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High-throughput screening (HTS) methods enable the empirical evaluation of a
large scale of compounds and can be augmented by virtual screening (VS)
techniques to save time and money by using potential active compounds for
experimental testing. Structure-based and ligand-based virtual screening
approaches have been extensively studied and applied in drug discovery
practice with proven outcomes in advancing candidate molecules. However,
the experimental data required for VS are expensive, and hit identification in an
effective and efficient manner is particularly challenging during early-stage drug
discovery for novel protein targets. Herein, we present our TArget-driven Machine
learning-Enabled VS (TAME-VS) platform, which leverages existing chemical
databases of bioactive molecules to modularly facilitate hit finding. Our
methodology enables bespoke hit identification campaigns through a user-
defined protein target. The input target ID is used to perform a homology-
based target expansion, followed by compound retrieval from a large
compilation of molecules with experimentally validated activity. Compounds
are subsequently vectorized and adopted for machine learning (ML) model
training. These machine learning models are deployed to perform model-
based inferential virtual screening, and compounds are nominated based on
predicted activity. Our platform was retrospectively validated across ten diverse
protein targets and demonstrated clear predictive power. The implemented
methodology provides a flexible and efficient approach that is accessible to a
wide range of users. The TAME-VS platform is publicly available at https://github.
com/bymgood/Target-driven-ML-enabled-VS to facilitate early-stage hit
identification.
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1 Introduction

Drug discovery is expensive. Considering a representative target portfolio, high-
throughput screening (HTS) is presently the most widely applicable technology for
delivering chemical entry points for drug discovery campaigns (Scannell et al., 2022),
but despite its popularity, this high-cost method can result in low hit rates (Zeng et al., 2020).
The attrition rates of identified hits are further increased during the validation phase and

OPEN ACCESS

EDITED BY

Junmei Wang,
University of Pittsburgh, United States

REVIEWED BY

Haixin Wei,
University of California, San Diego,
United States
Runrun Wu,
University of Texas Southwestern Medical
Center, United States

*CORRESPONDENCE

Yuemin Bian,
ybian@broadinstitute.org

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Molecular Recognition,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 10 February 2023
ACCEPTED 28 February 2023
PUBLISHED 13 March 2023

CITATION

Bian Y, Kwon JJ, Liu C, Margiotta E,
Shekhar M and Gould AE (2023), Target-
driven machine learning-enabled virtual
screening (TAME-VS) platform for early-
stage hit identification.
Front. Mol. Biosci. 10:1163536.
doi: 10.3389/fmolb.2023.1163536

COPYRIGHT

© 2023 Bian, Kwon, Liu, Margiotta,
Shekhar and Gould. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 13 March 2023
DOI 10.3389/fmolb.2023.1163536

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1163536/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1163536/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1163536/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1163536/full
https://github.com/bymgood/Target-driven-ML-enabled-VS
https://github.com/bymgood/Target-driven-ML-enabled-VS
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1163536&domain=pdf&date_stamp=2023-03-13
mailto:ybian@broadinstitute.org
mailto:ybian@broadinstitute.org
https://doi.org/10.3389/fmolb.2023.1163536
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1163536


optimization stage due to inherent deficits in the absorption,
distribution, metabolism, excretion, and toxicity (ADMET)
properties (Feinberg et al., 2020; Xiong et al., 2021). Such
challenges emphasize the demand for additional approaches that
can, in parallel, perform a low-cost and efficient screening to identify
potential hits and discard inappropriate structures. Thus, the
strategy of exploiting the computational power of in silico virtual
screening (VS) was proposed as a coherent solution.

In VS efforts, structure-based and ligand-based approaches
serve as two commonly used strategies. Structural data of
proteins can aid in computational approaches to infer
receptor–ligand interactions within target binding pockets and
enable structure-based virtual screening (SBVS) (Shimada et al.,
2019; Alon et al., 2021; Jumper et al., 2021; Akdel et al., 2022). SBVS
can screen millions of molecules from large-scale compound
libraries against protein structures (Lyu et al., 2019; Wang et al.,
2019; Graff et al., 2021) and can be further augmented by integrating
machine learning (ML) methods that unlock the capacity to screen
an ultra-large chemical space (>1 billion compounds) (Lyu et al.,
2019; Gentile et al., 2020; Gorgulla et al., 2020; Graff et al., 2021).
Ligand-based virtual screening (LBVS) is another commonly used
VS strategy where the chemical structures of known active
compounds are used to generate a structure–activity model,
which is then exploited to identify other molecules that
potentially share similar bioactivity. The generation of large-scale
chemical databases of bioactive molecules, like ChEMBL (Mendez
et al., 2019), serves as a resource to further enable LBVS. Like SBVS,
the integration of ML to boost LBVS capabilities has recently grown
in popularity with rapid advancements in MLmethods and the ever-
increasing wealth of large datasets that have been generated (Jing
et al., 2018; Vamathevan et al., 2019; Yang et al., 2019; Bian and Xie,
2021; Jiang et al., 2021). ML-integrated LBVS can provide a better
understanding of chemical space through latent representations of
the chemical properties to predict novel compound activity (Bian
et al., 2019a; Bian et al., 2019b; Stokes et al., 2020; Bian and Xie,
2022).

