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The emergence and re-emergence of viral diseases, which cause significant global
mortality and morbidity, are the major concerns of this decade. Of these, current
research is focusedmajorly on the etiological agent of theCOVID-19 pandemic, SARS-
CoV-2. Understanding the host response andmetabolic changes during viral infection
may provide better therapeutic targets for the proper management of
pathophysiological conditions associated with SARS-CoV-2 infection. We have
achieved control over most emerging viral diseases; however, a lack of
understanding of the underlying molecular events prevents us from exploring novel
therapeutic targets, leaving us forced to witness re-emerging viral infections. SARS-
CoV-2 infection is usually accompanied by oxidative stress, which leads to an
overactive immune response, the release of inflammatory cytokines, increasing lipid
production, and also alterations in the endothelial and mitochondrial functions. PI3K/
Akt signaling pathway confers protection against oxidative injury by various cell survival
mechanisms including Nrf2-AREmediated antioxidant transcriptional response. SARS-
CoV-2 is also reported to hijack this pathway for its survival within host and few studies
have suggested the role of antioxidants in modulating the Nrf2 pathway to manage
disease severity. This review highlights the interrelated pathophysiological conditions
associated with SARS-CoV-2 infection and the host survival mechanisms mediated by
PI3K/Akt/Nrf2 signaling pathways that can help ameliorate the severity of the disease
and provide effective antiviral targets against SARS-CoV-2.
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Introduction

Coronaviruses (CoVs) are enveloped, non-segmented positive sense, single stranded
RNA viruses belonging to the family Coronaviridae. They are amongst the largest group of
viruses categorized into four genera: Alphacoronaviruses, Betacoronaviruses,
Gammacoronaviruses, and Deltacoronaviruses, infecting different types of animals that
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can cause mild to severe respiratory and gastrointestinal
complications in humans (Capron, 1987). Historically these
viruses were linked to the human CoVs (229E and OC43) that
caused mild upper respiratory tract diseases. The emergence and re-
emergence of Coronavirus diseases in the twenty-first century has
sparked public concern since 2002 with the severe acute respiratory
syndrome Coronavirus (SARS-CoV) (Ksiazek et al., 2003) and the
Middle East respiratory syndrome Coronavirus (MERS-CoV)
outbreaks (Zaki et al., 2012; Cui et al., 2019). Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly
transmissible novel virus belonging to the family Coronaviridae
(betacoronavirus 2B lineage), together with SARS-CoV and MERS-
CoV viruses that caused previous outbreaks. SARS-CoV-2 is the
etiological agent of the coronavirus disease (COVID-19) epidemic
that emerged in late 2019 in Wuhan, China. On 11 March 2020, the
World Health Organization (WHO) declared COVID-19 a
pandemic with a high transmission rate, mortality, and morbidity
(Team, 2020). Although a great deal of research has been conducted
regarding viral emergence and transmission, there is very little
available information explaining the pathophysiology and viable
therapeutic options. In majority of cases, the infected patients do not
require any special medical intervention, however in about 20% of
the COVID-19 cases, patients do necessitate hospitalizations (Wu
andMcGoogan, 2020). Most of the hospitalizations are accounted to
hyperinflammation damaging organs and endothelium of blood
vessels, thrombosis and immunosuppression with a possible role
in latent long COVID or post-COVID conditions (Ackermann et al.,
2021; Zhu et al., 2022). Several reports in the past have already
documented that oxidative stress and inflammation mutually
reinforce each other and the same have also been observed in
COVID-19 patients (Jensen et al., 2021). Although elevated levels
of reactive oxygen species (ROS) have detrimental consequences on
cell viability and many viruses have still evolved to induce oxidative
stress for their own benefit of replication inside cells (Lee, 2018).
Another important event associated with viral infection is the host
lipid metabolism that plays vital role in oxidative stress,
inflammatory response and thrombotic complications associated
with SARS-CoV-2 infection (Casari et al., 2021). Lipids also form the
structural foundations of viral and cellular membranes and thus
during viral infection, viruses hijack host cellular signaling and lipid
biogenesis to produce lipids and other metabolites in favour of the
virus life cycle. Lipidomic approaches may provide valuable insights
into the host response to COVID-19 and studies highlighting such
roles may provide potential therapeutic targets (Abu-Farha et al.,
2020). The virus-host harmonious balance is the key to the survival
of these viruses. Since many of the antiviral signaling pathways are
initiated due to infection induced oxidative stress, it is imperative to
understand the mechanistic details of how host cells maintain the
redox balance. A clear understanding will allow to effectively
modulate the antiviral targets.

To date, there is no specific treatment strategy for curing
COVID-19, however, new research and developments have paved
pathways to select potent antiviral agents that can be used effectively
as therapeutics against COVID-19. From the previous findings, it
can be deduced that one of the best and most efficient cellular targets
for the management of SARS-CoV-2 infection and pathogenicity
could be the PI3K/Akt/Nrf2 signaling pathways. PI3K
(phosphatidylinositol 3-kinase) is a family of enzymes that are

involved in cell survival and intracellular trafficking. Nrf2
(nuclear factor erythroid 2–related factor 2) is a key transcription
factor that acts as a sensor of oxidative stress and an important
regulator of antioxidant defense mechanism via modulating the
transcription of more than 200 cytoprotective genes (Tebay et al.,
2015). Previous studies have shown that multiple viruses including
Herpes simplex virus, Porcine circovirus, Influenza A viruses,
vaccinia and cowpox viruses utilize the PI3K/Akt signalling
pathways for replication and establising successful infection
(Ehrhardt et al., 2007; Soares et al., 2009; Wei et al., 2012; Eaton
et al., 2014). Studies have also reported that the PI3K pathway is
activily involved in the endocytic uptake of influenza viruses (Ayllon
et al., 2012) and ebola viruses (Saeed et al., 2008) thus demonstrating
the extent of involvement of signalling pathways in viral infections.
PI3K/Akt pathway has been shown to play a critical role in
regulating SARS-CoV-2 entry (Shou et al., 2020) and evidence
from other studies further suggest that the PI3K/Akt signaling
pathway also inhibits NF-κB and subsequently reduces the
expression of inflammatory cytokines (Li et al., 2021). Nrf2 and
NF-κB has also been known to transcriptionally co-regulate the
response of cells to oxidative stress and inflammation via the PI3K/
Akt/Nrf2 signaling pathway (Lekshmi et al., 2019), thus making it a
crucial target to develop host directed antiviral strategies against
SARS-CoV2 and other related viruses.

