GEP is developed from the genetic algorithm (GA) and
genetic programming (GP) (Holland, 1992), in which some
limitations of GA and GP are overcome (TeodorescuSherwood,
2008). Therefore, the efficiency of the GEP algorithm is much higher
than that of the aforementioned two algorithms. GEP is considered
to be an evolutionary algorithm based on Darwin’s theory of the
survival of the fittest (Pham, 2012). Compared with genetic
algorithms based on encoded numbers and GP based on an
analytical tree, a candidate solution of GEP is linear
chromosomes (Kaydani et al., 2014). A chromosome consists of
more than one gene divided into two parts, a head and a tail. The
header section can be selected from the end set and feature set, while
the tail section can only be selected from the end set
(TeodorescuSherwood, 2008). Finally, these genes are decoded
into expression trees (ETs) (Gharagheizi et al., 2012) to obtain
mathematical equations. The basic steps of the GEP algorithm are
shown in Figure 1. First, a certain number of individual
chromosomes are randomly generated to be expressed as the
initial population. Next, the fitness of each individual is
calculated based on a set of fitness samples. Then, if a solution of
an ideal quality is found, or a certain number of iterations are run,
the process can be terminated (TeodorescuSherwood, 2008).
Otherwise, these individuals will be selected for genetic
manipulation based on their fitness values. Finally, offspring with
new characteristics is produced. We repeat the process until we
obtain a good result.

In this study, we import the values of descriptors into automatic
problem solver (APS) and integrate them with the GEP algorithm to

obtain non-linear models. In order to obtain a good non-linear
model, we select appropriate functions and evaluate their fitness
through R2.

By comparing linear models with non-linear ones, it is found
that non-linear models obtained through the GEP algorithm are
more stable with better prediction ability. However, a 2D-QSAR
model still cannot be used to accurately describe the relationship
between molecular three-dimensional structures and their
physiological activity, so it is necessary to continue 3D-QSAR
experiments.

2.3 3D-QSAR research

2.3.1 Data processing and structure optimization
Like the previous 2D-QSAR experiments, in 3D-QSAR

experiments, the dataset also needs to be divided into a training
set and a test set. The training set containing 18 compounds will be
used to build the models, and the test set containing four
compounds will be used to verify them. At the same time, in
order to reduce the deviation caused by the dataset to the
experimental results, −log (IC50) + 6 is used to convert the IC50

value in the subsequent experiments.
In the previous experiments, ChemDraw software was used to

construct all the 22 compounds, while in 3D-QSAR experiments,
they are put into SYBYL software for optimization and modeling.
When processing data using SYBYL software, the Tripos force field
and Powell’s gradient algorithm are used to minimize CoMSIA
structure energy. Finally, the minimal structure is used as the initial
conformation (Yu et al., 2015).

TABLE 1 (Continued) Structure and activity values of 22 compounds.

Structure Substituent IC50(µM) NO

/ / 2.9 I19

R4= -p-fluorobenzyl / 3.0 I20*

R4= -CH(CH3)2 / 11 I21

/ / 6.0 I22

Note: * represents the test set in the 2D-QSAR experiment, and the underline represents the test set in the 3D-QSAR experiment.
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2.3.2 Conformational sampling and alignment
In 3D-QSAR analyses, the structure comparison of compounds

will directly affect the structure of subsequent tests; so, it is very

important to select an appropriate comparison of compound
structures (Yan et al., 2005; Patel et al., 2008; Yong et al., 2011).
In this study, ligand alignment is used to superpose the structure of

FIGURE 2
Alignment of all compounds in the dataset; compound I1 is used as a template. (A) Structure of compound I1 and the common substructure (shown
in bold) for the alignment of all compounds. (B) Alignment of all the compounds.

FIGURE 1
GEP flowchart.
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compounds, and the superposition patterns of all compounds can be
seen in Figure 2. Because compound I1 has the highest IC50 value, all
compounds are aligned with it in this method.

2.3.3 CoMSIA study
CoMSIA is an excellent 3D-QSAR research tool (Yu et al., 2015).

In the CoMSIA method, the Gaussian function related to distance is
used to calculate variousmolecular fields, which can effectively avoid
significant changes of potential energy and abnormal atomic
positions at lattice points near the molecular surface. In addition,
in CoMSIA, it is no longer necessary to define the cut-off value of
energy. Compared with CoMFA, the correlation isosurface diagram
of the contribution in different molecular fields of corresponding
spaces of CoMSIA is significantly improved, which can be used to
more intuitively explain the effect of different molecular fields on
molecular activity (Li et al., 2012a). A CoMSIA study is carried out
using the SYBYL software package, in which five molecular fields are
used: spatial field (S), electrostatic field (E), hydrophobic field (H),
hydrogen bond donor (D), and hydrogen bond acceptor (A). The
CoMSIAmethod is calculated based on a 3D cubic lattice with a grid
spacing of 2 Å and extending 4 Å units beyond the aligned molecules
in all directions. A default value of 0.3 is used for the attenuation
factor α (Yang et al., 2011a).