However, the generation of prerequisite datasets to enable VS is
non-trivial. SBVS requires the structural information of the target, while
protein preparation and crystallography are not facile tasks. LBVS
necessitates known ligands with bioactivity data, which often do not
exist. To address this demanding situation, we present the TArget-
driven Machine learning-Enabled VS (TAME-VS) platform. The
platform simply requires the input of a protein target ID and
utilizes seven automated, customizable modules to assess compound
libraries to identify potential hits. The platform expands the focus of the
VS from the target of interest to a broader collection of proteins that
share target functions or certain sequence homology. Augmented
cheminformatics data are assessed against the expanded protein
collection. Supervised machine learning classifiers are subsequently
trained after labeling the fetched data and are used to screen future
compounds. Herein, we provide further details on method
implementation and discuss the results from retrospective case
studies across a diverse set of protein targets. Our platform is built
to be flexible, simple to use, and enable rapid evaluation of compound
databases in a comprehensive manner. This methodology offers an
opportunity to augment drug discovery efforts and can increase the
accessibility ofVSmethods for both big and small organizations, and for
both computational and experimental scientists.

2 Methods and platform
implementation

2.1 Overall workflow

The overall implementation of the TAME-VS is illustrated in
Figure 1. There are three alternative starting points and seven
modules in sequence. With only the UniProt ID of the target of
interest as the input, the workflow can be initiated from Starting
Point #1. The first module, Target Expansion, performs a global
protein sequence homology search through the Basic Local
Alignment Search Tool (BLAST) (Altschul et al., 1990) and expands
the target list by identifying proteins with high sequence similarities
within categorical protein family members. The second module,
Compound Retrieval, extracts corresponding compounds with
activity against the proteins in the target list by querying the
ChEMBL database. The extracted compounds are grouped into
active and inactive ligands according to assay types and activity
cutoffs. The descriptive features of extracted compounds are
subsequently converted to chemical fingerprints in the third module,
Vectorization. The fourth module, ML Model Training, trains
supervised ML classification models, by default, random forest (RF)
and multilayer perceptron (MLP), based on the calculated fingerprints.
In the fifth module, Virtual Screening, the trained machine learning
models are applied to screen user-defined compound collections. By
default, an Enamine diversity 50K library is screened, and compounds
are ranked according to the prediction scores. Module 6, Post-VS
Analysis, evaluates quantitative drug-likeness (QED) and calculates
key physical–chemical properties for screened compounds. Finally,
module 7, Data Processing, encapsulates all the data and presents
the virtual hits in addition to the evaluation outcome of the entire
chemical library in a summary report. Users can also initiate the
workflow with their own customized target lists (pre-selected
positive targets based on biological rationale) or compound lists
(pre-selected active and inactive compounds) from Starting Point #2
and Starting Point #3, respectively. In addition, eachmodule can be used
individually, and the output of each module is exported to the
corresponding folders for users to review.

The platform is comprehensive yet flexible. It is designed to
provide an ML-enabled solution for handling early-stage hit
identification. The open-source package of the TAME-VS
platform is publicly available on GitHub, together with
instructions on setting up the system (https://github.com/
bymgood/Target-driven-ML-enabled-VS). The details for each
module are discussed in the following paragraphs.

2.2 Module 1: Target Expansion

The purpose of Target Expansion is to broaden the
cheminformatics investigation from the single-query target
protein to a broader group of sequence-similar target proteins,
based on the hypothesis that proteins with high sequence
similarity may possess related structural features and may have
an increased likelihood of sharing active ligands. A protein BLAST
(BLASTp suite) global search is used to identify proteins with high
sequence similarity to the query target through the Biopython
package (Cock et al., 2009). The function NCBIWWW is
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imported from Bio.Blast. The default sequence similarity cutoff is set
at 40% but can be user-defined for a custom similarity cutoff. The
arguments program and entrez_query are set to BLASTp and
txid9606[ORGN] (homo sapiens). A table of expanded proteins,
including collected target gene names, UniProt IDs, and percent
identities are shown in the folder.

2.3 Module 2: Compound Retrieval

The purpose of Compound Retrieval is to extract reported active
and inactive ligands for the expanded target list from publicly
available cheminformatics databases, such as ChEMBL, which
documents 2.3 M compounds across 13 K targets. ChEMBL is
utilized in this module and is accessed using the Python package
chembl_webresource_client. The largest experimental datatype for a
given protein is utilized to distinguish active and inactive
compounds. The default activity cutoff is 1,000 nM for
biochemical or biophysical activity (Ki, IC50, and EC50), and the
default activity cutoff for percentage inhibition (%INH) is 50%, with
the option for users to define specific cutoff values. It is
recommended to check if the %INH came from consistent
compound concentrations. The folder contains a table
summarizing the extracted compounds and their experimental
value types, in addition to tables with standard activity values,
standard activity value units, SMILES strings, InChI keys, and
the associated protein UniProt ID for active and inactive
compounds.