A comprehensive analysis of all data suggests that PI3K/Akt/
Nrf2 signaling could be a powerful tool to manage SARS-CoV-
2 infection via antioxidant, anti-inflammatory, and lipid metabolism
regulation. In this review, possible cellular targets and molecular
mechanisms involved in SARS-CoV-2 infection, as well as
therapeutic approaches to treat its pathophysiological
complications, are discussed with special emphasis on PI3K/Akt/
Nrf2 pathway.

Viruses hijack PI3K/Akt/Nrf2 pathway for
survival

Several viruses exploit the host metabolic pathways in order to meet
their needs of survival. The phosphatidylinositol 3-kinases (PI3K)-Akt
pathway is one such signaling event that is central to metabolism and
other cellular functions as well as a common target of many viruses
(Cooray, 2004; Buchkovich et al., 2008; Diehl and Schaal, 2013).
Although the PI3Ks belong to a large family of lipid kinases
belonging to 3 classes: class 1 (1A and 1B), class II, and class III; the
PI3K-Akt pathway falls within the class 1A PI3Ks. The class 1A PI3Ks
get activated directly or indirectly via small GTPase RAS. The PI3K
activation further phosphorylates and activates its most prominent
effector Akt which then localizes to the plasma membrane. Viruses
have evolved to utilize this pathway for successful entry into target cells
or trafficking through the cytoplasm (Saeed et al., 2008; Feng et al., 2011;
Fujioka et al., 2011; Izmailyan et al., 2012).

Nrf2, nuclear factor (erythroid-derived 2) -like 2, is a
cytoprotective transcription factor belonging to the cap´n´collar
basic leucine zipper family that binds to antioxidant response
element (ARE) for regulating the transcription of genes encoding
proteins which maintain cellular redox homeostasis and metabolic
balance (Cuadrado et al., 2019). Under normal conditions, Nrf2 is
maintained in an inactive state in the cytosol by binding with KEAP
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1 (Kelch-like ECH-associated protein 1), an adaptor subunit of
Cullin 3-based E3 ubiquitin ligase which acts as a sensor of oxidative
stress. ROS, by modifying the specific cysteine residues, inactivates
KEAP1 and thereby releases Nrf2 into the nucleus to induce
transcription of Nrf2-responsive genes by binding with ARE.
This in turn activates ARE-dependent gene expression of a series
of cytoprotective and antioxidative proteins including heme
oxygenase-1 (HO-1), glutathione peroxidase 1, glutathionine
S-transferase (GST), glutathione reductase (GR), and superoxide
dismutase (SOD), catalase (CAT), NAD(P) H dehydrogenase,
quinone 1 (NQO1) and c-glutamylcysteine synthetase (Sun et al.,
2021a).

The pathophysiology of respiratory viral infections generally
involves a redox imbalance or oxidative stress that is associated with
the release of cytokines, inflammation and cell death. Studies have
shown crucial roles of overproduction of ROS in virus replication and
virus-associated diseases (Gu and Korteweg, 2007). Since excessive
oxidative stress can be detrimental to the host cells, several viruses
maintain an optimal level of oxidative stress, enough to support its
replication without killing cells, by manipulating the Nrf2 pathway.
When ROS are released upon viral infection, the host cells activate an
antioxidative defense mechanism, in which the Nrf2 pathway acts as a
first line of defense for cytoprotection and detoxification. Virus-induced
modulation of the host antioxidative response have been reported to be
an important factor in the progression of several viral diseases. Recently
several studies have also reported that groups of clinically relevant
viruses can regulate the Nrf2 pathway in both positive and negative
manner (Lee, 2018).

Human immunodeficiency virus type 1 (HIV-1), the etiological
agent of acquired immunodeficiency syndrome (AIDS) is also linked
with the development of neurocognitive disorders. The viral protein,
gp120 is known for its causative role in the HIV-1-associated
neurodegeneration through induction of oxidative stress. Based
on studies conducted in HIV infected astrocytes, the use of
Nrf2 activators was suggested as a promising approach to
enhance lung innate immunity in HIV patients (Reddy et al.,
2012). In 2012, Zhang et al., demonstrated that a major catechin
from tea, Epigallocatechin-3-O-gallate (EGCG), was able to improve
the cellular alterations induced by oxidative stress associated with
Tat-induced HIV-1 transactivation by regulating nuclear levels of
Nrf2 and NF-κB. The findings make the Nrf2 pathway the prime
therapeautic target (Zhang et al., 2012). Hepatitis C Virus (HCV),
responsible for chronic hepatitis, exerts differential effects on the
Nrf2 pathway depending on the cellular context and level of
oxidative stress. Numerous HCV proteins, including the core,
NS3, and NS5A, cause hepatocellular damage as a result of
oxidative stress. The production of ROS during HCV infection
promotes the phosphorylation and nuclear translocation of Nrf2,
which activates target genes such as HO-1 and glutamylcysteine
synthetase heavy subunit (γGCSH) (Carvajal-Yepes et al., 2011;
Ivanov et al., 2011). Numerous cellular kinases have been implicated
in the phosphorylation and activation of Nrf2, including PI3K-Akt,
JNK, ERK1/2, p38 MAPKs, and protein kinase C (PKC). In light of
these findings, activation of Nrf2 pathway was suggested as one
possible mechanism for HCV-infected cells to survive (Carvajal-
Yepes et al., 2011; Ivanov et al., 2011).

