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Background: Dilated cardiomyopathy (DCM) is one of the significant causes of
heart failure, and the mechanisms of metabolic ventricular remodelling due to
disturbances in energy metabolism are still poorly understood in cardiac
pathology. Understanding the biological mechanisms of cuproptosis in DCM is
critical for drug development.

Methods: The DCM datasets were downloaded from Gene Expression
Omnibus, their relationships with cuproptosis-related genes (CRGs) and
immune signatures were analyzed. LASSO, RF, and SVM-RFE machine
learning algorithms were used to identify signature genes and the eXtreme
Gradient Boosting (XGBoost) model was used to assess diagnostic efficacy.
Molecular clusters of CRGs were identified, and immune Infiltration analysis
was performed. The WGCNA algorithm was used to identify specific genes in
different clusters. In addition, AUCell was used to analyse the cuproptosis
scores of different cell types in the scRNA-seq dataset. Finally, herbal
medicines were predicted from an online database, and molecular docking
and molecular dynamics simulations were used to support the confirmation of
the potential of the selected compounds.

Results: We identified dysregulated cuproptosis genes and activated immune
responses between DCM and healthy controls. Two signature genes (FDX1,
SLC31A1) were identified and performed well in an external validation dataset
(AUC = 0.846). Two molecular clusters associated with cuproptosis were further
defined in DCM, and immune infiltration analysis showed B-cell naive, Eosinophils,
NK cells activated and T-cell CD4 memory resting is significant immune
heterogeneity in the two clusters. AUCell analysis showed that cardiomyocytes
had a high cuproposis score. In addition, 19 and 3 herbal species were predicted
based on FDX1 and SLC31A1. Based on the molecular docking model, the natural
compounds Rutin with FDX1 (-9.3 kcal/mol) and Polydatin with SLC31A1
(-5.5 kcal/mol) has high stability and molecular dynamics simulation studies
further validated this structural stability.

Conclusion:Our study systematically illustrates the complex relationship between
cuproptosis and the pathological features of DCM and identifies two signature
genes (FDX1 and SLC31A1) and two natural compounds (Rutin and Polydatin). This
may enhance our diagnosis of the disease and facilitate the development of
clinical treatment strategies for DCM.
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1 Introduction

Dilated cardiomyopathy (DCM) is a non-ischemic heart disease.
It is characterized by unilateral or bilateral ventricular enlargement
with systolic dysfunction. 70% of patients have heart failure as the
primary clinical manifestation, which is progressively worsening
(Conrad et al., 2019), with a 5-year survival rate of only 50%, and is
the most common indication for heart transplantation (Gigli et al.,
2019). The mechanistic factors that cause DCM are unknown and
may be related to viral infections, autoimmune and genetic factors
(Schultheiss et al., 2019). Unfortunately, satisfactory treatments are
lacking due to DCM’s clinical heterogeneity and the pathological
types’ complexity. Furthermore, DCM has no symptoms in its early
stages and most patients lose their best chance of treatment after
diagnosis. Current treatments focus on reducing cardiac energy
requirements and preventing further deterioration of myocardial
function (Walters et al., 2012). Therefore, there is a need to explore
the pathological mechanisms of DCM in order to develop new
therapeutic agents.

Metabolic defects and oxidative stress caused by disturbances in
mitochondrial energy metabolism usually show signs of cardiac
remodelling without overt disease. Mitochondrial energy
metabolism involves the regulation of a large number of
molecules, and Cu is an essential component of complex IV,
which activates enzyme activity in the respiratory chain and in
various biological processes, such as oxidative phosphorylation,
aerobic respiration, and cell growth and development (Ruiz et al.,
2021). High copper concentrations have been shown to be
significantly associated with heart failure, including DCM and its
prognosis (Huang et al., 2019), while copper chelation can repair
mitochondria and improve cardiac function. Cuproptosis is a
recently identified novel form of cell death (Tsvetkov et al.,
2022). The main mechanisms of cuproposis is targeting lipid
acylated tricarboxylic acid (TCA) cyclins to induce
oligomerization of lipid acylated proteins and depletion of Fe-S
cluster proteins, leading to proteotoxic stress and, ultimately, cell
death (Chen L. et al., 2022; Tsvetkov et al., 2022). A recent study in
diabetic cardiomyopathy confirmed the presence of cuproptosis in
the pathological process (Huo et al., 2023). However, there are no
studies on the role of cuproptosis in DCM, while disturbances in
mitochondrial energy metabolism during DCM pathology have
been investigated (Wu et al., 2021). Therefore, it is reasonable to
speculate that a deeper understanding of the mechanisms of
cuproptosis may help improve the treatment of DCM.