2.4 Module 3: Vectorization

Vectorization is deployed to compute the selected types of
molecular fingerprints for the extracted compounds. Different

types of fingerprints evaluate the properties of the compounds
from various aspects. The platform is designed to enable users to
explore various types of fingerprints to evaluate the performance of
the trained models using the Cheminformatics package RDKit
(Landrum, 2006). Four types of fingerprints -Morgan, AtomPair,
Topological and Torsion, andMACCS - are available to choose from
in this module. Morgan fingerprints enumerate all circular
fragments from each selected center-heavy atom up to the given
radius of two atoms. The calculation is realized through get_
morganfp. AtomPair fingerprints encode each atom as a type to
enumerate all distances between pairs. The calculation is realized
through get_AtomPairfp. Topological and Torsion fingerprints
describe a linear sequence of four consecutively bonded non-
hydrogen atoms, each described by its atomic type, the number
of non-hydrogen branches attached to it, and its number of x
electron pairs. Topological and torsion fingerprints are calculated
with get_TopologicalTorsionfp. The MACCS fingerprint consists of
166 MDL substructure keys, which are calculated from the
molecular graph. The calculation is realized through get_MACCS.
The number of bits, which is an adjustable parameter, is set to
1,024 by default to hash the string into a fixed-length bit-vector for
Morgan, AtomPair, and Topological and Torsion fingerprints. The
folder contains tables of calculated fingerprints in bit-vector form for
active and inactive compounds.

2.5 Module 4:ML Model Training

The ML Model Training module is utilized to build the RF and
MLP models using the calculated fingerprints from module 3 as
input features. These two methods were selected to represent both
classic ML algorithms and neural networks, and additional add-on
features may be appended in future updates. The Python package
scikit-learn (Pedregosa et al., 2011) is employed for RF and MLP

FIGURE 1
Scheme of the workflow implemented in the target-driven, ML-enabled VS platform.
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model implementation. The function of RandomUnderSampler
from the package imblearn.under_sampling is adopted to perform
undersampling to counter potential imbalanced training data of
active and inactive compounds (Lemaître et al., 2017). The function
GridSearchCV from sklearn.model_selection is used to determine a
preferred set of hyperparameters for trained models. The
hyperparameter grid for RF includes n_estimators (50, 100, and

200) and max_depth (4, 6, 10, and 12). The hyperparameter grid for
MLP includes hidden_layer_sizes [(50, 50, 50), (50, 50), and (50)];
activation (tanh and relu); and alpha (0.01 and 0.0001). As a concise
evaluation for the trained models, ten-fold cross-validation is
integrated, and figures of the receiver operating characteristic
curve (ROC) for each model are exported for visual inspection.
By default, both RF and MLP models are trained, but the user may

FIGURE 2
Applying target-driven, ML-enabled VS toward stromelysin-2 (UniProt ID: P09238) as a case study to exemplify outcomes from each module. (A).
Protein list after target expansion. (B). Number of extracted compounds for each target in the protein list. (C). Distribution of experimental value types. (D).
ROC curve for RF model training. (E). ROC curve for MLP model training. (F). Distribution of prediction scores on the Enamine Diversity 50K library using
the RFmodel. (G). Distribution of prediction scores on the Enamine Diversity 50K library using theMLPmodel. (H). Distribution of calculated QED. (I).
Distribution of calculated MW. (J). Distribution of calculated LogP. (K). Exemplified final reports.

TABLE 1 Ten protein targets in retrospective validations.

Target UniProt
ID

Category # of homologous targets
identified

# of reported molecules
retrieved

Assay type that gives most
records

A2b P29275 GPCR 2 36629 Ki

ACC1 Q13085 Ligase 1 4268 IC50

AKR1B10 O60218 Oxidoreductase 9 4449 IC50

CTSG P08311 Protease 3 3076 IC50

JAK3 P52333 Kinase 3 32951 IC50

MMP10 P09238 Protease 7 17467 IC50

PRKD1 Q15139 Kinase 2 6981 Inhibition

PTN6 P29350 Phosphatase 1 2434 IC50

RPS6KA3 P51812 Kinase 5 16383 Inhibition

SCN4A P35499 Voltage-gated ion
channel

9 13594 IC50
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select a specific model to be prepared. The trained prediction models
are shown in the folder.

2.6 Module 5: Virtual Screening

The purpose of Virtual Screening is to screen the user-defined
compound collection using trained machine-learning models. By
default, the Enamine diversity 50K library will be screened. An extra
Python script, Library_preparation.py, is also attached in module
5 for preparing any user-defined libraries into a standard format for
this platform. Trained models are loaded and screened in sequence.
Compound prediction scores are written out separately for each
model.

2.7 Module 6: Post-VS Analysis

The Post-VS Analysismodule evaluates and compares the screening
library, with an emphasis on the top 1% of virtual hits to the training set
from the perspective of drug-likeness and physical–chemical properties.
Distributions of prediction scores from both RF and MLP models are
plotted. Quantitative estimate of drug-likeness (QED) (Bickerton et al.,
2012), molecular weight (M.W.), LogP, number of H-bond acceptors,
number of H-bond donors, and number of rotatable bonds are
calculated using functions Descriptors.TPSA, Descriptors.MolWt,
Descriptors.MolLogP, Descriptors.NumHAccepto,
Descriptors.NumHDonors, and Descriptors.NumRotatableBonds in
RDKit, respectively. Data tables including these calculated properties

are exported, and distribution plots are prepared to facilitate an
intuitional visual inspection.