Partial least squares (PLS) analysis was used to correlate
CoMSIA fields with −log (IC50) + 6 values to generate a
statistically significant 3D-QSAR model, which was performed in
two stages (Hadni and Elhallaoui, 2020). First, a leave-one-out cross-

FIGURE 3
Effects of different number of descriptors on R2, R2

cv, and S2.

TABLE 2 Selected molecular descriptors and their physical-chemical meaning, coefficient, and t-test.

Symbol Physical-chemical meaning Coefficient T-test

AVC Avg valency of a C atom 8.2976e+01 8.8248

Min ERC Min electroph react index for a C atom −2.4177e+04 −8.6408

Min ECC Min exchange for a C–C bond 2.9565e+00 6.2876

Min TCH Min total interaction for a C-H bond −1.9489e+00 −5.0704

NN Number of N atoms −1.7856e-01 −3.8961

TDM Tot dipole of the molecule 5.1500e-02 2.5964

FIGURE 4
Plot of the measured and calculated −log (IC50) by HM.
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validation analysis was performed to determine the optimal group
score (ONC) and cross-validation correlation coefficient (Q2). Then,
the ONC was used in a non-cross-validation analysis to generate the
final PLS regression model for CoMSIA. The non-cross validation
results were evaluated based on several statistical parameters,
including non-cross validation correlation coefficient (R2),
estimated standard error (SEE), and F-value (Yan et al., 2020).

2.3.4 Validation of the 3D-QSAR model
In order to prove the stability of the QSARmodel, the 3D-QSAR

model needs to be evaluated using internal or external validation
methods (Yan et al., 2020). In this experiment, external validation
was selected to verify the 3D-QSAR model. The verification formula
is as follows:

R2
ext � 1 − ∑ntest

i�1 yi − ~yi( )
2

∑ntest
i�1 yi − ~ytr( )

2

In this formula, ntest refers to the number of compounds in the
test set, ~ytr refers to the average value of compound activity in the
training set, and yi and ~yi refer to the experimental value and

TABLE 4 Operator symbols and parameters of the regression equation.

Parameter name Representation Value

Addition + 1

Subtraction - 1

Multiplication * 1

Division / 1

Natural logarithm Ln 1

Sine sin 1

FIGURE 5
Plot of the measured and calculated −log (IC50) by GEP.

TABLE 5 Statistical results of the optimal CoMSIA model.

Model q2 ONC r2 SEE F

CoMSIA 0.532 5 0.997 0.016 1601.378

Name S E H D A

Contribution (%) 5.4 27 22.7 26.3 18.5

FIGURE 6
CoMSIA model-predicted activity values compared with the
experimental values.

TABLE 3 Correlation matrix of the six descriptors.

Name A B C D E F

1 1.0000 0.0303 0.0788 0.0340 0.1254 −0.5993

2 0.0303 1.0000 −0.1605 0.1743 −0.4819 −0.1196

3 0.0788 −0.1605 1.0000 −0.5146 0.3175 −0.1058

4 0.0340 0.1743 −0.5146 1.0000 −0.4512 0.2609

5 0.1254 −0.4819 0.3175 −0.4512 1.0000 −0.0609

6 −0.5993 −0.1196 −0.1058 0.2609 −0.0609 1.0000

Note:The letters A, B, C, D, E, and F represent AVC,Min ERC,Min ECC,Min TCH, NN, and TDM, respectively, and the numbers 1, 2, 3, 4, 5, and 6 represent AVC,MIN ERC,MIN ECC,MIN

TCH, NN, and TDM, respectively.
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predicted value of compound activity in the test set, respectively.
Generally, with R2

ext > 0.5, the establishedmodel is considered robust
with a good predictive ability in statistics (Yang et al., 2011b;
Mouchlis et al., 2012).

3 Results

3.1 The results of the HM

A total of 526 molecular descriptors of 22 compounds were
calculated using CODESSA software. In order to find the best linear
model, the HM was used to construct linear models with
1–7 descriptors, respectively. The R2, R2

cv, and S2 of these models
are shown in Figure 3. The results showed that with the increase of
the number of descriptors, R2 and R2

cv increased, while S
2 decreased.

After a comprehensive consideration, a model with six descriptors
was selected as the best linear model to predict inhibitor activity
(Table 2).