At this stage, specific drugs are lacking for inhibiting
cuproptosis. Studies have primarily used copper ion chelators,
and death can be somewhat mitigated. The use of natural
medicinal herbs in the treatment of cardiovascular disease is
gradually gaining acceptance, and have been used in the clinical
management of DCM for many years. Studies have also confirmed
that some herbal formulas (Sun et al., 2017; Peng et al., 2022) and
natural compounds can inhibit apoptosis (Fan et al., 2022), improve
mitochondrial energy metabolism (Duan et al., 2015) and inhibit
myocardial fibrosis (Chen Q. et al., 2022). A study of herbs

associated with cuproptosis showed that most natural
compounds, such as resveratrol and quercetin, mainly depend
on folic acid to regulate cuproptosis-related genes (CRGs) (Dayuan
et al., 2023). However, herbal medicines and significant
compounds that can regulate cuproposis remain unexplored. In
the present study, we systematically examined differentially
expressed CRGs and immune signatures between healthy and
DCM individuals for the first time, screened for signature
genes, and validated them. Finally, potential herbs and
compounds were predicted by network pharmacology and
further evaluated using molecular docking studies and
molecular dynamics (MD) simulations. This study provides a
theoretical reference and scientific basis for DCM mechanistic
exploration and clinical treatment.

2 Materials and methods

2.1 Data resource

The DCM datasets GSE141910, GSE126569, GSE57338,
GSE19303 and GSE21610 were downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). The GSE141910 dataset (GPL4372 platform) included
166 myocardial tissue samples from healthy controls and 166 DCM
patients, and the GSE126569 dataset (GPL16791 and
GPL20301 platform) included myocardial tissue samples from
18 healthy controls and 15 DCM samples, was selected and used
as the exploration dataset. The GSE57338 dataset
(GPL11532 platform) included myocardial tissue samples from
136 healthy controls and 82 DCM samples, and the
GSE19303 dataset (GPL570 platform), including myocardial
tissue samples from eight healthy controls and 40 DCM samples,
and the GSE21610 dataset (GPL570 platform), including myocardial
tissue samples from eight healthy controls and 21 DCM samples,
were used for validation analyses. 13 genes (FDX1, LIPT1, LIAS,
DLD, DBT, GCSH, DLST, DLAT, PDHA1, PDHB, SLC31A1,
ATP7A, ATP7B) for CRGs were retrieved from previous
publications (Huang et al., 2022; Lai et al., 2022) and used for
subsequent analyses.

2.2 Differentially expressed genes (DEGs)
screening

The “sva” package (Leek et al., 2012) combat algorithm was used
to remove inter-batch differences in the GSE141910,
GSE126569 datasets. The “limma” package (Ritchie et al., 2015)
was used to identify DEGs between DCM and healthy controls. We
extracted CRGs expression profiles from the total expression data
and visualized the heat map using the “pheatmap” package. The
packages “ggpubr” and “corrplot” were used for differential
expression and CRGs correlation analysis. The Protein-Protein
Interaction (PPI) network of 13 CRGs was constructed by the
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STRING database (https://cn.string-db.org/) (Szklarczyk et al.,
2019).

2.3 Assessment of immune infiltration

The immune infiltration cells were further investigated by
CIBERSORT(Zhao et al., 2023). Wilcoxon test was used to
analyze the differences between the two groups, and Spearman
correlation analysis was used to evaluate the correlation between
CRGs and immune cells.

2.4 Identification of signature genes

The least absolute shrinkage and selection operator (LASSO)
regression algorithm is a dimensionality reduction method that
filters the unimportant variables by constraining the regression
coefficients (λ) and finally obtains the results for the variable
with the lowest prediction error, ‘glmnet " package (Chi et al.,
2022) was used to construct the model. The support vector

machine-recursive feature elimination (SVM-RFE) algorithm is
an algorithm that ranks the scores of each feature gene by model
training samples, and finally selects the desired feature gene by
iteration. The model is built using the ‘e1071’ package (Lin et al.,
2012), and the genes with the lowest cross-validation error are
evaluated by setting k = 10 for screening. The Random Forest
(RF) is a widely used machine learning algorithm based on
decision tree theory that evaluates the key dimensions of the
feature genes by bootstrap sampling of the training data, and
finally ranks the importance of different predictor variables based
on their predictive power.’ randomForest’ packages (Breiman et al.,
2001) were used to construct the model with 168 trees as the best
parameters for model classification. Overlapping genes were
obtained by three machine learning methods with very high
accuracy and were identified as the signature genes.