Similarly, influenza viruses induce infection mainly through
oxidative stress and respiratory inflammation. In addition,

influenza viruses have also been shown to stimulate apoptosis
and cytotoxicity in alveolar epithelial cells, as demonstrated by an
increase in caspase 1, caspase 3, and the proinflammatory cytokine
IL-8 via activation of Nrf2 pathway by facilitating nuclear
translocation of Nrf2 and subsequent expression of Nrf2-target
genes such as HO-1 (Kosmider et al., 2012). The suppression of
Nrf2 gene was also found to enhance the replication of influenza
virus which was reversed by the pharmacological induction of
Nrf2 via EGCG supplementation (Kesic et al., 2011). In a
proteomic analysis performed by Simon and colleagues, Nrf2 was
found to be negatively affected by influenza virus infection. Thus,
like HCV infection, influenza virus infection has also been found to
induce differential antioxidative responses depending on cellular
context (Simon et al., 2015). Likewise, positive or negative regulation
of Nrf2 via PI3K/Akt or other signaling pathways through
pharmacological modulators have shown to regulate the infection
of various viruses including RSV, HCV, HBV, Herpes, DENV and
Zika virus (Cho et al., 2009; Zhu et al., 2010; Schachtele et al., 2012;
Huang et al., 2017).

The respiratory syndrome caused by SARS-CoV-2 continues to
be a major healthcare concern around the globe because of no
specific treatment availability for COVID-19. Since the treatments
for COVID-19 are known to suppress the symptoms, modulating
signaling pathways via therapeutic targets could be important for
managing the disease severity. The PI3K/Akt signaling pathway has
been identified as a novel therapeutic target against SARS-COV-
2 infection due to its involvement in virus entry and host immune
response. ACE2 and CD147 are known to be the prime entry
receptors for SARS-COV-2 (Hoffmann et al., 2020; Wang et al.,
2020). The reduced cell surface expression of ACE2 during infection
results in angiotensin 2 accumulation, which upon binding to AT1R
(angiotensin 2 receptor type 1) activates the inflammatory pathway
via NF-κB signaling. Recent studies have demonstrated that
CD147 and furin, as well as clatherin-mediated endocytosis, also
induce P13K/Akt signaling (Khezri, 2021). A recent study has also
shown that SARS-CoV-2 S protein can modulate inflammatory
responses via the PI3K/Akt pathway to allow propagation of
virus at early stages of infection (Al-Qahtani et al., 2022).

Apart from being exploited by the viruses during their life cycle,
the PI3K/Akt pathway also serves to counteract viral invasion by
inducing phosphorylation of IFN regulatory factor 3 (IRF3) and type
I interferons (IFN-I) (Schabbauer et al., 2008; Joung et al., 2011).
Infection with many double/single stranded viruses also activate the
PI3K/Akt for TLR-mediated tyrosine phosphorylation and RIG-I
dependent activation of the IRF3 (Sarkar et al., 2004; Yeon et al.,
2015). A better understanding of how virus-induced lipid kinase
pathways and oxidative stress communicates with the host’s
antioxidative response, will provide insights into potential
antiviral therapeutics that can be discovered and developed for
efficient viral disease management.

Structure of SARS-CoV-2, its life cycle and
host cell invasion

Coronaviruses have a genome size of 27–32 kb, which is
generally larger than any other RNA viruses. SARS-CoV-2 has a
genome size of approximately 29.9 kb and codes for 4 structural
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proteins S (spike glycoprotein), N (nucleocapsid protein), M
(membrane protein), and E (Envelope protein), 16 non-structural
(Nsp1-16), and nine accessory proteins (Orf3a, Orf3b, Orf6, Orf7a,
Orf7b, Orf8, Orf9b, Orf9c, Orf10) (Gordon et al., 2020; Lu et al.,
2020; Mariano et al., 2020) (Figure 1).

The proteins S, M, and E make up the viral envelope. The
invasion of a host cell, the first step in SARS-CoV-2 infection, is
mediated by the transmembrane spike protein (180–200 kDa). This
allows SARS-CoV-2 virions to attach to the host cell membrane
receptors (ACE2) and invade those cells by subsequent fusion of
viral and host cell membranes or endocytosis.

The nucleocapsid protein N is recruited at the replication-
transcription complex by Nsp3 where it plays a multifaceted role
in the infection cycle of SARS-CoV-2. The N protein bind to and
package the viral RNA to form ribonucleoprotein (RNP) complexes
that locates in the internal face of the viral membrane as a separate
layer from the envelope proteins S, M and E (Chang et al., 2014). N
protein has two structured domains that allow it to carry out many
functions during the viral life cycle, such as virion assembly, RNA
replication/transcription, and immune system interference. Since
the domains of the N protein are separated by a long flexible linker, it
has a high degree of conformational freedom (McBride et al., 2014).

Similarly, the primary function of the membrane protein M,
which is embedded by three transmembrane helices, is to drive the
assembly of virions to the host cell and maintain other structural
proteins at the budding site, and recruit the same by promoting
membrane curvature (Neuman et al., 2011). Also, SARS-CoV-2-M
proteins are reported to have high pro-apoptotic properties and
induce apoptosis by disrupting the interaction of PDK1 (3-
phosphoinositide-dependent protein kinase 1) with cell-survival
protein PKB (protein kinase B)/Akt in cells expressing M-protein
(Tsoi et al., 2014). Like M protein, SARS-CoV-2 envelope protein E
also shows oligomerization properties. Coronavirus E protein has

only one transmembrane domain that can self-interact to form ion
channels and can also establish interactions with the nucleocapsid
protein N (Stertz et al., 2007). The M protein oligomerizes at the
membrane of the intermediary compartment of the endoplasmic
reticulum and Golgi. The interaction of the C-terminus of E with M
guides the recruitment of E and initiate virus budding into the host
cells (Pervushin et al., 2009; Schoeman and Fielding, 2019).

