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While proteins populating their native conformations constitute the functional
entities of cells, protein aggregates are traditionally associated with cellular
dysfunction, stress and disease. During recent years, it has become clear that
large aggregate-like protein condensates formed via liquid-liquid phase
separation age into more solid aggregate-like particles that harbor misfolded
proteins and are decorated by protein quality control factors. The constituent
proteins of the condensates/aggregates are disentangled by protein
disaggregation systems mainly based on Hsp70 and AAA ATPase
Hsp100 chaperones prior to their handover to refolding and degradation
systems. Here, we discuss the functional roles that condensate formation/
aggregation and disaggregation play in protein quality control to maintain
proteostasis and why it matters for understanding health and disease.
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1 Introduction

The cellular proteome encompasses proteins that populate a plethora of conformations,
from stably folded proteins to those without fixed tertiary structures, consisting completely
of intrinsically-disordered regions (IDRs). For example, in human cells the majority of
proteins carry both folded domains and IDRs, while 37% of the proteome is fully folded and
only 5% of the proteins occupy entirely disordered conformations (Tsang et al., 2020). The
conformational complexity is increased by the occurrence of higher-oligomeric protein
assemblies that are formed by both stochastic interactions as well as by direct interactions
regulated by internal and external cues. These assemblies may form by liquid-liquid phase
separation (LLPS) and it is now established that such biomolecular condensates have
functional roles (Banani et al., 2017). In contrast, protein aggregates traditionally have
been viewed as disordered structures, spontaneously formed by misfolded proteins (Wang
and Roberts, 2018). While biomolecular condensates are essential for cellular regulation, the
occurrence of protein aggregates is generally a sign of a structurally compromised proteome,
and typically associated with cellular stress (Figure 1A). However, it is nearly impossible to
strictly categorize LLPS and protein aggregation as fully separate processes (Lee et al., 2016;
Boeynaems et al., 2017). Furthermore, protein aggregation as well as LLPS are accelerated by
stress indicating that the processes are closely linked and involved in management of an
overloaded protein quality control (PQC) system.

Cellular protein homeostasis (proteostasis) is constantly challenged by the flow of
unfolded proteins produced by protein biosynthesis as well as from protein misfolding
caused by stochastic errors in gene expression and damage from proteotoxic stressors
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including but not limited to heat, oxidants andmetabolic imbalances
(Figure 1B) (Zakariya et al., 2022). Chaperones are in place to assist
on-pathway protein folding and thereby to suppress the buildup of
aberrant misfolded proteins (Balchin et al., 2020). Here, the class of
chaperones belonging to heat shock proteins (Hsps) of the
Hsp70 family has a key function. Hsp70s are found across all
kingdoms of life and operate in nearly all organelles in
eukaryotic cells. Details on their ATPase-driven mode of action
is extensively described in recent reviews (Rosenzweig et al., 2019;
Kohler and Andréasson, 2020). Stress damage may overwhelm the
chaperone folding machinery causing proteotoxic misfolded
proteins to assemble into higher-oligomeric states, including
aggregates (Mogk et al., 2018). Thus, cells sequester these
potentially toxic protein species into quality control
compartments by utilizing small heat shock proteins that act as
aggregation-promoting factors (aggregases) and thus protect the
proteome from aberrant interactions (Haslbeck et al., 2019). During
recovery from stress, disaggregation machineries promote the
disentanglement of the aggregates and lead to recovery of the
constituent proteins (Mogk et al., 2018; Nillegoda et al., 2018).
Metazoan cells differ drastically from plant, fungi and bacteria in
respect to their disaggregation machinery, which will be explained in
greater details in later sections. Once aggregated proteins are
disentangled, their refolding is considered to be the preferred
pathway, yet alternative pathways involve complete removal from
the cell by degradation (Wallace et al., 2015; Määttä et al., 2020). The
Hsp70 chaperone network aids both the refolding and targeting to
the two major proteolytic systems, the ubiquitin-proteasome system
(UPS) and the lysosomal/vacuolar system via autophagy (Figure 1B)
(Wallace et al., 2015; Määttä et al., 2020).

In this review, we aim to give an overview on higher-order
assembly processes and their interplay. We will discuss the cellular
and organismal consequences of disturbances of these intricately
balanced systems in response to internal and external cues. A main
focus is on the cellular strategies that regulate these processes in
metazoan and model organisms, with a special emphasis on
disaggregation, a process that determines partitioning between
refolding and degradation faiths.

2 Similarities and differences of
biomolecular condensates and
aggregates

Aiming for a simplified definition, generally accepted features
applicable for most biomolecular condensates generated by LLPS
include the reversibility of the dynamic phase-separated assemblies
at distinct stages and the fact that their protein constituents generally
maintain their tertiary structures (Figure 2A) (Alberti and Hyman,
2021; Mehta and Zhang, 2022). On the other hand, aggregated
proteins occupy aberrant folds and strictly require the assistance
from PQC factors for disentanglement and re-folding (Figure 2B)
(Zhao et al., 2020). However, phase-separated assemblies precede
aggregate formation and some condensates also require assistance
for reversal under specific circumstances, this includes condensate
hardening (Lee et al., 2016; Boeynaems et al., 2017), which will be
discussed in later sections.

2.1 Phase separation enables dynamic and
efficient regulation

Biomolecular condensates or liquid droplets are dynamic and
reversible assemblies of molecules that can be dissolved and reused
immediately. They assemble via LLPS and the molecules are
concentrated in a liquid-like compartment that persist in the
surrounding milieu (Brangwynne et al., 2011; Brangwynne et al.,
2009; Li et al., 2012; Aggarwal et al., 2013; Feric and Brangwynne,
2013; Wippich et al., 2013). LLPS spatially restricts movement of the
molecules without fully trapping them and thus enables controlled
recruitment and release kinetics (Zhao et al., 2020).

Their biogenesis and structural integrity is exclusively based on
protein-protein or protein-nucleic acid interactions and
components of these membrane-less compartments connect and
readily exchange with the external environment (Phair and Misteli,
2000). LLPS is driven by the minimization of global free energy, by
maximizing weak inter- and intramolecular interactions between
constituting macromolecules. This process only occurs at a certain

FIGURE 1
Influence of proteostatic stress on cellular fitness. (A) Upon increase of proteotoxic stress, cells activate stress response regimes, ensuring on
keeping cellular processes functional. Overburden results in the collapse of the proteostasis system and occurrence of aggregates, leading to drastically
decreased cellular healthspan. (B) Strategies of the cellular protein quality control system to counteract proteotoxic stress, end in the triage decision
between refolding and degradation. Please see main text for details.
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solubility limit with a saturation concentration, which is
characteristic for each phase-separating system (Alberti and
Hyman, 2021). Whether the system undergoes LLPS not only
depends on the molecular identity and solution concentration of
the constituents and their post-translational modifications but also
on the temperature as well as pH and concentrations of salt, ions, co-
solutes, and small metabolites like ATP. RNAs are further key
components driving the formation of biomolecular condensates
and determine their composition and specificity (Brangwynne
et al., 2009; Wolf et al., 2014; Munder et al., 2016; Patel et al.,
2017; Hayes et al., 2018; Snead et al., 2019; Adame-Arana et al.,
2020).