2.5 External validation of signature genes

To evaluate the accuracy of the screened signature genes and
to perform diagnostic efficacy assessment as eXtreme Gradient

FIGURE 1
The flowchart of analysis process.
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Boosting (XGBoost) model trained eigenvalues by “XGBoost”
packages (Ogunleye and Wang, 2020). First, we selected the
DCM dataset (GSE141940) as the training set by the XGBoost
model and applied an external dataset (GSE57338) for
evaluation. The prognostic efficiency was evaluated by
receiver operating characteristic (ROC), precision-recall (PR)
curve, and area under the curve (AUC). Finally, two external
DCM datasets, GSE19303 and GSE21610, were used for
independent validation analysis to validate signature gene
expression and to visualize ROC curves using the “pROC”
package (Robin et al., 2011).

2.6 Unsupervised clustering of DCM patients

Weperformed unsupervised cluster analysis of DCMsamples using
the “ConsensuClusterPlus” package (Wilkerson and Hayes, 2010) to
identify the different molecular clusters. The samples were grouped into
clusters using a k-means calculus with 1,000 iterations. The maximum
cumulative distribution function (CDF) index was chosen as the best k
value (Wang et al., 2022). Principal component analysis (PCA)was used
to visualize to determine if these genes could be used to differentiate
samples, and CRGs expression differential analysis and immune
infiltrationwere used to analyze the relationship between different clusters.

FIGURE 2
To clarify whether there were differences in the immune system between the Characterization of dysregulated CRGs in DCM. (A)Heatmap showing
the expression of 13 CRGs. (B) Boxplots showing the expression of the 13 CRGs between DCM and healthy controls. *p < 0.05, ***p < 0.001, ****p <
0.0001, ns, not significant. (C) Correlation analysis among the 13 CRGs. Red and blue represent positive and negative correlations. The area of the pie
chart indicates the correlation coefficient. *p < 0.05, ***p < 0.001, ****p < 0.0001. (D) PPI network diagram of the CRGs. (E) Boxplots showing the
difference in immune infiltration between DCM and healthy controls. *p < 0.05, ***p < 0.001, ****p < 0.0001, ns, not significant. (F) Correlation analysis
between CRGs and infiltrating immune cells. Red and blue represent positive and negative correlations. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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2.7 Weighted gene co-expression network
analysis (WGCNA)

The “WGCNA” package (Langfelder and Horvath, 2008) is used
to build a co-expression network, and R2 = 0.9 and the soft threshold
β = 3 are selected. Then the genes are clustered into different
modules, and the correlation between the modules and to find
out the hub module associated with sample traits.

2.8 Functional enrichment analysis

The “ClusterProfiler” package was applied to perform Gene
Ontology (GO) enrichment analysis with an p < 0.01 as a cut-off
criterion. Finally, we performed a fast gene set enrichment analysis

(FGSEA) (Korotkevich et al., 2021) using the hallmark gene set from
the Molecular Signatures Database (MSigDB) as a feature gene to
explore pathway differences between Clusters and the “pheatmap”
package was used to visualize the results.

2.9 Analysis of scRNA-seq dataset

GSE109816 and GSE121893 were used to construct single-cell
objects by using the “Seurat” package (Stuart et al., 2019) for
analysis, setting each gene to be expressed in at least 3 cells,
filtering out cells that expressed <200 or >6,000 genes in the pair
samples. The “FindVariableFeatures” function was used to find
highly variable genes. We then used the “harmony” package to
filter the data by PCA and identified a total of 17 clusters. The

FIGURE 3
Identification and validation of signature genes. (A)Cross-validation for CRGs. (B) LASSO coefficient spectra of CRGs, and the λ value was confirmed
as 0.010869. (C) The SVM-RFE algorithm was used to identify CRGs. (D) The RF algorithm was used to identify CRGs. (E) The performance of signature
genes through the XGBoost model in the training set data of GSE141910 with AUC of 0.924 and PR of 0.919. (F) The performance of the signature genes
by the XGBoost model in the validation data of GSE57338 with AUC of 0.846 and PR of 0.768.
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“FindAllMarkers” function (min.pct = 0.25, logfc. threshold = 0.25)
was used to identify marker genes and the representative cell types
were annotated by the marker genes (Chaffin et al., 2022). Finally,
AUCell analysis (Liu et al., 2022) was used to calculate the CGR
scores in different cell types.