In response to the viral infection, a “cytokine storm” (also known as
hypercytokinemia) is triggered to induce further inflammatory changes
in the pneumocytes. Excessive inflammation and apoptosis ultimately
cause lung damage. The released viruses after cell apoptosis, further
infects the adjacent type 2 alveolar epithelial cells in the same manner,
resulting in acute respiratory distress syndrome (Jackson et al., 2022).
Even though respiratory epithelial cells are the prime target for SARS-
CoV-2, both direct and indirect cellular alterations due to virus
replication, host response, and the triggered inflammatory and
hypercoagulative consequences make the condition more lethal
(Bezerra et al., 2022). COVID-19 patients mainly exhibit the viral
nucleocapsid and spike proteins as main immunogens, and plasma or
serum quantitative measurements in SARS-CoV-2 patients showed the
N protein to be more sensitive to the adaptive immune response than
the spike protein. This makes it an excellent indicator of early disease
development (Burbelo et al., 2020).

SARS-CoV-2 infection and oxidative stress

Elevated ROS production and higher concentrations of oxidized
biomolecules have been reported in the alveolar epithelium and
endothelium of patients infected with viruses such as influenza
(Buffinton et al., 1992), rhinovirus (Martinez et al., 2016),
respiratory syncytial virus (RSV) (Biagioli et al., 1999), and many
other viruses, however different viruses are known to employ diverse

FIGURE 1
(A) SARS-CoV-2 genome (B) structure of SARS-CoV-2.
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molecular mechanisms to exhibit these cellular effects. While
maintaining a proper redox homeostasis is very important for the
regulated balance of viral-induced ROS-activated immune cell signal
transduction, its excessive production may further induce an
impaired immune response, inflammatory reactions,
mitochondrial dysfunction, and apoptosis impacting the disease
pathogenesis (Chernyak et al., 2020). Mitochondria is the major
producer of ROS (mtROS) in non-immune cells like endothelial cells
while NADPH oxidase (NOX) and xanthine oxidase are the major
sources of ROS in immune cells (Vorobjeva et al., 2017). Most
viruses induce oxidative stress in order to facilitate viral replication
in the host cell by activating innate immunity via NF-κB-dependent
cytokine production. RSV is also reported to induce ROS production
and cytokine burst in host cells. To control the ROS levels these
viruses are known to acquire the ability to manipulate
Nrf2 dependent antioxidant pathway in their favor. RSV
ameliorates glutathione (GSH) levels and increases lipid
peroxidation in type II epithelial cells of the airway and human
alveoli resulting in the downregulation of the Nrf2 pathway. This in
turn reduces the expression of Nrf2-dependent target genes;
superoxide dismutase (SOD), catalase (CAT), hemoxigenase 1
(HO-1/HMOX1), glutathione S-transferase (GST), and
glutathione peroxidase (GPx), and triggers interferon (IFN) and
Toll-like receptor (TLR) pathway to combat the virus infection
(Jamaluddin et al., 2009). The mechanism however, is different for
the influenza virus. The influenza virus induces oxidative stress but it
also favors translocation of Nrf2 and thereby activates the
antioxidant defense mechanism for its survival in the host cells
(Imai et al., 2008).

Oxidative stress is reported as the agent provocateur behind most
viral infections and thus the host cell signaling activation accompanied
by oxidative stress may have a profound impact on the pathogenesis of
COVID-19 and related disorders. A recent study found that the
activation of Nrf2/HMOX1 significantly suppressed SARS-CoV-
2 replication through production of the metabolite biliverdin in
different cell types. The same study also demonstrated that the virus
impaired the Nrf2/HMOX1 axis through its NSP14 which interacted
with the catalytic domain of the NAD-dependent deacetylase Sirtuin 1
(SIRT1) thereby inhibiting the Nfr2/HMOX1 pathway. While this
finding revealed the crucial role of a viral protein in dysregulating
the host antioxidant defense system, it further emphasized the
important role of SIRT1/Nrf2 pathway in the host cell for the
pathological management of SARS-CoV-2 infection via an
antioxidant defense mechanism (Zhang et al., 2022).

Similarly, the Nrf2-dependent antioxidant pathway have been
found to be suppressed in the biopsies of COVID-19 patients but
interestingly the Nrf2 agonists like dimethyl fumarate (DMF) and 4-
ocy-itaconate (4-OI) were reported to induce cellular antiviral
effects that could inhibit the replication of SARS-CoV-2 by
suppressing the pro-inflammatory response of the SARS-CoV-2
(Olagnier et al., 2020). Nrf2 has also been reported as an
important transcriptional repressor of the inflammatory genes in
macrophages by blocking the transcription of proinflammatory
cytokines, most notably interleukin1β (IL-1β) (Hayes and
Dinkova-Kostova, 2014).