2.8 Module 7: Data Processing

In the final module, Data Processing, the selected compounds from
the previousmodules are consolidated and summarized, and a final list of
suggested top virtual hits is reported. An ensemble ranking ofmolecules is
calculated by averaging two individual rankings by RF andMLP. The top
1% of compounds from RF and MLP models and the ensemble ranking
aremerged. Duplicates are removed as somemolecules can be selected as
top-ranked bymore than one algorithm. Both the full compound list and
the top 1% virtual hit list are shown in the folder.

3 Results

3.1 A case study of applying the platform to
stromelysin-2

As an exemplified use case of the TAME-VS platform, we chose
stromelysin-2 to illustrate the performance and output results of the
modules (Figure 2). Stromelysin-2, also known as MMP10, is a
proteolytic enzyme belonging to the matrix metalloproteinase (MMP)
family that is known to break down extracellular matrix proteins and is
involved in tissue remodeling, angiogenesis, and inflammation
(Vaalamo et al., 1998; Saghizadeh et al., 2001; Krampert et al., 2004;
Koller et al., 2012; Rohani et al., 2015). We entered the UniProt ID,

FIGURE 3
Retrospective validations across ten different protein targets. (A) Schematic illustration of a retrospective study. Averaged VS scores reported by the
RF model (B) and the MLP model (C) for the entire Enamine diversity 50K library (black bar) and known active compounds (gray bar) of the query target.
The error bar represents the standard error of the mean (SEM), *p < 0.05; **p < 0.01; ***p < 0.001.
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P09238, as an input in Starting Point #1. Seven targets that share
sequence similarity of over 40% were identified and written down
(Figure 2A). A total of 17,467 chemical records were retrieved with
activity across all collected targets (Figure 2B). The retrieved chemical
records were distributed among a variety of experimental data types,
including biochemical and competitive binding. The biochemical assay
data type IC50, which contains the most records (10,727 records; see
Figure 2C), was utilized to split curated compounds into active and
inactive ones at a default concentration of 1000 nM. After the
vectorization, the RF (Figure 2D) and MLP (Figure 2E) classification
models were trained to distinguish active molecules from inactive ones.
ROC curves of ten-time cross-validation provided an intuitional
visualization of the robustness of the training process. The Enamine
Diversity 50K library was then screened and scored separately by the
trained RF (Figure 2F) and MLP (Figure 2G) models. After the virtual
screening, properties like QED (Figure 2H), MW (Figure 2I), and LogP
(Figure 2J) were calculated and plotted. Eventually, the scored full
compound list and top 1% virtual hit list were written on the disk.
The overall process took approximately 30 min to finish on a MacBook
Pro equipped with a 2.6 GHz 6-Core Intel Core i7 processor.

3.2 Retrospective studies on diverse protein
targets

In addition to evaluating the efficiency of our platform,we sought to
address the effectiveness and performance of our pipeline across a range

of protein types. Ten targets representing divergent protein categories,
including GPCRs, ligases, oxidoreductases, proteases, kinases,
phosphatases, and voltage-gated ion channels, were selected for these
studies (Table 1). Using Starting Point #1, we performed retrospective
VS studies on ten diverse protein targets using their UniProt IDs as the
input and assessed if the platform could determine ex post facto known
active compounds of targets over the broad range of chemical matter
represented in the Enamine diversity 50K library. After target expansion
and compound retrieval, we observed a wide range of identified
homologous targets, retrieved known chemicals, and miscellaneous
experimental assay types.

A hit identification campaign for a novel target typically lacks
reported active compounds or probes. To simulate this scenario, known
hits of the query protein were withheld during the model training stage
but reintroduced for scoring once the models had been trained with
chemical data from the expanded protein target list (Figure 3A). The
Enamine Diversity 50K library and known active compounds of the
query target were evaluated by the trained predictive models, and the
outcomes were assessed. Given that compounds in the Enamine
diversity 50K library sparsely represent a general drug-like chemical
space, the majority of these molecules are anticipated to be assigned
relatively low VS scores by the predictive models compared to active
compounds. Indeed, we observe that both RF and MLP assign higher
VS scores to known active compound sets as compared to the Enamine
50K chemicals (Figures 3B, C), with a high degree of agreement between
the two models (Supplementary Figure S1). Specifically, we observe a
significant difference in 9/10 targets for RF and 7/10 targets for MLP.

FIGURE 4
Structural insights revealed from the screening. (A). Box and Whisker plots for RF-based VS scores across structurally clustered groups of Enamine
50K library. (B). Comparison of VS scores and properties between cluster #20 and the remaining part of the Enamine 50K library. (C). t-SNE analysis to
visualize covered chemical spaces by knownMMP10 actives (blue), cluster #20 (orange), activemolecules in the training set (green), inactivemolecules in
the training set (red), and full Enamine 50K compounds (purple). (D). One known MMP10 inhibitor and exemplified compounds in cluster #20. The
overlapping benzenesulfonamide group is highlighted in green. Dissimilar moieties are colored pink.
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MLP was unable to detect a significant difference in known active
compounds compared to Enamine 50K compounds for PRKD1 and
RPS6KA3 due to the assay type of inhibition (Table 1) utilized formodel
training, which can suffer from inconsistent compound testing
concentrations. MLP had a 3-fold greater variability in the scoring
of known active compounds than RF. However, MLP, on average,
provided a two-fold greater differential VS score between the Enamine
50K and known active compounds across targets compared to RF
(Supplementary Figure S2). As anticipated, the ability of models to
discern a difference between the Enamine 50K and known active
compounds was correlated with the number of targets identified
during the target expansion phase in addition to the number of
molecules identified in the compound retrieval phase
(Supplementary Figure S1).