2.10 Key genes and herbal medicine
prediction and molecular docking test

Based on the identified signature genes, we used the HERB
database (http://herb.ac.cn/) (Fang et al., 2021) to back-predict
the target herbs and components and selected herbs with
regulatory effects on both signature genes for subsequent
analysis. The 3D structures of the proteins encoded by the
signature genes were downloaded from the Protein Data Bank
(PDB, https://www.rcsb.org/), and the 3D structures of the
compounds were downloaded from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/). They were then imported
into Chemdraw 3D, and the MM2 energy minimization module
was used to obtain the most energy-efficient design and saved as a
mol2 file. Protein structures were downloaded from the UniProt
database (https://www.uniprot.org/), visualized separately by

PyMOL 2.3.0 and Mgtools 1.5.6 to remove water molecules,
add hydrogen, calculate the charge and merge non-polar
hydrogen. Molecular docking models were performed using
Autodock vina 1.1.2. The model with the lowest binding free
energy was selected as the best docking model and visualized using
PyMOL 2.3.0 and Discovery Studio 4.5.0.

2.11 Molecular dynamics simulation

Molecular dynamics simulations were carried out separately
based on the small molecules and protein complexes obtained by
docking as the initial structures, using AMBER 18 software
(Salomon-Ferrer et al., 2013). Before the simulations, the charges
of the small molecules were calculated using the antechamber
module and Hartree-Fock (HF) SCF/6-31G* of the Gaussian
09 software (Frisch et al., 2009). The GAFF2 small molecule
force field and the Ff14SB protein force field were used to
describe them (Wang et al., 2004; Maier et al., 2015). The LEaP
module was used to add hydrogen atoms to the system for each
system, a truncated octahedral TIP3P solvent box (Mark and
Nilsson, 2001)was added at a distance of 10 Å from the system,
and Na+/Cl− was added to the system for charge balance. Before the

FIGURE 4
Validation of signature genes. (A) ROC curves showing the diagnostic performance of signature genes in GSE19303. (B) Validation of signature genes
in GSE19303. * represents p < 0.05; ** represents p < 0.01; *** represents p < 0.001. (C) ROC curves showing the diagnostic performance of signature
genes in GSE21610. (D) Validation of signature genes in GSE21610. * represents p < 0.05; ** represents p < 0.01; *** represents p < 0.001.
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simulation, the design was energetically optimized by the steepest
descent and the conjugate gradient methods. Subsequently, the plan
was heated to 298.15 K using a 200 ps warming at a fixed volume and
constant warming rate, and the system was heated to 298.15 K for a
500 ps NVT (isothermal isomeric) system simulation. The non-
bond cut-off distance was set to 10 Å. The Particle mesh Ewald
(PME) method (Sagui and Darden, 1999) was used to calculate the
long-range electrostatic interaction, the SHAKE method (Kräutler
et al., 2015) was used to limit the bond lengths of the hydrogen
atoms, and the Langevin algorithm (Larini et al., 2007) was used for
temperature control, where the collision frequency γ was set to
2 ps−1. The system pressure was 1 atm, the integration step was 2 fs,
and the trajectories were saved at 10 ps intervals for subsequent
analysis. Traces were saved at 10 ps intervals for subsequent analysis.
The free energy of binding between protein and ligand was
calculated by the MM/GBSA method for all systems (Rastelli
et al., 2010; Genheden and Ryde, 2015), and can be calculated in
the following useful way:

ΔGbind � ΔGcomplex – ΔGreceptor + ΔGligand( )

� ΔEinternal + ΔEVDW + ΔEelec + ΔGGB + ΔGSA (1)

In Equation 1, ΔEinternal is the internal energy, ΔEVDW is the van
der Waals energy and ΔEelec is the electrostatic energy, GGB is the
electrostatic contribution to solvation and GSA is the non-polar
contribution to solvation.