Condensates are generally composed of scaffolds and client
proteins, the first harboring a high number of valences, acting as
drivers of LLPS and also playing an essential role in the threshold
concentration (Banani et al., 2016). Scaffolds are usually large,
abundant proteins without enzymatic activity and condensate
assembly depends on their ability to form a dense network of
intermolecular interactions (Li et al., 2012). Key for the network
are interactions provided by IDRs, which are low-complexity
domains with biased amino acid compositions (Molliex et al.,
2015; Nott et al., 2015; Patel et al., 2015; Wang et al., 2018).
Client proteins have a lower interaction valence and are recruited
to condensates formed by the scaffold factors. (Burke et al., 2015;
Saha et al., 2016; Franzmann et al., 2018; Murthy et al., 2019;
Guillén-Boixet et al., 2020). During LLPS, proteins typically do
not undergo extensive structural changes and remain mostly
disordered, as observed with NMR (Figure 2A) (Phair and
Misteli, 2000).

Due to the lack of membranes, formation and disassembly of
condensates via LLPS has the potential to respond rapidly to minor
changes in the environment (Lin et al., 2015; Molliex et al., 2015;
Nott et al., 2015). Their dynamic nature makes biomolecular
condensates ideal compartments as biological reaction centers,

signaling hubs and for organizing and regulating key biological
processes such as splicing, translation, transcription and
chromosome condensation (Su et al., 2016; Gueroussov et al.,
2017; Tsang et al., 2019). The reported functions of
biomolecular condensates include enhancement or suppression
of biochemical reactions, buffering protein concentrations,
detecting environmental changes and exertion of mechanical
forces (Riback et al., 2017; Franzmann et al., 2018; Shin et al.,
2018; Klosin et al., 2020). Biomolecular condensates are
abundantly present in the cytoplasm, the nucleus, the
mitochondrial matrix, the stroma of chloroplasts and the
cytosol of bacteria (Zaslavsky and Uversky, 2018). Some
structures are common to all cells, like nuclear speckles,
paraspeckles and nucleoli, all found in the cellular nucleus, as
well as cytoplasmic P-bodies and stress granules (Frottin et al.,
2019; Ilık and Aktaş, 2022; Kedersha et al., 1999; Riggs et al., 2020;
Sheth and Parker, 2003; Xing et al., n.d.).

Eukaryotic cells exposed to proteotoxic stressors require
mechanisms that guarantee the integrity of the proteome until
normal growth conditions are restored. Here, LLPS and
molecular condensates play a central role. Key steps include
global inhibition of protein synthesis and the selective
upregulation of expression of stress response factors (Dever et al.,
1992; Brostrom et al., 1996; Harding et al., 2003; Lu et al., 2004). The
inhibition of translation and the subsequent rise of ribosome-free
RNA in the cytosol is mainly regulated by stress-induced
phosphorylation and inactivation of the translation initiation
factor eIF2α. The released RNA and eIF2α are sequestered in
stress granules via LLPS. When the stress is relieved, the stress
granules shrink, eIF2α is dephosphorylated and mRNA translation
is resumed. The coordinated reactivation of these abundant protein
synthesis components is required for adaptive gene expression that
trails minutes to a few hours behind the removal of the stress (Jousse
et al., 2003; Wheeler et al., 2016).

FIGURE 2
Simplified overview on phase separation and aggregation. (A) Upon presence of scaffold proteins with potent liquid-liquid phase separation (LLPS)-
enabling features, de-mixing of a protein solution can take place, eventuation in liquid-like condensates, consisting of both scaffold (dark blue) and client
(light blue) proteins. Ageing processes result in solid-like condensates that no longer support dynamic exchange of constituents with the surrounding
milieu. Please note that also chaperones and protein quality control factors are involved in these processes. (B) Unfolded resp. partially unfolded
protein species can adopt different aggregate forms. Depending on the intrinsic nature, amorphous as well as amyloid aggregates can occur, with a
limited potential for recovery. Small heats hock proteins (sHsps) are responsible for targeted and regulated sequestration and alleviate subsequent
recovery/refolding.
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2.2 Protein aggregation is a protective
response to an overwhelmed proteostasis
system

Protein aggregation is the association of misfolded proteins in
higher-order assemblies, usually formed in cells with severely
perturbed proteostasis, where the build-up of proteins with
aberrant conformations exceeds PQC capacity. Aggregates consist
of proteins at least in part in non-native states and involve stable
intramolecular molecular interactions (Figure 2B). These non-native
conformations are often toxic to a cell and are usually recognized by
the cellular PQC system (Emma Mee Hayes et al., 2022). Practically
all protein species are susceptible to aggregation, yet in the cell the
process appears to affect proteins differentially. Proteins especially
susceptible to aggregation were found to be large, have a high
isoelectric point, disordered regions and hydrophilic amino acids
(Kramer et al., 2012; Walther et al., 2015; Hosp et al., 2017; Uemura
et al., 2018; Määttä et al., 2020).

Aggregates can be grouped into highly-ordered amyloid fibrils
and disordered or amorphous protein aggregates, with alternative
classifications based on size, reversibility of the aggregation, tertiary
structure, modifications and morphology suggested in (Narhi et al.,
2012). Some proteins misfold into a more ordered and less dynamic
state such as the rigid amyloid fold (Serio et al., 2000). The amyloid
conformation is typically not a functional state but a generic
structural motif, consisting of elongated assemblies of nearly
identical ß-sheets that are stacked onto each other. Amyloids are
thermodynamically extremely stable, thus these conformations
challenge the view that natively folded proteins populate the
most stable conformations (Raabe et al., 2021). Moreover,
amyloids may act as seeds converting other soluble proteins into
the amyloid state, thus this aggregate subtype acts as a potentially
infectious agent and may carry epigenetic traits (Serio et al., 2000;
Raabe et al., 2021).