In addition, to avoid the multicollinearity of molecular
descriptors, correlation coefficients of those descriptors were
calculated, as shown in Table 3. The results showed that the
correlation coefficients of any two descriptors were less than 0.8,
which meant that all descriptors were independent. Therefore, the
linear model constructed in the experiment has strong statistical
reliability (Figure 4).

The linear model equation is as follows:

−log IC50( ) � −6.3254 + 8.2976*101*AVC − 2.4177*104*Min

− ERC + 2.9565*Min − ECC − 1.9489*Min

− TCH − 1.7856*10−1*NN + 5.1500*10−2*TDM.

FIGURE 7
Contour map of the optimal compound I1. (A) In the steric field, green represents favorable and yellow represents unfavorable. (B) In the
electrostatic field, blue represents a positive electric field and red represents a negative electric field. (C) In the hydrophobic field, yellow represents
favorable and white represents unfavorable. (D) Favorable (cyan) and unfavorable (purple) hydrogen bond donor fields. (E) Favorable (magenta) and
unfavorable (red) hydrogen bond acceptor fields.

TABLE 6 Newly designed compounds and their predicted values.

Name Predictive value

I1 4.569

I1.1 5.121

I1.2 5.438

I1.3 5.557

I1.4 5.669

I1.5 6.214

I1.6 6.647

I1.7 6.749

I1.8 6.789

I1.9 6.241

I1.10 6.843

Note: The structure of the compound is shown in Supplementary Material S1.
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According to the absolute value of the coefficients in the
formula, it can be seen that the influence of descriptors on the
anti-tumor activity of nitrogen-mustard compounds is as follows:

Min − ERC>AVC>Min − ECC>Min − TCH>NN>TDM.

3.2 The results of GEP

The dataset was randomly divided into a training set containing
18 compounds and a test set containing four compounds, and then, a
non-linear model was built using software automatic problem solver
(APS) to integrate the implementation of the GEP algorithm (Table 4).

Finally, the best model was generated in the 89th generation
cycle. The correlation coefficient of the training set and test set was
0.95 and 0.87, respectively, and the average error was 0.02 and 0.06,
respectively (Figure 5).

Moreover, the non-linear model equation decoded by ETs was as
follows:

Sin X0( ) + Sin X2/X1( ) +X4/X5( )

× /X4/X2+Sin X3*X3*X1( )* X1/X3X3*X3( )

+ Sin Sin X0( )*X0*X0*X0( ) + Sin Sin X2( ) + Sin Sin X2( )*X0( )( ).

3.3 CoMSIA statistical results

The statistical results of the best CoMSIA model are shown in
Table 5. Through the CoMSIA model, we derived a q2 of 0.532 with an
optimum number of components, which was five. A high r2 of
0.997with a low SEE of 0.016 and an F-value of 1601.378 were obtained.

3.4 CoMSIA model validation results

In this experiment, an external validation formula was used to
verify the 3D-QSARmodel constructed in the experiment. The value
of R2

ext was 0.987, which was greater than 0.5, indicating that the
established model had strong stability and good statistical prediction
ability. Figure 6 shows a good relationship between the predicted
values and the experimental values.

3.5 CoMSIA contour maps

The contour map of a CoMSIA model can clearly show the
influence of drug groups on drug activity in different molecular force

FIGURE 8
Docking experiments of ifosfamide, I1, and I1.10 with osteosarcoma targets.
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fields. Therefore, in the design and development of new drugs, more
effective and excellent drugs can be designed according to the
contour map (Li et al., 2012b; Mao et al., 2012).

In this experiment, contour maps of the spatial potential field,
electrostatic field, hydrophobic field, hydrogen bond donor field,
and hydrogen bond acceptor field of the CoMSIA model were
constructed, respectively, according to compound I1 with the
highest IC50 value (Figure 7).

The contribution value of the electrostatic field is the highest
among these five contour plots, so it is necessary to focus on the
construction of compounds in this field in subsequent drug design
experiments.

3.6 The design of new compounds and the
prediction of their activity

In the 2D-QSAR experimental results of nitrogen-mustard
compounds, “Min electroph react index for a C atom” was found
to be the most important descriptor affecting the drug activity of
compounds. Therefore, the descriptor “Min electroph react
index for a C atom” should be added to the idea of a new
drug design so as to improve the drug activity of newly designed
compounds.

Finally, 200 new nitrogen-mustard compounds were designed
according to the molecular descriptor “Min electroph react index for
a C atom” and the CoMSIA model contour plot (especially the
electrostatic field). The IC50 value of these 200 new compounds was
predicted using the CoMSIA model. The 10 compounds with the
highest IC50 predictive values are listed in Table 6, among which
compound I1.10 has the highest drug activity value, which may be a
potential anti-osteosarcoma drug, but small molecule docking assays
are still needed.