3 Results

3.1 Dysregulation of cuproptosis and
activation of the immune response in
patients with DCM

The detailed flow of the study process is shown in Figure 1.
The batch-to-batch differences were removed for the
GSE141910 and GSE126569 datasets (Supplement Figure 1).
The expression profiles of 13 CRGs between DCM and healthy
controls using the combined data set (Figure 2A). Differential
analysis revealed that FDX1, DBT, DLAT, PDHA1, and
SLC31A1 were expressed at significantly higher levels in
healthy controls samples than in DCM samples, while the
opposite was for LIPT1 and ATP7B (Figure 2B). Subsequently,

FIGURE 5
Identification of molecular clusters associated with cuproptosis in DCM. (A) Consensus clustering matrix at k = 2. (B) PCA visual analysis of two
clustered distributions. (C) The heat map shows the expression of CRG between CRGcluster C1 and CRGcluster C2. (D) Box line plot showing the
difference in expression between the CRGcluster C1 and CRGcluster C2. *p < 0.05, **p < 0.01 ***p < 0.001, ****p < 0.0001, ns, not significant.
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we performed a correlation analysis of the 13 CRGs (Figure 2C),
and surprisingly some cuproptosis genes, such as DBT and
DLAT, showed a strong synergistic effect (r = 0.81). In

contrast, ATP7A and PDHA1 showed a significant
antagonistic effect (r = -0.46). Further, PPI showed
interactions between the CRGs (Figure 2D).

FIGURE 6
Analysis of the immunological profile between the two molecular clusters. (A) Box line plot of immune infiltration between two clusters. *p < 0.05,
**p < 0.01 ***p < 0.001, ****p < 0.0001, ns, not significant. (B) Box line plot showing immune infiltration in CRGcluster C1 and healthy controls. *p < 0.05,
**p < 0.01 ***p < 0.001, ****p < 0.0001, ns, not significant. (C) Box line plot showing immune infiltration in CRGcluster C2 and healthy controls. *p < 0.05,
**p < 0.01 ***p < 0.001, ****p < 0.0001, ns, not significant. (D, E) Correlation analysis of immune cells with SLC31A1 in CRGcluster C1. (F, G)
Correlation analysis of immune cells with SLC31A1 in CRGcluster C2.
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To clarify whether there were differences in the immune cell
between DCM and healthy control, differences in the proportions of
22 immune cell types were assessed by the CIBERSORT algorithm
(Figure 2E). The results showed that DCM patients exhibited higher
levels of B-cell navie, Dendritic cells activated, Dendritic cells
resting, Macrophages M0, Macrophages M1, Neutrophils, and
T-cell CD8, suggesting that alterations in the immune system

may be the main reason for the development of DCM.
Meanwhile, correlation analysis between CRGs and immune cells
(Figure 2F) showed a significant positive correlation between
Eosinophils and SLC31A1 (r = 0.572), while a significant
negative correlation between Monocytes and DLD (r = -0.426).
These results suggest that CRGs may be vital in regulating DCM
patients’ molecular and immune infiltration status.

FIGURE 7
Co-expression pattern identification and enrichment analysis. (A) Selection of soft threshold power. (B) Tree diagram based on hierarchical
clustering under optimal soft thresholds. (C) Heat map of correlations between nine modules and clinical features (CRGcluster C1, CRGcluster C2). (D)
GO enrichment analysis of CRGcluster C1 MEblue module. (E) GO enrichment analysis of CRGcluster C2 turquoise module. (F) FGSEA enrichment
analysis was performed on both clusters with a cut-off value of p < 0.01.
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3.2 Establishment and validation of signature
genes

The CRGs signature genes of DCM were identified by LASSO,
RF and SVM-RFE algorithms. We ranked the genes using the
LASSO algorithm (Figure 3A), and the top six genes were DLD,
DLST, LIAS, PDHA1, SLC31A1, and FDX1. SVM-RFE is a
supervised machine learning algorithm that ranks different
features based on differences in predictive power (Figure 3B),
and the top six genes were DLAT, DLD, SLC31A1, ATP7A,

FDX1 and DBT. RF algorithm, the top six ranked genes were
SLC31A1, DLAT, FDX1, DBT, PDHA1 and DLD (Figure 3D).
The three algorithms found FDX1, SLC31A1 and DLD
overlapping genes, but DLD was not statistically different in the
dataset. Two signature genes (FDX1 and SLC31A1) were obtained.