The main protease (Mpro) in SARS-CoV-2 responsible for viral
polyprotein processing is called 3C-like protease (3CLpro) or 3-
chymotrypsin-like-proteases, a highly conserved protease among

coronaviruses. It is a cysteine protease that corresponds to Nsp5 of
coronavirus and acts as a potential drug target for antiviral therapy
against the coronavirus. Several protease covalent inhibitors
targeting 3CLpro like CLpro-1, GC376, rupintrivir (formerly
AG7088), lufotrelvir (PF-07304814) have already been discovered
by structural-based drug designs which are advantageous with low
minimum side effects and maximum therapeutic efficacy. Of these,
the prodrug PF-07304814 (lufotrelvir) entered clinical trials in
September 2020 (Owen et al., 2021). As the Nrf2 pathway plays a
significant role in the pathophysiology of both host cells and viruses,
Nrf2 modulators have been recommended as promising
supplements for the treatment of viral infections by reducing the
effects of virus-induced oxidative stress. In 2021, Qi Sun and co-
workers discovered oleanolic acid-derived semi-synthetic
triterpenoids like bardoxolone and bardoxolone methyl
compounds with electrophilic moieties as 3CL pro inhibitors that
may covalently bind to the active site cysteine of SARS-CoV-2
3CLpro. These compounds were identified as Nrf2 activators that
can inhibit the NF-κB pathway promoting resolution of
inflammation, inhibiting viral replication, and thereby facilitating
cytoprotection and tissue repair (Kobayashi et al., 2016). Using a
murine model of infection and airway epithelial cells, Qu et al.
demonstrated that SARS-CoV-2 can alter cellular redox balance and
inhibit Nrf2-mediated antioxidant responses. Infection with SARS-
CoV2 downregulated Nrf2 protein levels and Nrf2-dependent gene
expression, resulting in increased inflammation and disease
progression. In addition, mice lacking the Nrf2 gene exhibited
worse clinical signs, had increased inflammation, and showed a
tendency toward higher lung viral titers, demonstrating that
Nrf2 has a protective role during SARS-CoV-2 infection. The
results of this study provided a mechanistic explanation for the
oxidative unbalance associated with SARS-CoV-2 infection,
suggesting that activating Nrf2 by pharmacological agents could
be a therapeutic strategy for COVID-19 (Qu et al., 2023). Similar
observations have been reported for other viruses. In 2006, Jiang
et al. discovered that α-Luminol (monosodium 5-amino-2-3-
dihydro-1-4-phthalazine dione), an anti-inflammatory drug
extensively used by Russian scientists, was able to suppress
oxidative stress induced by the infection of temperature sensitive
mutant virus Moloney murine leukemia virus (MoMuLV ts-1)
(Jiang et al., 2006). In COVID-19 patients, in addition to viral
propagation, the inflammatory response of host cells is also
important in determining the disease outcome and fatality. In
most viral infections the lethality is found to be associated with
the inflammatory response orchestrated by the host immune system
through cytokine storm rather than the cytolytic action of the
pathogen (Fung et al., 2020; Guan et al., 2020). For the
comprehensive management of SARS-CoV-2, it is always advised
to introduce an anti-inflammatory and antioxidant therapy to
complement an antiviral therapy to control inflammation without
altering the host cell’s adaptive immunity against the infected virus.

Role of PI3K/Akt/Nrf2 pathway in SARS-
CoV-2 infection induced inflammation

Cellular homeostasis and responses to stress and inflammation
are regulated by Nrf2 through NF-ĸB-dependent pathways. There is
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compelling evidence that Nrf2 is capable of counteracting NF-ĸB-
driven inflammation in many experimental models (Tu et al., 2019).
The SARS-CoV-2 infection has similar pathophysiology to SARS-

CoV and MERS-CoV infections, with aggressive inflammatory
responses strongly implicated in the damage to the lungs.
COVID-19 is a multifactorial and complex disease that primarily

FIGURE 2
Graphical abstract showing the significance of P13K/Akt/Nrf2 signaling pathway for themanagement of SARS- CoV- 2 infection via modulating host
cell inflammatory responses, antioxidant mechanism and lipidmetabolism. 1–9: SARS-CoV-2 enters a target cell by either fusion or endocytosis followed
by release of genetic material. Then subsequent events of translation and genome replication occurs leading to the final assembly and egress of virions to
infect neighboring cells. (A) The released viral particles are recognized by APC of macrophages leading to host inflammatory response via “cytokine
storm” that can be downregulated by PI3K/Akt/Nrf2 activators. (B) PI3K/Akt/Nrf2 activators can also downregulate ROS-induced oxidative stress
produced by SARS-CoV-2 via antioxidant mechanismmediated by the enzymes HO1, SOD, CAT, GSH. (C) Lipid droplets can be downregulated via PI3K/
Akt/Nrf2 pathway activators by beta oxidation and through the modification of PPARα/AMPK/SIRT1 signaling pathway. ACE2: angiotensin converting
enzyme-2, TMPRSS2: Transmembrane serine protease 2, Nsps: non-structural proteins, ERGIC: ER-Golgi intermediate compartment, APC: antigen
presenting cells, PI3K: phosphoinositide 3-kinase, Akt: serine/threonine-specific protein kinase B, Nrf2: nuclear factor erythroid 2–related factor 2,
PPARα: Peroxisome proliferator-activated receptor, AMPK: AMP-activated protein kinase, SIRT1:Sirtuin, HO1: Heme Oxygenase-1, SOD: Superoxide
dismutase, CAT: Catalase, GSH: Glutathione.
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targets the airway epithelial cells of the respiratory tract, which is
characterized by diffused alveolar edema in the lungs, infiltrations of
inflammatory cells, epithelial dysfunction, and thrombosis (Song
et al., 2020; Bridges et al., 2022).