To enable the evaluation of model training and performance, six
metrics, namely, AUC, precision, recall, specificity, F1 score, geometric
mean, and index of balanced accuracy (IBA), were embedded in the
TAME-VS platform for evaluating the performance from various
aspects. The calculation of these metrics is detailed in the
supplementary information. To reflect the imbalanced training data
that active compounds are usually minorities, the training process
adopted the down-sampling of inactive compounds with 10-time
cross-validation. ROC curves with calculated AUC values for cross-
validation were plotted automatically after model training for both RF
(Supplementary Figure S3) and MLP (Supplementary Figure S4)
models. The values of reported precision, recall, specificity, F1 score,

geometric mean, and index of balanced accuracy are summarized into
tables for both RF (Supplementary Table S1) andMLP (Supplementary
Table S2). Across the ten diversified protein targets, calculated metrics
suggested that trained RF and MLP models gave robust and equivalent
performances on classifications (Supplementary Figure S5). We
observed greater variability in AUC as measured by standard
deviation and model precision, which were inversely proportional to
the number of compounds available within the training set and the
number of targets within target expansion, respectively (Supplementary
Figure S6).

To better understand the latent chemical space and structural
insights that can be revealed from the process of virtual screening,
we performed structural clustering and analysis for hits relating to
stromelysin-2 (MMP10) from our retrospective studies (Figure 4). The
Enamine 50K library was classified into one hundred structurally
diversified clusters based on k-means clustering of encoded
fingerprints, and we identified cluster #20 as having the greatest
mean VS scores (Figure 4A). Interestingly, cluster #20 stood out as
its upper extremes achieved comparable VS scores to known
MMP10 active compounds (Figure 3B). Cluster #20 had a
significant increase in mean RF-based VS score (0.42) compared to
the remaining Enamine 50K library (0.35) (Figure 4B). From the
perspective of physical–chemical properties, compounds in cluster
#20 remained within the zone that follows the “rule of 5” (Lipinski
et al., 1997) (Figure 4B). Subsequently, we performed t-SNE analysis to
better visualize the chemical space coverage (Figure 4C). The

FIGURE 5
This platform has the flexibility for multi-purpose adaptation. Using an individual module (A–D) or a combination of modules (E, F) to realize various
functions.
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compounds in the Enamine 50K library defined the overall boundary.
Compounds in cluster #20 were largely concentrated as expected and
partially overlapped with training molecules that were retrieved from
the expanded target list. The known active MMP10 molecules were
proximal to other training molecules but mostly independent from the
compounds in cluster #20. Upon further investigation of specific
chemical structures, it was found that compounds from cluster
#20 that scored as highly active maintained a benzenesulfonamide
group, which is a reported moiety of some known MMP10 inhibitors
(Nara et al., 2016) (Figure 4D). This is an important finding, as known
MMP10 active compounds were not included in the model training in
retrospective studies. As seen in the retrieved molecules from the
expanded target list, the TAME-VS platform detected chemical
patterns in the training sets to construct a chemical understanding
of the structure of the inhibitors. AMorgan fingerprint-based structural
similarity search using the same known active MMP10 molecule as the
query compound was conducted in parallel. Suggested molecules from
our TAME-VS platform do not simply recur compounds with top
Tanimoto coefficient (Tc) scores from the classical structural similarity
search (Supplementary Figure S7A). TAME-VS can propose chemicals
that align with the acquired structural patterns, even if they do not have
high Tc similarity scores, which differs from the traditional approach of
using structural similarity search (Supplementary Figure S7B, C). This
observation further supported the claim that our TAME-VS platform
can provide an alternative approach to tackle early-stage hit findings.

4 Discussion

The use of large-scale, high-throughput screening has been a
major cornerstone of modern drug discovery efforts to identify
chemical hits for novel protein targets and will be an important
resource for the foreseeable future. Our novel TAME-VS platform
enables users to survey chemical libraries rapidly and cost-effectively
for ab initio drug discovery campaigns at a very early stage. This
plug-and-play system provides a high degree of customizability and
enables a broad range of users to explore desired chemical spaces to
rapidly identify potential starting points for further chemical
evaluation. Indeed, our retrospective validation across different
protein types demonstrates a clear value in our platform with
reliable predictive performance in the majority of cases.