To determine the accuracy of our predicted signature genes, in
the test dataset (GSE141910), the XGBoost model showed an AUC
of 0.924 and PR of 0.919. In contrast, the validation dataset
(GSE57338) showed an AUC of 0.846 and PR of 0.768,
indicating that the signature genes prediction performance was

FIGURE 8
ScRNA-seq analysis reveals the expression of CRGs. (A) The tSNE plots of cardiac tissue cell populations. Each dot depicts a cell, depending on the
cell population. (B) Defined cardiac tissue cells (cardiomyocytes, endothelial, fibroblasts, Lymphocyte, macrophages, and VSMC). (C) AUC of the CRG
score visualized by T-SNE. (D) Visualization of CRG scores of different cells by violin plot.

TABLE 1 The predicted herbal medicines of signature genes.

Signature genes Herbal medicines

FDX1 Flos Pruni mume, Glycyrrhiza uralensis Fisch, Herba Fragariae, Polygonum cuspidatum Sieb.Zucc.[P.reynoutria Makino;Reynoutria japonica
Houtt.], Extractum Piri Laiyanensis, Mangifera indica L.[M.austroyunnanensis Hu], Citric acid, Malus pumila Mill, Vitis vinifera, Crataegus
pinnatifida Bge. var. major N.E.Br, Semen Pini Koraiensis, Pedicellus Melo, Pyrus communis, Helianthus annuus L, radix vitis romanetii,
Crataegus cuneata, Hedychium forrestii, Crataegus scabrifolia, Semen Ziziphi Spinosae

SLC31A1 Trifolium fragiferum, Vinum, Polygonum cuspidatum Sieb.Zucc.[P.reynoutria Makino;Reynoutria japonica Houtt.].
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significant. Two external datasets (GSE19303 and GSE21610) were
used to test the significance of the signature genes. We found that in
both datasets, FDX1 and SLC31A1 expression levels were
significantly lower in the DCM group than in normal samples
(Figures 4A,C). At the same time, the AUC for signature genes
was more significant than 0.75 in both datasets, indicating good
diagnostic efficacy (Figures 4B,D).

3.3 Identification of molecular features
between clusters of cuproptosis in DCM

To clarify the molecular clusters of cuproptosis in different
populations of DCM, we grouped DCM samples based on the
expression profiles of 13 CRGs using a consensus clustering
algorithm. The number of clusters was most stable when the
value of k was set to 2 (Figure 5A), and PCA analysis showed
significant differences between these two clusters (Figure 5B).
Combining the heat map of the consensus matrix, we finally
divided the patients into two clusters, including CRGcluster C1
(n = 125) and CRGcluster C2 (n = 56), and the heat map showed

significant differences between these two clusters (Figure 5C). We
then examined the expression differences between CRGcluster
C1 and CRGcluster C2, CRGcluster C1 showed high expression
levels of DLD, DLST, ATP7B, SLC31A1, DBT, LIPT1, DLAT, and
ATP7A, while Cluster 2 was characterized by enhanced expression
of PDHA1 and GCSH (Figure 5D).

3.4 Immune infiltration characterization of
CRGcluster

We first assessed the immune infiltration between the two
clusters. The results of the analysis CRGcluster C1 exhibited a
higher proportion of B-cell naïve, Dendritic cells activated,
Dendritic cells resting, Eosinophils, Macrophages M0, Plasma
cells, T-cell CD4 memory resting, and T-cell CD4 naïve, while a
large number of Monocytes, NK cells resting, T-cell CD8, T-cell
follicular helper, and T-cell regulatory (Tregs) were more abundant
in cluster 2 (Figure 6A). We then evaluated the immune infiltration
between the two clusters and the healthy control samples (Figures
6B,C). The results showed that B-cell naive showed an increase in
both clusters, but Eosinophils, NK cells activated and T-cell
CD4 memory resting were decreased, and Macrophages M0 and
Monocytes showed opposite status in both clusters. Based on the
results of the immune infiltration analysis of both clusters, we also
evaluated the correlation between the two signature genes and
immune cells. In CRGcluster C1, SLC31A1 was positively
correlated with Eosinophils (r = 0.52, Figure 6D), and
SLC31A1 was negatively correlated with B-cell naive (r = -0.26,
Figure 6E). In CRGcluster C2, SLC31A1 was positively correlated
with Eosinophils (r = 0.62, Figure 6F), and SLC31A1 was negatively
correlated with NK cells resting (r = -0.34, Figure 6G).