Small heat shock proteins (sHsps) and disaggregase machineries
ensure that the aggregation is reversible despite the stable nature of
protein aggregates [please see (Gallardo et al., 2021) for further
details]. sHsps are regarded as first line of defense when cells
experience proteotoxic stress by interacting with a wide plethora
of substrates, forming stable sHsp-substrate complexes leading to
their sequestration. These chaperones counteract uncontrolled
aggregation of their substrates, but do not facilitate refolding
upon stress relieve, a task left for cellular disaggregation
machineries (extensively reviewed in (Mogk et al., 2019)). The
reversibility is a protective mechanism (Saad et al., 2017) that
may involve reactivation of the aggregated protein but extensively
damaged proteins that cannot be repaired are ultimately subjected to
degradation (Specht et al., 2011; Malinovska et al., 2012; Ungelenk
et al., 2016).

The persistence of aberrantly folded and aggregated proteins is
linked to cytotoxicity (Figure 1A). The proteotoxicity may involve
loss of function of the trapped protein but has also been shown to be
caused by co-sequestration and depletion of PQC factors essential
for proteostasis, the disruption of cell membrane integrity due to
aberrant interactions and perturbation of interactions/trafficking
(Goggin et al., 2008; Olzscha et al., 2011; Arlet et al., 2014; Yu et al.,
2014; Cenini et al., 2016; Grima et al., 2017). The aggregation may in
turn be driven by pathological mutations, rendering proteins prone

for misfolding, or accelerated by aging that leads to a global decline
in PQC capacity due to decreased expression of chaperones and
degradation factors and the overall accumulation of misfolded
proteins caused by summation of external/internal cues (Hipp
et al., 2019; Stein et al., 2022).

2.3 Biomolecular condensates fluently
transition into aggregates

Biomolecular condensates initially show liquid-like properties
and some of these phase-separated compartments age towards less
dynamic gel-like or inert solid states (Molliex et al., 2015; Harmon
et al., 2017; Riback et al., 2017; Iserman et al., 2020). Protein
concentration, the absence of binding partners and a low water
content enhance condensate aging and vice versa increased protein
compositional heterogeneity in biomolecular condensates inhibits
condensate hardening (Patel et al., 2015; Maharana et al., 2018;
Majumdar et al., 2019). Condensate aging influences protein
function, as a more liquid phase allows increased and more
dynamic molecular interactions, while a more solid phase is
difficult to reverse and sequesters proteins from the cytosol
(Hernández-Vega et al., 2017). In yeast, the formation of solid-
like condensates has been shown to be a physiological process
serving an adaptive function. During stressful conditions,
including heat shock, the downregulation of housekeeping
protein synthesis allows yeast to reduce the burden of newly
produced misfolding-prone proteins (Kroschwald et al., 2018;
Kroschwald et al., 2015; Riback et al., 2017; Iserman et al., 2020).
The translation initiation factor and stress granule component
Ded1 is required for translation of mRNAs that encode
housekeeping genes and is disposable from mRNAs encoding
PQC factors. In response to heat stress, Ded1 phase-separates to
form biomolecular condensates that harden quickly, leading to a
situation where Ded1 is trapped inside stress granules. This in turn
leads to changes in mRNA translation resulting in reduced
expression of housekeeping genes and favored expression of
stress factors. Dissipation of the hardened Ded1-condensates
during stress recovery requires assistance from PQC factors
(Kroschwald et al., 2018; Kroschwald et al., 2015; Riback et al.,
2017; Iserman et al., 2020). Hence, the temperature sensitivity of
Ded1 itself is suggested to determine global temperature sensitivity
and the point, where yeast stops growing and instead invests into
stress factor production.

LLPS is sensitive to stress-provoked changes, thus stress may
lead to conformational alterations and/or reveal new interaction
sites, potentially promoting condensate aging (Alberti and Hyman,
2021). Condensate-forming proteins carry long segments of IDRs
that on the one hand function as scaffolds for condensate assembly
and on the other hand render these proteins more misfolding- and
aggregation-prone (Hegyi and Tompa, 2008; Määttä et al., 2020).
Condensate hardening is associated with protection of biological
function during stress, as the hardened state is proposed to act as
kinetic trap for potentially aggregation-prone proteins, and thus
hinders further damage caused by soluble misfolded proteins.
Further, it relieves the burden from the PQC system (Riback
et al., 2017; Franzmann et al., 2018; Kroschwald et al., 2018;
Iserman et al., 2020).
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Misfolding-prone proteins accumulate in biomolecular
condensates and promote their hardening by interacting with
other proteins in the condensates and by establishing long-lived
physical crosslinks that also may include RNA (Choi et al., 2008; Lee
et al., 2016; Boeynaems et al., 2017). Interestingly, defective
ribosomal products, originating from ongoing translation and
increasing upon stress and with age, are the main source of
misfolding-prone proteins in cells and are also implicated in
condensate aging (Schubert et al., 2000). They tend to
accumulate in stress granules, nucleoli and PML bodies, another
phase-separated compartment, and thus these assemblies are
suggested to present overflow compartments that sequester
misfolded proteins when their concentration reaches a critical
level (Audas et al., 2016; Ganassi et al., 2016; Frottin et al., 2019;
Mediani et al., 2019). In this line, occurence, formation and
dissolution of biomolecular condensates like stress granules, have
dual functions, they can serve as regulatory compartment to stop/re-
activate translation according to cellular needs during exposure to
stress (mentioned earlier in the text), but also represent storage
compartments for unfolded proteins for easier chaperone-mediated
downstream processes. Ubc9ts is a misfolded model protein with a
weakly destabilizing amino acid substitution and has been shown to
become massively enriched in reconstituted condensates causing
condensate aging and hardening (Mateju et al., 2017; Guillén-Boixet
et al., 2020). Consistently, Ubc9ts, SOD1 and other misfolding-prone
proteins were shown to accumulate in stress granules, changing their
properties and dynamics (Ganassi et al., 2016; Lee et al., 2016;
Boeynaems et al., 2017; Mateju et al., 2017; Apicco et al., 2018).
Under native conditions, stress granules require RNA for assembly
and enzymatic RNA removal leads to their disintegration
(Bounedjah et al., 2014). Intriguingly, stress granules containing
mutated SOD1 are resistant to RNA removal (Mateju et al., 2017). It
was shown that misfolded proteins enter LLPS compartments to
prevent their irreversible aggregation (Nollen et al., 2001) (Frottin
et al., 2019). Biomolecular condensates might also change the
kinetics of protein aggregation by promoting the formation of a
rate-limiting nucleation point for protein misfolding and
aggregation (Weber et al., 2019).