We acknowledge that the use of the ChEMBL database limits the
utility of the TAME-VS platform as low-homology or orphan proteins
may not be represented within the database. However, this issue can be
remedied by using the optional starting points, which allow users to
flexibly supply their customized internal data, which may not be
immediately available from public databases. For example, users can
employ their own domain expertise to provide a more specified list of
relevant targets for aggregating compound data in module 2, with
Compound Retrieval serving as the optional Starting Point #2 to begin
the platform. Alternatively, if users have prepared their own compound
lists from their internal experimental testing, module 3, Vectorization,
can function as the optional Starting Point #3 to leverage the remaining
parts of the platform.

The TAME-VS platform serves as a relevant and flexible tool to
efficiently perform virtual screening across a broad range of drug
discovery stages. Furthermore, the platform can be deployed in a
piecemeal fashion by running an individual module or a combination

of multiple modules depending on user needs. Inside each module, there
is a stand-alone Python script that can run independently with
customized inputs and outputs. A Jupyter notebook for each module
is also provided in case users prefer a more interactive experience. The
following are a few examples. Module 1 provides an immediate solution
to automated BLASTp search, which can improve sequence-focused
bioinformatics studies (Figure 5A). Module 2 searches a large-scale
compound collection for activity against given targets, which enables
the creation of a focused chemical library for particular protein targets or
target groups (Figure 5B). If a user requires a quick tool for fingerprints
and key physical–chemical property calculation, module 3 (Figure 5C)
and module 6 (Figure 5D) can be used for the task. For a just-initiated
drug discovery project on a protein target, combining module 1 and
module 2 can provide a bioinformatics overview of related, similar
proteins and their corresponding interacting molecules (Figure 5E).
Another example is combining module 2 and module 6 to calculate
the chemical properties of molecules with activity against a given target
(Figure 5F).

In addition to its flexibility in use, TAME-VS is also highly
adaptable. There have been rapid advancements in ML applications
and an ever-increasing expansion in AI methodologies for drug
discovery (Vamathevan et al., 2019; Bian and Xie, 2021). Although
we provide RF and MLP models to represent both classic ML
algorithms and neural networks, respectively, additional add-on
features can be appended in future updates to accommodate
advancements in ML methods. Additionally, our platform can
accommodate the use of novel molecular features and datatypes.
Screening libraries can be customized, and post-screening analysis
can integrate extra dimensions. The platform is highly customizable,
easily integrated, and can be used to analyze data frommultiple sources.

Our methodology provides a comprehensive, efficient, and flexible
platform for virtual screening in target-driven drug discovery campaigns.
It simplifies the process by streamlining the data processing, analysis, and
visualization of results. This platform enables researchers to target novel
proteins with limited starting information to rapidly evaluate and triage a
large chemical space based on homology-expanded target lists and may
help reduce the time and cost associated with launching a full drug
discovery campaign. With its user-friendly programming environment,
the TAME-VS platform can serve as an initial tool for early drug
discovery and can increase the accessibility of these ML methods to a
broad range of users.

Data availability statement

The open-source, freely available package of the TAME-VS
platform is documented at https://github.com/bymgood/Target-
driven-ML-enabled-VS.

Author contributions

YB, JK, and MS conceptualized the idea. YB designed,
developed, and programmed the platform. YB and CL performed
code review and debugging. YB and JK conducted retrospective
validations and interpreted the outcomes. EM, MS, and AG
contributed insights from drug discovery and medicinal
chemistry perspectives. YB and JK wrote the manuscript. YB, JK,

Frontiers in Molecular Biosciences frontiersin.org08

Bian et al. 10.3389/fmolb.2023.1163536

https://github.com/bymgood/Target-driven-ML-enabled-VS
https://github.com/bymgood/Target-driven-ML-enabled-VS
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1163536


CL, EM, MS, and AG reviewed, revised, and approved the
manuscript.

Funding

This work was supported by the Center for the Development of
Therapeutics, the Broad Institute of MIT and Harvard. JK was
supported by NIH-NCI grant F32CA243290.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors, and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2023.1163536/
full#supplementary-material

References

Akdel, M., Pires, D. E. V., Pardo, E. P., Jänes, J., Zalevsky, A. O., Mészáros, B., et al.
(2022). A structural biology community assessment of AlphaFold2 applications. Nat.
Struct. Mol. Biol. 29, 1056–1067. doi:10.1038/s41594-022-00849-w

Alon, A., Lyu, J., Braz, J. M., Tummino, T. A., Craik, V., O’Meara, M. J., et al. (2021).
Structures of the σ2 receptor enable docking for bioactive ligand discovery. Nature 600,
759–764. doi:10.1038/s41586-021-04175-x

Altschul, S. F., Gish,W., Miller,W., Myers, E.W., and Lipman, D. J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403–410. doi:10.1016/S0022-2836(05)80360-2

Bian, Y., Jing, Y., Wang, L., Ma, S., Jun, J. J., and Xie, X.-Q. (2019a). Prediction of
orthosteric and allosteric regulations on cannabinoid receptors using supervised
machine learning classifiers. Mol. Pharm. 16, 2605–2615. doi:10.1021/acs.
molpharmaceut.9b00182

Bian, Y., Wang, J., Jun, J. J., and Xie, X.-Q. (2019b). Deep convolutional generative
adversarial network (dcGAN) models for screening and design of small molecules
targeting cannabinoid receptors. Mol. Pharm. 16, 4451–4460. doi:10.1021/acs.
molpharmaceut.9b00500