Hepatocytes, monocytes, and other endothelial cells are also
found to be susceptible to SARS-CoV-2 infection, and evidence
suggests that virus-induced hyperinflammation can be triggered by
virus-mediated intracellular sensing pathways in cellular targets
(Figure 2). Similar to several other viral infections, the alveolar
epithelial cells and macrophages recognize pathogen-associated
molecular patterns (PAMPs), such as viral RNA, and damage-
associated molecular patterns (DAMPs), such as ATP, DNA, and
ASC oligomers, using a variety of pattern-recognition receptors
(PRRs) during SARS-CoV-2 infection (Huang et al., 2020; Asha
et al., 2021). These activated monocytes and polymorphonuclear
cells infiltrate into the target cells and cause the release of
proinflammatory cytokines and chemokines, like TNF-α, IL-1β,
IL-6, CCl2, MCP1 and IP 10 upon interaction of viral particles
with antigen-presenting cells (APCs). The release of these indicators
of T helper 1 (TH1) cell-polarized response results in severe lung
damage and multi-organ dysfunction. IL-1β is known to induce
pyroptosis and is also found to be elevated during SARS-CoV-
2 infection (Tang et al., 2021). These data strongly suggest that a
COVID-19 patient’s disease severity is not only influenced by the
virus but also by the host’s immune response.

SARS-CoV-2 infection has been reported to initiate cell death by
both apoptosis and necroptosis pathways. In a SARS-CoV-2-
infected HFH4-hACE2 (Hepatocyte nuclear factor-3/forkhead
homolog 4-human Angiotensin-converting enzyme 2) transgenic
mouse model and in the postmortem lung sections of deceased
COVID-19 patients, SARS-CoV-2 infection was found to activate
caspase-8 to trigger cell apoptosis and inflammatory cytokine
processing in the lung epithelial cells. The study further revealed
massive inflammatory cell infiltration and pulmonary interstitial
fibrosis, typical of immune pathogenesis as the reason of excessive
lung damage in those diseased patients (Li et al., 2020). Such findings
may assist in the development of specific therapeutic strategies to
treat COVID-19.

ACE2-associated lung injury has also been suggested by both
SARS-CoV infection and inflammatory cytokines such as IL-1β and
TNF-α through enhancement of ACE2 shedding (Haga et al., 2008).
In a study on SARS-CoV and human coronavirus NL63 infection,
the spike protein was found to modulate ACE2 (Haga et al., 2008;
Glowacka et al., 2010). The loss of pulmonary ACE2 function occurs
as a result of the loss of catalytically active ACE2 ectodomains.

Ultimately, this resulted in acute lung injury by disrupting the
renin-angiotensin system and enhancing inflammation and vascular
permeability. The action of disintegrin and metalloprotease 17
(ADAM17, also known as TNF-α cleavage enzyme, TACE)
constitutively sheds ACE2 to release enzymatically active soluble
ACE2 (sACE2). Since SARS-CoV S protein-induced ACE2 shedding
is tightly coupled with TNF-α production in cell culture conditions,
it is possible that sACE2 plays a role in the inflammatory response to
SARS-CoV and possibly SARS-CoV-2 as well (Haga et al., 2008; Fu
et al., 2020). Angiotensin II (Ang II) is a vasoconstrictor that
produces oxidative stress via ROS production and elevated blood
pressure. In general ACE converts Ang I to Ang II which in turn is
converted into Ang by ACE2. Ang remains bound to MAS receptor,

a G protein-coupled receptor for Ang, in various tissues including
the heart, brain, kidney, etc. To protect against aneurysms by
activating PI3K/Akt/Nrf2 pathway (Shimada et al., 2015; Kamel
et al., 2018). A recent study identified 34 compounds with anti-
SARS-CoV-2 activity that targeted the mTOR/P13K/Akt pathway
and DNA-damage response signaling pathways to block SARS-CoV,
MERS-CoV and SARS-CoV-2 infection (Garcia et al., 2021). The
kinase inhibitor berzosertib also blocked the SARS-CoV-2 at post
entry levels in target epithelial cells (Garcia et al., 2021).

Previous studies have demonstrated the crucial role of ACE2/
Ang/MAS axis in activating the Akt signaling to manage oxidative
stress, inflammation, and hepatic steatosis (Cao et al., 2016) and that
Akt inhibitors significantly reduce the ACE2 mediated lipid
metabolism, thereby providing insights to manage the SARS-
CoV-2 infection-induced metabolic changes in host cells (Cao
et al., 2016).

Uncontrolled inflammatory responses known as the cytokine
storms have been reported previously in case of SARS-CoV and
MERS-CoV infections giving rise to heightened immune response
leading to overproduction of proinflammatory cytokines such as the
IL-6, TNF-α and IL-1β (Teijaro, 2017). SARS-CoV2 infection is also
known to active immune response, more specifically in older adults
or those with comorbidity, to a level that can give rise to
uncontrolled inflammatory responses (Nile et al., 2020). It is very
crucial to control excessive inflammation in COVID-19 patients
with severe disease at right time, in absence of which, the condition
quickly deteriorates leading to acute respiratory failure, cardiac
damage or multi-organ failure (Costela-Ruiz et al., 2020).
Naturally occurring phytochemicals, since decades, have been in
use as therapeutics to manage diseases with minimal or no side
effects. Flavonoids are secondary plant metabolites that have been
shown to have anti-viral, anti-inflammatory and
immunomodulatory activities (Chen et al., 2018; Hosseinzade
et al., 2019; Liskova et al., 2020; Badshah et al., 2021). For
example, Smilax campestris aqueous extract, containing the
catechin and derivatives of quercetin, has been shown to reduce
the production of proinflammatory cytokines such as the TNF-α, IL-
1β, IL-6, IL-8, and MCP-1 in lipopolysaccharide-activated
macrophages derived from THP-1 cells (Salaverry et al., 2020).
Hesperetin and chrysin have been shown to have
immunomodulatory potential in physiological and pathological
conditions through the cellular as well as humoral responses
(Sassi et al., 2017). Similarly, many flavonoids have also been
demonstrated to exert immunomodulatory activities against
human coronaviruses and in silico studies have further provided
evidence that these flavonoids have potential to bind to
ACE2 protein and ultimately inhibit the production of
proinflammatory cytokines (Ngwa et al., 2020) thus making them
an attractive therapeutic agent. Likewise, rhamnocitrin, a flavonoid
extracted from Nervilia fordii, has shown its potential to inhibit the
endothelial activation (via miR-185/STIM-1/SOCE/NFATc3) which
is responsible for excessive cytokine production. Since a similar
endothelial activation in case of SARS-CoV or COVID-19 have also
been documented, rhamnocitrin may serve as potential modulator
of the cytokine storm and effective management of COVID-19 (Lin
et al., 2020).