2.4 Disease-associatedmutations are drivers
of misfolding and aggregation

As biomolecular condensates play essential roles in cellular
organization and physiology, failed LLPS can culminate in
protein misfolding and aggregation (Babinchak and Surewicz,
2023). In line, anomalous LLPS and aberrant membrane-less
compartments are associated with the pathogenesis of multiple
human diseases. There is a strong link between condensate
forming-proteins and age-related diseases such as
neurodegeneration and cancer (Alberti and Hyman, 2021; Wang
et al., 2021; Uversky, 2022). Proteins linked to neurodegeneration
form condensates that promote protein aggregation and amyloid
formation (Molliex et al., 2015; Patel et al., 2015; Ambadipudi et al.,
2017; Wegmann et al., 2018; Babinchak et al., 2019; Ray et al., 2020).
Many mutations are thought to change the conformational
landscape of proteins, promoting amyloid-like interactions
culminating in aggregation (Mackenzie et al., 2017; Murray et al.,

2017; Qamar et al., 2018). For instance, mutations in proteins
associated with Amyotrophic Lateral Sclerosis (ALS) lead to
altered rates of condensate hardening (Midic et al., 2009;
Murakami et al., 2015; Patel et al., 2015; Wang et al., 2018;
Tsang et al., 2020). In pathological conditions, it is speculated
that LLPS may even favor the formation of aggregates (Zbinden
et al., 2020).

Insoluble protein deposits are hallmarks of neurodegenerative
diseases, e.g., Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease and ALS. Aberrant aggregation involves a cascade of events
and requires extended periods of time and eventually manifests in
the clinical phase of neurodegeneration, thus the decline of neuronal
health correlates with accumulation of aggregates (Hou et al., 2019).
The disease-linked proteins Tau and α-Synuclein are inherently
disordered and only obtain a defined structure when they associate
with their binding partners (Avila et al., 2016; Stephens et al., 2019).
Expanded repeat sequences such as polyQ, HTT and polyGA
introduce unfolded protein stretches that promote protein
aggregation (Nonaka et al., 2018; Bonfanti et al., 2019). During
aggregation, the misfolded protein monomers come into contact,
forming soluble conglomerates that further aggregate via structural
rearrangements into stable and highly organized fibrils or
amorphous aggregates without higher-ordered structure. Some
studies ascribe oligomers to be the more toxic proteins species as
they were shown to penetrate lipid bilayers and cause stress
(Wegmann et al., 2016; De et al., 2019a; De et al., 2019b;
Lobanova et al., 2022; Meng et al., 2022). Thus, the formation of
aggregate fibrils, such as neurofibrillary tangles and Lewy-bodies,
and the consequent sequestration is proposed to delay toxicity
(Cowan and Mudher, 2013; Chartier and Duyckaerts, 2018).
Interestingly, it was demonstrated that aggregate formation and
progressive motor decline in a mouse model of Huntington’s disease
depend on continuous expression of polyQ and thus can be
reversible (Yamamoto et al., 2000).

3 Disaggregation is a decision point for
refolding and degradation

To counteract aberrant condensate or aggregate formation, PQC
factors are required to reset the stressed system. The transcriptional
stress response system driven by heat shock transcription factors
(HSFs) plays a key role. HSFs induce gene regulatory programs that
support the removal of misfolded and aggregated proteins, thereby
counteracting proteostasis collapse (Joutsen and Sistonen, 2019). In
yeast it has been firmly established that the activity of Hsf1 is
negatively regulated by levels of free Hsp70, with the result that
misfolded proteins titrate Hsp70 to activate Hsf1 (Masser et al.,
2020). Similarly, human HSF1 is negatively regulated by Hsp70
(Kmiecik et al., 2020; Masser et al., 2020). Thus, HSFs function as a
proteostasis-sensitive mechanism that control PQC factor levels
before and after stress.

Disaggregation is an essential first step to disentangle the
aggregated protein and thus to either enable its subsequent
rescue by refolding or removal by degradation. Most proteins in
aggregates have been found to undergo disaggregation proportional
to their aggregation propensity, i.e., a more severe loss in solubility is
counteracted by faster disaggregation. It was recently demonstrated
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that proteins carrying IDRs are disaggregated faster in vivo (Määttä
et al., 2020). On the molecular level, the explanation may simply be
found in that weaker intramolecular interactions permit faster
disentanglement. Alternatively, disordered regions that drive
aggregation might also speed up subsequent extraction from
aggregates by presenting flexible loop regions that the
disaggregase machinery can bind. In this line, it was recently
shown that in vitro disassembly of α-Synuclein fibrils requires N-
and C-terminal extensions allowing chaperone binding cycles to
facilitate the generation of power strokes (Gao et al., 2015).

The disaggregation machinery itself is based on a conserved bi-
chaperone disaggregase centered around Hsp100 family members
and Hsp70. While plants, fungi and even bacteria carry the complete
system, metazoans have lost the Hsp100 component and rely on a
system powered by Hsp70 working in concert with J-domain protein
(JDP) cochaperones and Hsp110 nucleotide exchange factors
(NEFs) (simplified overview found in Figure 3). See brief
description below, or for an in-depth description of different
disaggregation mechanisms, see recent reviews (Nillegoda et al.,
2018; Shorter and Southworth, 2019).

3.1 Cellular disaggregation and refolding
strategies

Disaggregation and refolding of proteins trapped in aggregates is
central to resetting the proteostasis system during proteotoxic stress
recovery. This task is a complex and energy-consuming process,
which involves unfolding of the aggregated species and then re-
folding of the polypeptide into the native state. The process has
parallels to de novo folding that occurs at the ribosomal tunnel exit
but is not impacted by the strict directionality of mRNA translation
since disaggregation can proceed from any end of a substrate.
Briefly, the aggregates are handled by chaperone disaggregase
machineries, initially characterized in yeast (Parsell et al., 1994;

Glover and Lindquist, 1998; Mogk et al., 1999; Weibezahn et al.,
2004). Notably, while, for example, bacteria, fungi, plants and
protists possess a powerful bi-chaperone disaggregase centered
around the ring-shaped AAA+ -chaperone Hsp100 (ClpB in
bacteria, Hsp104 in yeast, Hsp101 in plants) and Hsp70, there is
no cytosolic Hsp104 paralogue in metazoans (Sanchez and
Lindquist, 1990; Parsell et al., 1994; Glover and Lindquist, 1998;
Goloubinoff et al., 1999; Hong and Vierling, 2001; Mosser et al.,
2004; Shorter, 2011).