Bian, Y., and Xie, X.-Q. (2022). Artificial intelligent deep learning molecular
generative modeling of scaffold-focused and cannabinoid CB2 target-specific small-
molecule sublibraries. Cells 11, 915. doi:10.3390/cells11050915

Bian, Y., and Xie, X.-Q. (2021). Generative chemistry: Drug discovery with deep
learning generative models. J. Mol. Model. 27, 71–18. doi:10.1007/s00894-021-04674-8

Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., and Hopkins, A. L. (2012).
Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90–98. doi:10.1038/nchem.
1243

Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., et al.
(2009). Biopython: Freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics 25, 1422–1423. doi:10.1093/
bioinformatics/btp163

Feinberg, E. N., Joshi, E., Pande, V. S., and Cheng, A. C. (2020). Improvement in
ADMET prediction with multitask deep featurization. J. Med. Chem. 63, 8835–8848.
doi:10.1021/acs.jmedchem.9b02187

Gentile, F., Agrawal, V., Hsing, M., Ton, A.-T., Ban, F., Norinder, U., et al. (2020).
Deep docking: A deep learning platform for augmentation of structure based drug
discovery. ACS central Sci. 6, 939–949. doi:10.1021/acscentsci.0c00229

Gorgulla, C., Boeszoermenyi, A., Wang, Z.-F., Fischer, P. D., Coote, P. W.,
Padmanabha Das, K. M., et al. (2020). An open-source drug discovery platform
enables ultra-large virtual screens. Nature 580, 663–668. doi:10.1038/s41586-020-
2117-z

Graff, D. E., Shakhnovich, E. I., and Coley, C. W. (2021). Accelerating high-
throughput virtual screening through molecular pool-based active learning. Chem.
Sci. 12, 7866–7881. doi:10.1039/d0sc06805e

Jiang, D., Wu, Z., Hsieh, C.-Y., Chen, G., Liao, B., Wang, Z., et al. (2021). Could graph
neural networks learn better molecular representation for drug discovery? A
comparison study of descriptor-based and graph-based models. J. cheminformatics
13, 12–23. doi:10.1186/s13321-020-00479-8

Jing, Y., Bian, Y., Hu, Z., Wang, L., and Xie, X.-Q. S. (2018). Deep learning for drug
design: An artificial intelligence paradigm for drug discovery in the big data era. AAPS J.
20, 58. doi:10.1208/s12248-018-0210-0

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al.
(2021). Highly accurate protein structure prediction with AlphaFold. Nature 596,
583–589. doi:10.1038/s41586-021-03819-2

Koller, F. L., Dozier, E. A., Nam, K. T., Swee, M., Birkland, T. P., Parks, W. C., et al.
(2012). Lack of MMP10 exacerbates experimental colitis and promotes development of
inflammation-associated colonic dysplasia. Lab. Investig. 92, 1749–1759. doi:10.1038/
labinvest.2012.141

Krampert, M., Bloch, W., Sasaki, T., Bugnon, P., Rulicke, T., Wolf, E., et al. (2004).
Activities of the matrix metalloproteinase stromelysin-2 (MMP-10) in matrix
degradation and keratinocyte organization in wounded skin. Mol. Biol. Cell 15,
5242–5254. doi:10.1091/mbc.e04-02-0109

Landrum, G. (2006). RDKit: Open-source cheminformatics.

Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn.
Res. 18, 559–563.

Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (1997). Experimental
and computational approaches to estimate solubility and permeability in drug discovery
and development settings. Adv. drug Deliv. Rev. 23, 3–26. doi:10.1016/s0169-409x(00)
00129-0

Lyu, J., Wang, S., Balius, T. E., Singh, I., Levit, A., Moroz, Y. S., et al. (2019). Ultra-large
library docking for discovering new chemotypes. Nature 566, 224–229. doi:10.1038/
s41586-019-0917-9

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., de Veij, M., Félix, E., et al. (2019).
ChEMBL: Towards direct deposition of bioassay data. Nucleic acids Res. 47,
D930–D940. doi:10.1093/nar/gky1075

Nara, H., Sato, K., Kaieda, A., Oki, H., Kuno, H., Santou, T., et al. (2016). Design,
synthesis, and biological activity of novel, potent, and highly selective fused pyrimidine-
2-carboxamide-4-one-based matrix metalloproteinase (MMP)-13 zinc-binding
inhibitors. Bioorg. Med. Chem. 24, 6149–6165. doi:10.1016/j.bmc.2016.09.009

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Rohani, M. G., Mcmahan, R. S., Razumova, M. V., Hertz, A. L., Cieslewicz, M., Pun, S.
H., et al. (2015). MMP-10 regulates collagenolytic activity of alternatively activated
resident macrophages. J. Investigative Dermatology 135, 2377–2384. doi:10.1038/jid.
2015.167

Saghizadeh, M., Brown, D. J., Castellon, R., Chwa, M., Huang, G. H., Ljubimova, J. Y., et al.
(2001). Overexpression of matrix metalloproteinase-10 and matrix metalloproteinase-3 in
human diabetic corneas: A possible mechanism of basement membrane and integrin
alterations. Am. J. pathology 158, 723–734. doi:10.1016/S0002-9440(10)64015-1