Recent reports suggest the direct or indirect role of the PI3K/Akt
signaling pathway in SARS-CoV, MERS-CoV and SARS-CoV-
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2 infection (Mizutani et al., 2005; Kindrachuk et al., 2015; Sun et al.,
2021b). This signaling pathway has also shown to be the target of
some flavonoids such as the quercetin, hesperidin, acacetin,
geninstein, silibinin and delphinidin among many others
(reviewed in (Zughaibi et al., 2021)) wherein they inhibit the
deregulated signaling significantly in different types of cancer.

NLRP3 inflammasome has also been shown to be regulated by
PI3K/Akt signaling in atherosclerosis and inhibitors of PI3K
(GDC0941) and Akt (MK2206) significantly reduced the activation
of NLRP3 and expression levels of p-p65/p65. The inhibitors further
reduced the mitochondrial ROS in THP-1 cells and mice model (Liu
et al., 2021). Since NLRP3 inflammasome is also reported to be
activated by SARS-CoV-2, it’s imperative to understand the
management of virus induced ROS and inflammatory response by
modulating the PI3k/Akt signaling pathways using the anti-
inflammatory and immunomodulatory properties of flavonoids.
These natural products might be very helpful in minimizing the
SARS-CoV-2 complications by regulating inflammatory mediators
and endothelial activation by toll-like receptors (TLRs),
NLRP3 inflammasome, Nrf2, bromodomain-containing protein 4
(BRD4), or 3CL pro (Liskova et al., 2021).

COVID-19 disease severity has also been correlated with
TLR2 and MYD88 expressions, and it has been observed that
TLR2 senses the SARS-CoV-2 envelope protein to produce
inflammatory cytokines. MyD88, the adaptor protein for
TLRs, leads to the activation of NF-ĸB and MAPKs for the
production of proinflammatory cytokines. As a result of
TLR2 and Myd88 activation, during coronavirus infection,
TLR2-dependent signaling leads to the production of
proinflammatory cytokines independent of viral entry. In
healthy tissues, the TLR-mediated signaling leads to the
activation of the PI3K/Akt/Nrf2 pathway for the positive
regulation of cell growth (Laird et al., 2009; Zheng et al.,
2021). In light of these data, better therapeutic strategies to
counter the ongoing COVID-19 pandemic could be developed
and effectively manage disease burden.

SARS-CoV-2 infection and host lipid
metabolism

Lipids are one of the fundamental components of a cell that
make up the structural building blocks. As a signaling and energy
storage molecule, it has a wide range of biological functions. Lipid
plays a crucial role in the viral life cycle. The enveloped viruses, like
SARS-CoV-2, are surrounded by a lipid bilayer and each step of the
viral infection such as fusion of membrane to host cell, endocytosis,
viral replication, maturation, and exocytosis utilizes host lipid
metabolism (Abu-Farha et al., 2020). The coronaviruses create
double-membrane vesicles (DMVs), a membranous structure
consisting of viral proteins and some host factor, for viral
genome amplification after seizing the intracellular membrane of
host cells. Such a lipid micro-environment that contains specific
phospholipid composition is ideal for viral replication. Recent
studies have shown that an important lipid processing enzyme
belonging to the phospholipase A2 superfamily, cytosolic
phospholipase A2 enzyme (cPLA2) is crucial for DMV formation
and viral replication (Muller et al., 2018).

Fatty acids and cholesterol are the inevitable components of viral
replication as they constitute the major component of the viral
membrane. Therefore, Acetyl-CoA carboxylase (ACC), fatty acid
synthase (FASN), and 3-hydroxy-3-methyl-glutaryl-CoA reductase
(HMG-CoA reductase, the major modulators of lipid metabolism,
can act as possible antiviral targets against SARS-CoV2 infection
(Heaton and Randall, 2011). The recent studies on HIV infection
(Kulkarni et al., 2017), hepatitis C virus (HCV) infection (Yang et al.,
2008), and Epstein–Barr virus (EBV) lytic and latent infection (Li
et al., 2004) confirmed this hypothesis. An increase in the
intracellular level of FAS was observed in all these conditions
and it was also evident that FAS inhibition impaired the
replication of the respiratory syncytial virus (RSV) and other
respiratory viruses (Ohol et al., 2015). These findings make this
enzyme a novel host-dependent antiviral target. The intracellular
levels of fatty acids and cholesterol are regulated by a feedback
mechanism mediated by SREBPs (Sterol regulatory element binding
proteins), which are bound to the endoplasmic reticulummembrane
as inactive precursors. When the cells are deprived of cholesterol,
SREBPs are proteolytically cleaved and the active SREBPmigrates to
the nucleus for the transcriptional regulation of genes responsible
for lipid metabolism. This can also be a potential candidate related to
lipid metabolism-related antiviral approaches, that can also be
modulated by the PI3K/Akt/Nrf2 pathway (Ye and DeBose-Boyd,
2011).