Yeast Hsp104 cooperates with Hsp70 assisted by its JDP co-
chaperones and Hsp110 class nucleotide exchange factors (NEFs) to
thread trapped polypeptides in an ATP-dependent manner through its
central pore, resolving a wide range of protein aggregates and hardened
condensates (simplified overview found in Figure 3) (Deville et al., 2017;
Gates et al., 2017; Kaimal et al., 2017). The role of Hsp70 is to recruit
Hsp104 to the surface of the aggregate and to initiate disaggregation,
likely by modifying the aggregate surface. Hsp70 in turn depends on its
JDP to find its bindings sites and together they have the potential to
disaggregation. Even though not required for disaggregation in vitro
(Tessarz et al., 2008), yeast Hsp110 (Sse1 and Sse2) NEFs have been
shown to be strictly required for this process in vivo, likely representing
an indirect mechanism by resetting Hsp70 via nucleotide exchange and
substrate release so that the Hsp70 chaperone can cycle on and off the
aggregate surface (Kaimal et al., 2017). Intriguingly, yeast JDP
Apj1 together with Hsp70 was shown to support disaggregation of
intra-nuclear aggregates independent ofHsp104 (denBrave et al., 2020).
In that line, bacterial Hsp70 was also shown to possess limited
disaggregation activity, especially on large aggregates, (Ben-Zvi et al.,
2004), thus it will be an exciting task to determine the mechanistic
fundamentals how Hsp70s differ in their disaggregation capacities in
different species.

Metazoans lack cytosolic/nuclear Hsp100 orthologs and thus
rely on the disaggregation activity provided by Hsp70 itself in
cooperation with a specific subset of JDP co-chaperones and
NEFs from the Hsp110 family (simplified overview found in
Figure 3). Together, these factors are capable of dissolving a wide
range of aggregates in vitro and in vivo (Shorter, 2011; Rampelt et al.,
2012; Mattoo et al., 2013; Nillegoda et al., 2017; Nillegoda et al., 2015;
Gao et al., 2015; Nillegoda and Bukau, 2015; Kirstein et al., 2017).
The promiscuity towards aggregated substrates is configured by
different JDPs and the formation of mixed-class JDP complexes
guarantees fine-tuning of the selection of aggregated proteins
(Duennwald et al., 2012; Mattoo et al., 2013; Nillegoda et al.,
2017; Nillegoda et al., 2015; Gao et al., 2015; Kirstein et al.,
2017). The Hsp110 NEF enhances protein disaggregation activity
and appears to function primarily by resetting the disaggregase
machinery for new rounds of polypeptide extractions via substrate
release. Hsp110 has also been proposed to take part in the
disaggregation process by providing a holdase activity and hence
to directly interact with substrate polypeptides (Mattoo et al., 2013;
Gao et al., 2015; Nillegoda and Bukau, 2015; Nillegoda et al., 2015).

The Hsp70 machinery is central to all fates of resolubilized
polypeptides. NEFs, driving the release of substrates, presumably
play decisive roles in discrimination between refolding and
degradation (Brehmer et al., 2001; Bracher and Verghese, 2015;
Rosenzweig et al., 2019). As the Hsp70 disaggregase has inherent
refolding activity, the machine is primed for efficient refolding after
aggregate extraction and a handover mechanism to

FIGURE 3
Simplified comparison between different disaggregation
machineries. While bacteria, fungi and plants rely of disaggregation
based on the activity of a Hsp100 isoform, supported by Hsp70,
Hsp110 and a diverse set of J-domain proteins (JDP), metazoan
disaggregation is based on Hsp70 activity, supported by co-
chaperones belonging to the Hsp110 and JDP class. Please note that
additional chaperones and protein quality control factors are involved
to guarantee efficient disaggregation.
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Hsp90 chaperones ensures a strong bias towards refolding over
degradation (Nillegoda et al., 2018; Kohler and Andréasson, 2020).
Yet, the integrated nature of the system with Hsp70 involved both in
the disaggregation step as well as in downstream folding pathways
has made it difficult study these separate functions. Likely, the
nature of the substrate determines just how dependent its
refolding is on Hsp70 following disaggregation. Based on the
insight from studying de novo folding of proteins at ribosomes,
small fast-folding substrates may fold completely without the aid of
Hsp70 while more complex multidomain proteins are likely to
depend of the chaperone (Komar, 2009; Kramer et al., 2009;
Fedyukina and Cavagnero, 2011; Oh et al., 2011; Han et al., 2012).

Hsp70 was shown to protect stress granules from accumulation of
misfolding-prone proteins like SOD1 and is required for dissolution of
SOD1-containing stress granules that transitioned from liquid-like to solid-
like state (Mateju et al., 2017). Further, theHsp70 disaggregationmachinery
governs dissolution of stress granules containing defective ribosome
products and associates with ribonuclear granules to maintain them in
liquid-like states (Ganassi et al., 2016; Mateju et al., 2017). Similarly, yeast
Hsp104 is essential for disaggregation of solid-like stress granules, originally
assumed to be aggregates (Cherkasov et al., 2013; Kroschwald et al., 2015;
Wallace et al., 2015; Riback et al., 2017; Franzmann et al., 2018). For
example, this chaperone is required for the release of phase-separated
Ded1 and other condensate-forming proteins like Pab1 from aged stress
granules to facilitate re-entry into the cell cycle by starting translation of
housekeeping changes during recovery after heat stress (Kroschwald et al.,
2018; 2015; Riback et al., 2017; Yoo et al., 2022). Hsp104 and Hsp70 co-
localize with stress granules, which is essential for post-stress recovery
(Cherkasov et al., 2013).

Alternative disaggregation machineries like RuvBL1/2, Cyp40,
HTRA1 or VCP/p97 have been discussed in recent years, some of
them favoring degradation after extraction of misfolded proteins
from aggregates, (Ratajczak et al., 1993; Hirabayashi et al., 2001;
Tennstaedt et al., 2012; Poepsel et al., 2015; Zaarur et al., 2015; Baker
et al., 2017; Darwich et al., 2020). RuvBL1/2 is described to exhibit a
general, yet limited disaggregase activity and is proposed to function
as chaperone in complex with Hsp90 to regulate assembly of
nucleolar ribonucleoprotein complexes. RuvBL1/2 was shown to
suppress seeding of amyloids and co-sediments with amyloid
assemblies in human cells (Olzscha et al., 2011; Zaarur et al., 2015).