3.5 Co-expression module construction and
enrichment analysis

To identify differential genes in the two clusters, co-expression
networks and modules were created between CRGcluster C1 and
CRGcluster C2 using the WGCNA algorithm. Co-expressed gene
modules were identified when the soft threshold was four, and the
scale-free R2 was equal to 0.9 (Figure 7A). A total of nine different
co-expression modules with different colours were obtained using
the dynamic cut algorithm (Figure 7B). Analysis of module-clinical
feature relationships showed that the MEblue module (1,149 genes)
had the highest correlation with CRGcluster C1 (0.85) and the
MEturquoise module (2,165 genes) had the highest correlation with
CRGcluster C2 (0.81) (Figure 7C).

In addition, we performed GO enrichment analysis for both
modules (Figures 7D,E). The enrichment results showed that in
CRGcluster C1 (blue modules), they were mainly enriched in the
regulation of cytosolic calcium ion concentration, synaptic
membrane and ion channel activity, and the results of
enrichment in CRGcluster C2 showed that in positive regulation
of cytokine production, collagen-containing extracellular matrix,
and extracellular matrix structural constituent (Supplementary
Table S1). Finally, we performed FGSEA enrichment analysis
relying on KEGG data from the “msigdbr” package to reveal

TABLE 2 molecular docking analysis.

No. Receptor name Compound name Energy (kcal/mol)

1 FDX1 Avicularin -8.5

2 FDX1 Citricacid -4.8

3 FDX1 Hyperin -8.9

4 FDX1 Isoquercitrin -8.5

5 FDX1 Malicacid -4.1

6 FDX1 Polydatin -8.8

7 FDX1 Quercitrin -9.2

8 FDX1 Resveratrol -8.1

9 FDX1 Rutin -9.3

10 FDX1 Tartaricacid -4.2

11 FDX1 Trans-Resveratrol -8.1

12 SLC31A1 Avicularin -4.7

13 SLC31A1 Citricacid -3.3

14 SLC31A1 Hyperin -4.8

15 SLC31A1 Isoquercitrin -5.0

16 SLC31A1 Malicacid -3.5

17 SLC31A1 Polydatin -5.5

18 SLC31A1 Quercitrin -4.7

19 SLC31A1 Resveratrol -5.1

20 SLC31A1 Rutin -4.8

21 SLC31A1 Tartaricacid -3.9

22 SLC31A1 Trans-Resveratrol -5.1
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differences in themolecular characteristics of the different clusters of
vital pathways (Supplementary Table S2). Heatmaps show
enrichment scores (NES) between clusters, neuroactive ligand
receptor interaction, calcium signalling pathway, and JAK-STAT
signalling pathway had higher NES in Cluster 1. In contrast, Cluster
2 showed glutathione metabolism, oxidative phosphorylation, and
Parkinson’s disease were higher in NES.

3.6 Expression of CRGs in the scRNA-seq
dataset

We used the scRNA-seq dataset, which contained 14 healthy
donors and 4 DCM patients. 9,138 cells passed standard quality
control and were retained for subsequent analysis. We clustered
all cells into 14 subgroups (Figure 8A), annotating cell
populations according to previously published marker genes
(Figure 8B), including cardiomyocytes, endothelial, fibroblasts,
Lymphocyte, macrophages, and vascular smooth muscle cell
(VSMC). The CRG activity of each cell was determined using
the “AUCell” package. Higher AUC values were observed in cells
expressing more genes, which were primarily cardiomyocytes
(Figures 8C,D).

3.7 Molecular docking of key genes with
herbal ingredients

We used the signature genes FDX1 and SLC31A1 as key genes
for prediction, of which 19 herbs were found with FDX1 as the

regulatory target, while three herbs were found with SLC31A1 as the
regulatory target (Table 1). Surprisingly Polygonum cuspidatum
Sieb. Zucc. [P. reynoutria Makino; Reynoutria japonica Houtt.]
was predicted by both signature genes, and further exploration
revealed that it contained 11 validated natural compounds.

We further calculated the binding of FDX1 and SLC31A1 to
11 natural compounds separately and found good binding ability to
a variety of compounds (Table 2). Typically, lower binding free
energies lead to higher binding model stability, with binding free
energies less than -5.0 kcal/mol indicating good binding activity
between them (Hsin et al., 2013). The results showed molecular
docking results showed that all compounds had negative binding
energies. The Rutin docking well with FDX1 (Figure 9A) with a
binding energy of -9.3 kcal/mol. Its binding energy was less than
-7.0, indicating that the compound was able to spontaneously bind
to the protein binding pocket with strong hydrogen bonding and
hydrophobic interactions, while Polydatin bound to SLC31A1
(Figure 9B) with a binding energy of -5.5 kcal/mol and its
binding energy was less than -5.0, indicating that the compound
was able to interact well with the target protein.