The major cellular receptors of SARS-CoV-2, ACE2 may be
expressed in cholesterol-rich domains of lipid bilayer known as lipid
rafts that serve as an entry port for certain viruses especially
enveloped viruses. An experiment conducted in Vero E6 cells
revealed that integrity of lipid rafts was required for productive
infection of severe acute respiratory syndrome coronavirus (SARS-
CoV) (Lu et al., 2008). The role of peroxisome proliferator-activated
receptors (PPARs), belonging to the nuclear receptor superfamily, as
an antiviral candidate is a recent matter of investigation during the
COVID-19 pandemic. There are mainly 3 subtypes of PPAR
receptors: PPARα, PPARγ, and PPARβ/δ that play well-
established roles in cellular differentiation, proliferation, energetic
homeostasis, glucose, and lipid metabolism. Several in vitro and in
vivo studies revealed that the stimulation of PPAR by natural or
synthetic agonists like curcumin, capsaicin, and eicosapentaenoic
acid could prevent cytokine overproduction and the inflammatory
cascade associated with virus infections (Ciavarella et al., 2020;
Fantacuzzi et al., 2022). Pioglitazone, a PPAR agonist, is also
proposed as an effective treatment in COVID-19 people affected
by type 2 diabetes, cardiovascular complications, and hypertension
by reducing inflammatory parameters and also by inhibiting 3CLpro
thereby downregulating SARS-CoV-2 RNA synthesis and
replication (Carboni et al., 2020). There is evidence that the
PPARα/γ-adenosine 5′-monophosphate- (AMP-) activated
protein kinase- (AMPK-) sirtuin-1 (SIRT1) pathway and fatty
acid metabolism may be involved in influenza A virus (IAV)
replication and pneumonia caused by IAV (Bei et al., 2021).
These all synergistically work together to inhibit NF-κB signaling
and suppress inflammation. Furthermore, Nrf2 and antioxidant
response element (ARE) pathways also interact mutually with,
PPARα/γ-AMPK to inhibit inflammation, constituting a positive
feedback loop (Kauppinen et al., 2013). In adipose tissue, Gamma-
oryzanol, the principal bioactive constituent of ice bran, reduced the
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levels of TNF-α, interleukin-6 (IL-6), and monocyte chemoattractant
protein-1 (MCP-1) (Francisqueti-Ferron et al., 2021). Due to its potent
and multi-PPAR activity, astaxanthin has been investigated as a
therapeutic strategy to regulate inflammatory and immune
responses, contrast cytokine storms, and prevent inflammatory
effects following COVID-19 (Talukdar et al., 2020).

PI3K/Akt pathway is also known to play a significant role in host
lipid biogenesis as revealed by the study on goose hepatocyte where
researchers observed that inhibition of the PI3K-Akt-mTOR
pathway drastically reduced the lipids accumulation in
hepatocytes (Liu et al., 2016) s.

These alternative approaches that are under development, when
backed up by clinical trials, can potentially be promising tools for
reducing the pathophysiological complications of SARS-COV-2
infections.

Conclusion and future perspectives

Despite the widespread use of vaccines, the transmission of
SARS-CoV-2 infection is on the rise, which enables new variants to
emerge frequently. As a consequence of this unprecedented threat in
the 21st century, to alleviate case fatality and patients’ symptoms,
therapeutic interventions are urgently needed to compliment
currently available vaccines. It is still required to conduct studies
to develop a universal vaccine against COVID-19, which can
neutralize all variants of SARS-CoV-2. Viruses and hosts have a
strict interplay that can be destructed through metabolic disruption,
which is an attractive novel strategy to combat viral infections. In
this regard, broad spectrum antiviral compounds that target PI3K/
Akt/Nrf2 signaling pathways to offer host-mediated antiviral
responses in every manner, may be considered as the best drug
candidates for the future management of COVID-19 and related
post-COVID syndromes. Several FDA-approved inhibitors
targetting PI3K and Akt are in use in clinical settings (Basile
et al., 2022). While most of the inhibitors of PI3K are used to
treat some forms of cancer, its utility in viral infections have not been
reported adequately. Similarly the Akt inhibitor (Miltefosine) have
been in use for Visceral and cutaneous leishmaniasis (Sundar and
Olliaro, 2007), however the role in viral infections are still limited to
research settings (Sharma et al., 2018). The processes of oxidative
stress, inflammation, and changes in lipid metabolism are
interconnected and all contribute to both SARS-CoV-2 infection
and post-COVID-19 complications. According to the World Health
Organization, many patients are experiencing short-to long-term
post-COVID-19 sequelae such as cardiovascular, neurological,
nephrological, gastro-intestinal, and even psychological effects. A
major cause of mortality was reported to be thromboembolism, the
cumulative risk product of all the above discussed
pathophysiological conditions. PI3K/Akt pathway is known to be
an important regulator of coagulation pathways and hence a key

player in disease modulation (Shan et al., 2019). Another critical area
of concern is the ‘postural orthostatic tachycardia syndrome’
(POTS) occurring after SARS-CoV-2 infection or COVID-19
vaccination. POTS is a condition in which there is an increase in
heart rate of at least 30 beats per minute within 10 min of standing.
SARS-CoV-2 infected people and those who have been vaccinated
against COVID-19 have had an increased risk of cardiovascular
diseases (CVDs), but it is unclear if this is due to the virus infection
or the vaccination (Blitshteyn and Fedorowski, 2022). The situation
is unfortunate as there is no complete cure. However, the overall
immunity can be strengthened in order to compete with viral
infections. Reports indicate that the best natural immunity
boosters are functional foods that offer health benefits beyond
their nutritional values. Incorporating functional food ingredients
in diet can activate cell survival pathways like PI3K/Akt/Nrf2, that
can reduce long-term health risks associated with COVID-19.

Overall, in this review article, we propose potential anti-
inflammatory and antioxidant therapies that can also regulate
lipid metabolism by targeting transcription factor Nrf2 via the
PI3K/Akt signaling pathway. Combined, the research discussed in
this article strongly suggests that activating Nrf2 could be a
promising strategy for combating COVID-19. Further
investigations along this line are needed to develop efficient
counteracting strategies to ameliorate disease severity and
improve treatment outcomes, especially for patients with
underlying complications.
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