Perhaps of physiological relevance, disaggregation in metazoans
appears to be slower than in yeast, as 5 h after heat shock most of the
aggregates were still on their way to be fully disaggregated in human
cells (Rampelt et al., 2012; Wallace et al., 2015; Määttä et al., 2020).
Similarly, a C. elegans study showed that while there is a minute-
scale disaggregation rate for misfolded luciferase in vitro, traces of
luciferase aggregates were found days after heat shock in vivo
(Kirstein et al., 2017). It should be noted in this regard that
in vitro disaggregation models using firefly luciferase are very
sensitive to the aggregation conditions employed in the
experiments and not every type of aggregate can be disaggregated
in vitro. Thus, it is likely that the cell offers an environment and
factors that greatly impact on the physiological states of the
aggregates and hence how efficiently they can be disaggregated.
For example, orchestrated aggregation likely depends on LLPS as
well as specific aggregation factors, for example, sHSPs, that ensure
that the aggregates/condensates downstream are compatible with
efficient and quantitative disaggregation (Mogk et al., 2019).

3.2 The sequential actions of disaggregation
and degradation

Terminally damaged or irretrievably misfolded proteins are
extracted from aggregates and targeted for degradation via one of
two dominant degradative pathways in cells, the ubiquitin-
proteasome system (UPS) and autophagy (Figure 4) (Wang and
Le, 2019). Similar to the scenario of refolding, UPS degradation of
aggregates typically requires disentanglement of the substrate by
disaggregation. The scenario of autophagy may or may not involve
such previous disaggregation depending on if the pathway involved
belongs to macro- or microautophagy (Saha et al., 2018; Wang et al.,
2022). Chaperone-mediated autophagy, a selective form of
microautophagy relying on the Hsp70 system for its specificity,
takes care of soluble substrates and has been described only in
metazoan cells so far (reviewed in (Kaushik and Cuervo, 2018)).

Metazoan VCP/p97 (homologous to yeast and plant Cdc48) and
ATP-independent HTRA1 can execute disaggregation (Nillegoda
et al., 2018). Human HTRA1 is a serine protease and is implicated in
diseases involving proteostasis imbalances and was shown to
efficiently degrade neurodegenerative proteins Aβ and Tau,
in vitro and in vivo. Furthermore, protease-inactivated
HTRA1 converts fibrillar tau to soluble species, substantiating its
disaggregation activity (Wilken et al., 2004; Yang et al., 2006;
Tennstaedt et al., 2012; Poepsel et al., 2015). Interestingly, the
combination of disaggregation and immediate proteolytic
degradation of substrates in HTRA1 functionality, guarantees
uni-directionality of this process, thus elimintes the requirement
of ATP-dependent substrate release. The generation of short
peptides with proposedly lower affinity to respective binding
sites, ensures the energy-independent dissociation of degraded
substrates from HTRA1 (Poepsel et al., 2015).

Another disaggregase system tightly associated with
subsequent degradation is VCP/p97 belonging to the AAA+
superfamily. It consists of a hexameric ring, coupling ATP
hydrolysis with mechanical work. Its structural similarity to
yeast Hsp104 and bacterial ClpB made it an early focus of
interest when hunting for metazoan disaggregase machineries
(Parsell et al., 1994; Hirabayashi et al., 2001; Kobayashi et al.,
2007). In contrast to HTRA1, VCP/p97 collaborates with the
UPS for proteolysis of its substrates. VCP/p97 is involved in
PQC, ribosome-associated quality control as well as ER-
associated degradation (ERAD) and has been shown to
reduce cytotoxicity associated with polyQ aggregates in
Drosophila melanogaster and C. elegans (Ballar et al., 2011;
Bodnar and Rapoport, 2017; Defenouillère et al., 2013;
Nishikori et al., 2008; Verma et al., 2013). It further plays a
role in aggregate clearance from the nucleus after heat shock
and engages with tau and huntingtin in post-mortem brain
tissue (Hirabayashi et al., 2001; Gallagher et al., 2014;
Darwich et al., 2020). Thus, cells harbor machineries that
directly link disaggregation to degradation using specialized
proteases or the UPS system.

UPS targets the majority of cellular proteins and ubiquitin
conjugation is facilitated by an enzymatic cascade, modulating
protein half-lives from seconds to days (Figure 4A) (Galves et al.,
2019). Ubiquitin is activated by ubiquitin-activating enzymes (E1),
handed over to ubiquitin-conjugating enzymes (E2) and transferred
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either directly onto the substrate or via ubiquitin ligases (E3). Prior to
degradation, ubiquitin is removed by deubiquitinating enzymes (DUB)
(Hoeller et al., 2007; Pohl and Dikic, 2019). Ubiquitinated proteins are
recognized and degraded by the 26S proteasome holoenzyme, consisting
of a barrel-shaped 20S core particle with proteolytic activity, capped on
both ends by 19S regulatory particles, responsible for recognition and
regulatory processes (Lu et al., 2017; Coleman et al., 2021).

The function of the proteasome has been suggested to be
regulated at the subcellular level. Its localization is highly
dynamic, most recent studies point towards predominant
nuclear localization in metazoan, similar as observed in yeast
(Lehmann et al., 2002; Marshall et al., 2016; Nemec et al., 2017;
Tomita et al., 2019). Interestingly, starvation and nutrient
depletion in plants lead to proteasome disassembly and thus
inactivation into storage granules (Gu et al., 2017). VCP/p97,
proteasome particles, E1-, E2-and E3-enzymes as well as DUBs
are found in biomolecular condensates in the nucleus and p62, an
adaptor protein linking UPS and autophagy, was shown to be an
essential component of these droplets (Fu et al., 2021). LLPS
properties is brought on by p62 self-interaction as well as
interaction with poly-ubiquitin chains (Sun et al., 2018;
Zaffagnini et al., 2018). These foci have been proposed to
function as catalytic centers for degradation of misfolded
proteins that are assembled by proteotoxic cues, for example,
heat and oxidative stress. The droplets are likely only acceptable
under transient stress conditions, since prolonged engagement of
disaggregases and proteasomes would hinder them from
performing their canonical roles in proteostasis. Empirically,
inhibition of VCP/p97 has been shown to increase foci size,
while suppression of ubiquitination activity prevents foci
formation (Yasuda et al., 2020). Also stress granules show a
related behavior. Ubiquitinated proteins, DUBs and several
ubiquitin-binding proteins have been shown to accumulate in
these condensates, with DUBs adopting a regulatory role in
stress granule dynamics. The VCP/p97 disaggregation

machinery contributes to clearing stress granules and mutations
of VCP/p97 delay disappearance of stress granules and cellular
recovery (Kwon et al., 2007; Buchan et al., 2013; Ganassi et al.,
2016; Kedersha et al., 2016; Mateju et al., 2017; Dao et al., 2018;
Turakhiya et al., 2018; Xie et al., 2018; Youn et al., 2018; Wang
et al., 2019). Interestingly, cytosolic stress granules were shown to
relieve the nuclear UPS by trapping misfolding-prone defective
ribosomal products via LLPS and thus hindering their
accumulation in the nucleus (Xu et al., 2022).