3.7 Molecular docking experiment

In order to prove the effectiveness of the newly designed
compounds on osteosarcoma-related protein targets, a molecular
docking test on small-molecule compounds and proteins was
carried out using SYBYL (SYBYL-2.1.1) software package.
Compound I1 and I1.10 were docked as ligands in the
docking experiment. Meanwhile, as ifosfamide is the most
common chemotherapy drug for osteosarcoma, it was also
added as a ligand in the docking experiment.

In this study, a total of four transcriptional osteosarcoma-
related DNA sequences were screened out, which were mTOR,
OGG1, EGFR, and PDGFR-β. Four pieces of DNA produced a
total of 344 protein receptors, of which only 12 had docking
activity with nitrogen-mustard compounds. In this experiment,
1H90 with the best docking ability was selected as the target. The
docking experiments on these three compounds are shown in
Figure 8. It can be seen from the figure that compound I1.10 can
form five hydrogen bonds with the protein, while the remaining
two small molecules can only form one and three hydrogen
bonds, while the docking fractions of ifosfamide, I1, and
I1.10 are 3.495, 6.124, and 9.105, respectively; so, compound
I1.10 has the best docking ability.

4 Discussion

First, the advantage of this experiment lies in the innovation of a
QSAR research mode. In the previous QSAR experiments, QSAR
models were established for tumor targets with known structures,
where the compounds were designed. However, such experimental
design ideas had limitations, e.g., some excellent drugs could not be
extended to other tumor treatments. In order to change this
limitation, in this study, the main regulatory DNA sequences of
osteosarcoma were first screened and were then followed by the
protein targets so as to achieve an effective inhibition of the
compounds on osteosarcoma. This approach has two advantages.
The first is that this approach can ensure effective docking of the
compounds to target tumors, improving the ability to predict
whether the compounds have an effect on the tumor. The second
advantage is the improvement of the adaptability of cancer
chemotherapy drugs and the increase of the diversity of cancer
drugs by predicting whether there is an inhibitory effect between
drugs and tumor targets.

Second, at the beginning of this experiment, we found few data
on alkylated dipeptide nitrogen-mustard compounds. However,
since such compounds indeed have a very large anti-tumor
potential, we proved the model stability and prediction ability of
the model in this experiment using the machine learning algorithm
and internal validation (Kostakis and Kargas, 2021; Omoyiola,
2022). Simply put, the easiest way to conduct an internal
validation of models through machine learning algorithms is to
increase or decrease the data amount in training sets and test sets.
Therefore, in the subsequent work, we conducted two 3D-QSAR
experiments by increasing or decreasing the data amount in the
training set and test set, finding that q2 in the two experiments was
0.552 and 0.521, respectively, which was basically similar to Q2 in
this experiment (0.532). Therefore, the model in this experiment
conformed to the basic principles of the machine learning algorithm,
which also proved that it had good stability and prediction ability.

In 2D-QSAR experiments, the drug activity of compounds is
mainly affected by changing the proportion of the molecular
descriptors of those compounds. In a 3D-QSAR experiment on a
compound, the main factor affecting its drug activity was the
changes in its effective group in different force fields. In this
experiment, we combined the most influential molecular
descriptors in a 2D-QSAR experiment with the contour map of
the 3D-QSAR model to serve as a guiding idea for designing new
drugs. This drug design method has been very reliable in the
research results of this experiment.

5 Conclusion

In this experiment, linear and non-linear 2D-QSAR models are
established using the heuristic method and GEP algorithm. By
comparing the two 2D-QSAR models, it was found that the non-
linear model had better stability and prediction ability, but the 2D-
QSAR model had a limitation, i.e., it could not be used to accurately
describe the influence of the changes in the spatial structure of
compounds on their anti-tumor activity. Therefore, we used the
CoMSIA method to construct a 3D-QSAR model with a higher q2

(0.532) and r2 (0.997) value and a lower estimated standard error
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(0.016) value. By comparing the 2D-QSAR model with the 3D-
QSAR model, it was found that the 3D-QSAR model could
intuitively show the changes in the spatial structure and anti-
tumor activity of those compounds. Finally, 200 new nitrogen
compounds were constructed by combining the molecular
descriptor “Min electroph react index for a C atom” of the 2D-
QSAR model with the molecular force field of the 3D-QSAR model,
in which compound I1.10 had the highest drug activity. However, in
order to further demonstrate the effectiveness of these compounds
on osteosarcoma-related receptor targets, we continued to perform
small-molecule docking experiments, and the docking results of
compound I1.10 were satisfactory.
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