Scannell, J. W., Bosley, J., Hickman, J. A., Dawson, G. R., Truebel, H., Ferreira, G. S.,
et al. (2022). Predictive validity in drug discovery: What it is, why it matters and how to
improve it. Nat. Rev. Drug Discov. 21, 915–931. doi:10.1038/s41573-022-00552-x

Frontiers in Molecular Biosciences frontiersin.org09

Bian et al. 10.3389/fmolb.2023.1163536

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1163536/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1163536/full#supplementary-material
https://doi.org/10.1038/s41594-022-00849-w
https://doi.org/10.1038/s41586-021-04175-x
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1021/acs.molpharmaceut.9b00182
https://doi.org/10.1021/acs.molpharmaceut.9b00182
https://doi.org/10.1021/acs.molpharmaceut.9b00500
https://doi.org/10.1021/acs.molpharmaceut.9b00500
https://doi.org/10.3390/cells11050915
https://doi.org/10.1007/s00894-021-04674-8
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1021/acs.jmedchem.9b02187
https://doi.org/10.1021/acscentsci.0c00229
https://doi.org/10.1038/s41586-020-2117-z
https://doi.org/10.1038/s41586-020-2117-z
https://doi.org/10.1039/d0sc06805e
https://doi.org/10.1186/s13321-020-00479-8
https://doi.org/10.1208/s12248-018-0210-0
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/labinvest.2012.141
https://doi.org/10.1038/labinvest.2012.141
https://doi.org/10.1091/mbc.e04-02-0109
https://doi.org/10.1016/s0169-409x(00)00129-0
https://doi.org/10.1016/s0169-409x(00)00129-0
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1016/j.bmc.2016.09.009
https://doi.org/10.1038/jid.2015.167
https://doi.org/10.1038/jid.2015.167
https://doi.org/10.1016/S0002-9440(10)64015-1
https://doi.org/10.1038/s41573-022-00552-x
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1163536


Shimada, I., Ueda, T., Kofuku, Y., Eddy, M. T., and Wüthrich, K. (2019). GPCR drug
discovery: Integrating solution NMR data with crystal and cryo-EM structures. Nat.
Rev. Drug Discov. 18, 59–82. doi:10.1038/nrd.2018.180

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., et al.
(2020). A deep learning approach to antibiotic discovery. Cell 180, 475–483. doi:10.
1016/j.cell.2020.04.001

Vaalamo, M., Karjalainen-Lindsberg, M.-L., Puolakkainen, P., Kere, J., and Saarialho-Kere,
U. (1998). Distinct expression profiles of stromelysin-2 (MMP-10), collagenase-3 (MMP-13),
macrophage metalloelastase (MMP-12), and tissue inhibitor of metalloproteinases-3 (TIMP-
3) in intestinal ulcerations. Am. J. pathology 152, 1005–1014.

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., et al.
(2019). Applications of machine learning in drug discovery and development. Nat. Rev.
Drug Discov. 18, 463–477. doi:10.1038/s41573-019-0024-5

Wang, E., Sun, H.,Wang, J.,Wang, Z., Liu, H., Zhang, J. Z., et al. (2019). End-point binding
free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug
design. Chem. Rev. 119, 9478–9508. doi:10.1021/acs.chemrev.9b00055

Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., et al. (2021). ADMETlab 2.0:
An integrated online platform for accurate and comprehensive
predictions of ADMET properties. Nucleic Acids Res. 49, W5–W14. doi:10.1093/
nar/gkab255

Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., et al. (2019). Analyzing
learned molecular representations for property prediction. J. Chem. Inf. Model. 59,
3370–3388. doi:10.1021/acs.jcim.9b00237

Zeng, W., Guo, L., Xu, S., Chen, J., and Zhou, J. (2020). High-throughput screening
technology in industrial biotechnology. Trends Biotechnol. 38, 888–906. doi:10.1016/j.
tibtech.2020.01.001

Frontiers in Molecular Biosciences frontiersin.org10

Bian et al. 10.3389/fmolb.2023.1163536

https://doi.org/10.1038/nrd.2018.180
https://doi.org/10.1016/j.cell.2020.04.001
https://doi.org/10.1016/j.cell.2020.04.001
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1021/acs.chemrev.9b00055
https://doi.org/10.1093/nar/gkab255
https://doi.org/10.1093/nar/gkab255
https://doi.org/10.1021/acs.jcim.9b00237
https://doi.org/10.1016/j.tibtech.2020.01.001
https://doi.org/10.1016/j.tibtech.2020.01.001
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1163536

	Target-driven machine learning-enabled virtual screening (TAME-VS) platform for early-stage hit identification
	1 Introduction
	2 Methods and platform implementation
	2.1 Overall workflow
	2.2 Module 1: Target Expansion
	2.3 Module 2: Compound Retrieval
	2.4 Module 3: Vectorization
	2.5 Module 4: ML Model Training
	2.6 Module 5: Virtual Screening
	2.7 Module 6: Post-VS Analysis
	2.8 Module 7: Data Processing

	3 Results
	3.1 A case study of applying the platform to stromelysin-2
	3.2 Retrospective studies on diverse protein targets

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