Proteins that fail to undergo efficient disaggregation remain as
large and persistent protein aggregates and are ultimately directed
towards autophagy for bulk destruction (Figure 4B). This self-eating
mechanism involves de novo membrane synthesis around the
aggregate which results in engulfment of the cargo into
autophagosomes, followed by their subsequent delivery to and
fusion with proteolytic lysosomes (autolysosomes) and involves a
plethora of receptors and other regulatory proteins (Melentijevic et al.,
2017; Runwal et al., 2019). Targeting works via cargo recognition by
adaptor proteins with p62 (Cue5 in yeast) playing a key role by
interacting with ubiquitin moieties on the protein aggregates, and
linking them to LC3 (or Atg8 in yeast) on the autophagosome
membranes. Selective degradation of aggregates via autophagy
(aggrephagy) plays a critical role in limiting their accumulation in
cells (Kraft et al., 2009; Sun et al., 2020). Stress granules associated with
ubiquitinated proteins recruit p62, thus triggering degradation of
ubiquitin-positive stress granules by autophagy (Ganassi et al.,
2016; Mateju et al., 2017). Thus, cells are equipped with regulatory
mechanisms, ensuring the beneficial role of stress granules on the UPS
system as dumping ground for aggregation-prone proteins but at the
same time prompting their removal, if these condensates become
oversaturated with ubiquitinated proteins.

Intriguingly, there is a substantial crosstalk between the UPS and
autophagy. In this regard, p62 orchestrates the UPS and autophagy
with a mechanistic base in its innate ability to physically associate with
both systems. It either escorts ubiquitinated proteins to the

FIGURE 4
Overview of major cellular degradation pathways. (A) Before degradation via the ubiquitin-proteasome system (UPS), aggregated proteins require
disaggregation, followed by decoration with poly-ubiquitin (Ub) moieties. This reaction is facilitated by ubiquitin-activating enzymes (E1), ubiquitin-
conjugating enzymes (E2) and ubiquitin ligases (E3). Prior to degradation, ubiquitin moieties are removed by deubiquitinating enzymes (DUB). (B)
Persistent aggregates are subjected towards autophagosomal degradation. To that end, p62 recognizing ubiquitin moieties facilitates the
interaction of aggregates with LC3 on the growing autophagosome membrane. Please note that more proteins are involved to ensure efficient
autophagy. After membrane closure, the autophagosome fuses with lysosomes in metazoan, leading to degradation of proteinaceous content (in
autolysosomes). p62 (among other factors) serves to balance degradation via UPS and autophagy.
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proteasome as shuttling factor or to autophagosomes as autophagy
receptor (Seibenhener et al., 2004; Pankiv et al., 2007; Wurzer et al.,
2015). Autophagy is upregulated in conditions of deficient
degradation of ubiquitinated proteins by UPS, either via genetic or
pharmacological proteasome inhibition (Pandey et al., 2007;Wu et al.,
2008; Zhu et al., 2010; Laussmann et al., 2011; Selimovic et al., 2013; Li
et al., 2019). Furthermore, loss of Hsp70 or its NEF Hsp110 also
reduces proteasome activity and simultaneously induces autophagy
(Feleciano et al., 2019). Proteasome inhibition leads to its
ubiquitination in yeast, initiating the first steps towards selective
degradation of inactivated proteasomes via autophagy (Marshall
et al., 2016; Waite et al., 2016; Nemec et al., 2017). Crosstalk also
goes the other way if UPS gets overwhelmed. In that scenario,
misfolded or damaged proteins form large insoluble aggregates
that cannot rapidly be removed by the proteasome, thus requiring
degradation via autophagy (Hyun et al., 2003). Moreover, protein
aggregates were shown to inhibit the proteasome, also requiring the
activation of autophagy (Bence et al., 2001; Lindersson et al., 2004;
Díaz-Hernández et al., 2006; Myeku et al., 2016; Sun-Wang et al.,
2020). In summary, the UPS and autophagy complement each other
and share both substrates and common factors.

3.3 Interplay between refolding and
degradation

Proteins that adopt an aberrant fold are rapidly recognized by
chaperones that prevent aggregation, facilitate folding, and coordinate
the interaction with E3 ubiquitin ligases, thus coupling protein refolding
with degradation. The chaperone machinery interacts only transiently
with the aberrantly folded substrate, yet it will rebind in repeated cycles if
the protein does not reach its native state and remainsmisfolded (Kohler
and Andréasson, 2020). The key chaperone Hsp70 employs NEFs that
ensure efficient release and thus cycling in the chaperone network
(Rosenzweig et al., 2019; Kohler and Andréasson, 2020). For
persistently misfolded proteins, release from Hsp70 is mediated by
dedicated armadillo and BAG-type NEFs that carry specialized
substrate release domains that compete the substrate off the
chaperone substrate binding site (Rauch et al., 2016; Gowda et al.,
2018; Rosam et al., 2018). This orchestrated release enables other factors
such as ubiquitin E3 ligases to get access to the hydrophobic peptides that
constitute the Hsp70 binding site and also function as degrons (Rauch
et al., 2016; Gowda et al., 2018; Rosam et al., 2018; Abildgaard et al.,
2023). For example, the metazoan E3 ligase CHIP associates with
Hsp70 and will eventually ubiquitinate persistently misfolded proteins
that undergo repeated Hsp70 interaction cycles (Murata et al., 2001).
CHIP mediates substrate ubiquitination through its C-terminal catalytic
domain and its N-terminus interacts with Hsp70. The interaction with
the disaggregationmachinery is essential for CHIP activity, as aggregate-
bound chaperones are required for efficient ubiquitination (Qian et al.,
2006; Tetzlaff et al., 2008; Kalia et al., 2011). Whether misfolded proteins
are subjected towards refolding or degradation has been suggested to
depend on the ratio between disaggregation machinery and CHIP.
Elevated CHIP expression and prolonged Hsp70-substrate interaction
lead to a larger fraction of substrates becoming ubiquitinated by CHIP
and thus targeted for degradation (Qian et al., 2006). Hsp70 and other
chaperones are expressed at significantly higher levels than CHIP,
suggesting a potential cellular preference for refolding over

degradation (Meacham et al., 2001). Regulation of proteasomal
targeting of Hsp70-disentangled substrates is also assisted by the NEF
Bag1, that carries a ubiquitin-binding domain for specific recognition of
modified substrates as well as Hsp70 substrate release domains (Lüders
et al., 2000; Tsukahara and Maru, 2010; Rauch et al., 2016; Hantouche
et al., 2017). In line, BAG3:BAG1 ratio determines degradation via UPS
or autophagy. Proteotoxic stress and cellular ageing lead to
BAG3 upregulation and outcompete BAG1, redirecting Hsp70-CHIP-
associated substrates towards autophagy-mediated degradation
pathways (e.g., chaperone-assisted selective autophagy) (Carra et al.,
2008; Gamerdinger et al., 2011; Gamerdinger et al., 2009; Minoia et al.,
2014; Rapino et al., 2014). A related role is played by Hsp70 NEFs of the
Hsp110 class that interact with the proteasome as well as withHsp70 as a
substrate releasing NEF. Thus, Hsp110 functions as anHsp70-misfolded
protein receptor at the proteasome that fast-tracks misfolded protein
associated with Hsp70 for degradation and ensures the timely release
from the chaperone close to the proteolytic chamber (Kandasamy and
Andréasson, 2018; Gersing et al., 2021). These functions appear to be
conserved between yeast and man (Rauch et al., 2016). The intricate
interdependency between Hsp70-dependent refolding, aggregate
sequestration by sHsps and the UPS has been recently tested by
genetic analysis in yeast. Imbalances between the activity systems
rather than the processes themselves were found to severely affect
protein homeostasis and cellular fitness (Jawed et al., 2022).

When assessing the ratio between refolding and degradation
rates, PQC has a preference towards rescuing misfolded proteins
with only little degradation of reporter and bulk proteins, as
observed both in yeast and in mammalian cell culture during
recovery from mild cellular stresses (Hageman et al., 2007;
Medicherla and Goldberg, 2008; Wallace et al., 2015; Määttä
et al., 2020). Refolding of aggregated proteins spares the cell the
burden of novel biosynthesis of metabolic and regulatory proteins,
which is vital to rapid recovery of cellular functions after stress
(Medicherla and Goldberg, 2008). However, the interrelation of
refolding and degradation networks ensures that the occurrence and
persistence of proteotoxic species is prevented by all means, even if
one subsystem malfunctions.

3.4 PQC failure due to disease

Increasing age decreases the functionality of PQC, resulting, e.g.,
from lower expression and/or activity of proteasome subunits and
ubiquitin-related enzymes, and thus leads to occurrence and
accumulation of toxic protein aggregates (Lee et al., 2000; Lee et al.,
1999; Ly et al., 2000; Petropoulos et al., 2000; Ferrington et al., 2005;
Tonoki et al., 2009). Mutations in genes encoding for chaperones and
PQC-related factors further accelerate the decline leading to age-
associated disorders (H et al., 2022; Macario et al., 2005; Tittelmeier
et al., 2020), as has been seen for mutations in VCP/p97 that are linked
to neurodegenerative disorders (Watts et al., 2004; Johnson et al., 2010;
Meyer andWeihl, 2014). Similarly, alterations of degradation pathways
are linked to the onset of human age-related diseases including cancer
and neurodegeneration. Additionally, autophagy is shown to be
dysfunctional in neurodegenerative diseases and loss-of-function
mutations in the autophagy machinery leads to an early onset
of neurodegenerative phenotypes in mice (Hara et al., 2006;
Komatsu et al., 2006; Corti et al., 2020; Rana et al., 2021).
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Neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s
disease and Huntington’s disease involve loss of proteasomal
degradation activity (Keller et al., 2000; Furukawa et al., 2002;
McNaught et al., 2002; Seo et al., 2004; Díaz-Hernández et al., 2006;
Thibaudeau et al., 2018), while UPS-associated enzymes, ubiquitin
moieties and chaperones are abundantly detected in insoluble
aggregate structures such as Lewy bodies and neurofibrillary tangles,
which further underpins the abortive attempt of PQC to counteract
pathological aggregation processes (García-Sierra et al., 2012; Zhang
et al., 2019; Arakhamia et al., 2020; Schweighauser et al., 2020).

4 Outlook and open questions

The strict distinction between biomolecular condensates as easily
reversible and beneficial vs. aggregates as irreversibly, toxic
compartment is not reflecting the fact that aging condensates can
adopt solid-like, irreversible properties, while especially protein-
disorder diseases show that aggregation processes producing
almost inert compartments can indeed be the less toxic species
compared to soluble oligomers. Thus, a more nuanced way of
interpretation is required. Especially substantiated by the fact that
distinction between phase-separated condensates and aggregates
formed by misfolded protein species is not always the easiest task,
as seen in yeast, where stress granules were originally identified as
aggregated compartments. However, as discussed above, biomolecular
condensates can incorporatemisfolded proteins and it is hypothesized
that phase separation might be a transition state preceding aggregate
formation. Traditionally, LLPS has been widely studied in vitro under
controlled and predictable conditions, a valuable tool gathering basic
knowledge on these processes, nevertheless, in vivo data reflecting the
dynamic nature of this process is inevitable for a complete picture. The
facts that biomolecular condensates can adopt different states ranging
from liquid-like to solid-like, harbor different scaffold and client
proteins depending on cellular conditions and govern essential
cellular processes make their full potential hard to understand.
Research has just begun to explore aging as additional complexity
factor, as traditionally PQC studies, especially those in model systems
like yeast and bacteria, were conducted in young, immaculately
working systems that instantly react to proteotoxic cues to
safeguard cellular proteostasis. In light of our perpetually aging
society and the fact that PQC capacity decreases over time (Hipp
et al., 2019), it is vital to understand the parallels and differences
between young and aged proteostasis systems. We already know that
several PQC factors, including the proteasome, loose their
competence over time. Interestingly, while some organisms develop
age-associated diseases like cancer and neurodegeneration, others
remain healthy. Not taking heritability and external triggers into
account, it might additionally be feasible that other PQC branches

take over to guarantee a balanced and healthy proteome. While
rapidly-growing cells are especially challenged by the flood of
ribosomal products prone to misfolding and subsequent
aggregation, non-dividing cells like neurons or modelled by
stationary post-diauxic yeast supposedly face different problems.
As nuclear-localized proteins involved in DNA binding, chromatin
organization and transcriptional activity were recently shown to be
especially vulnerable to heat shock, substantiated by the fact that
topoisomerases and proteins involved in DNA replication had the
lowest melting points in bacteria (Mateus et al., 2018; Määttä et al.,
2020), it seems intuitive that PQC forces need to be consolidated to
counteract sudden proteotoxic impact protecting the weakest
members of the cellular proteome. Thus, it is feasible that specific
PQC components alter their localization or expression patterns with
increasing age.While several studies focused on gene expression upon
proteotoxic cues and age, especially potential distribution patterns of
major chaperones and folding factors represent exciting research
questions for future studies.
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