3.8 Molecular dynamic simulation of Rutin
and Polydatin

MD simulations were carried out to assess the flexibility and
overall stability of the docked complexes. RMSD and RMSF plots
were generated to determine the fluctuating behavior of the
complexes. Without Rutin ligand binding to FDX1, the RMSD
could converge rapidly and fluctuate. Still, the RMSD of the

FIGURE 9
Molecular docking results of signature genes with related natural compounds. (A)Optimal binding model for Rutin to FDX1 with a minimum binding
free energy of -9.3 kcal/mol. (B) Optimal binding model for Polydatin to SLC31A1 with a minimum binding free energy of -5.5 kcal/mol.
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protein was lower than that of the empty protein when the small
ligand molecule was bound, implying that the Rutin ligand allowed
FDX1 to fluctuate stably (Figure 10A). In the SLC31A1/Polydatin
complex, the RMSD of the empty protein and the complex fluctuates
more, which is related to the long chain-like structure of the flexible
protein system itself. Still, the RMSD of the complex fluctuates less
than that of the empty protein, which means that SLC31A1 also
shows a stable trend with the binding of small molecules
(Figure 10B). These results suggest that the two complexes bind
better. The RMSF can respond to the flexibility of the protein during
molecular dynamics simulations. Usually, after the drug binds to the
protein, the protein flexibility decreases, which in turn stabilizes the
protein. As shown in Figure 10C and Figure 10D, we observed that
in most regions, FDX1 and SLC31A1 showed lower RMSF under the
influence of their respective ligands, especially SLC31A1 under the

FIGURE 10
Molecular dynamics simulation. (A) RMSD plot showing FDX1, FDX1/Rutin along with time change. (B) RMSD plot showing SLC31A1, SLC31A1/
Polydatin along with time change. (C) RMSF of FDX1 and FDX1/Rutin complex. (D) RMSF of SLC31A1 and SLC31A1/Polydatin complex. (E) Changes in the
number of hydrogen bonds in the FDX1/Rutin. (F) Changes in the number of hydrogen bonds in the SLC31A1/Polydatin.

TABLE 3 Binding free energies and energy components predicted byMM/GBSA
(kcal/mol).

System name FDX1/Rutin SLC31A1/Polydatin

ΔEvdw -57.50 ± 1.98 -19.67 ± 1.79

ΔEelec -41.17 ± 3.86 -1.15 ± 3.28

ΔGGB 69.91 ± 6.94 10.94 ± 2.33

ΔGSA -8.40 ± 0.16 -2.68 ± 0.35

ΔGbind -37.16 ± 2.19 -12.57 ± 1.18

ΔEvdW:van der Waals energy.

ΔEelec:electrostatic energy.
ΔGGB: electrostatic contribution to solvation.

ΔGSA: non-polar contribution to solvation.

ΔGbind: binding free energy.
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influence of Polydatin, which led to lower RMSF. Clearly, the
compounds’ binding reduced the protein’s overall flexibility.

Based on the trajectory of molecular dynamics simulations, we
calculated the binding energy using the MM/GBSA method, which
can more accurately reflect the binding effect of small molecules and
target proteins. As shown in Table 3, the binding energy of FDX1/
Rutin was -37.16 ± 2.19 kcal/mol, while that of SLC31A1/Polydatin
was -12.57 ± 1.18 kcal/mol. Negative values indicate that both
molecules have binding affinity for the target protein, with lower
values indicating stronger binding. Our calculations show that
FDX1/Rutin and SLC31A1/Polydatin have a pooling effect, with
FDX1/Rutin having a very strong binding affinity. By energy
decomposition, we can see that the main contribution to the
binding of FDX1/Rutin, SLC31A1/Polydatin is van der Waals
energy, followed by electrostatic and non-polar solvation free
energy. The number of hydrogen bonds formed by the FDX1/
Rutin complex during the simulation ranged from 2-7
(Figure10E), with an enrichment of around 4 most of the time,
implying that the complex formed more hydrogen bonds during the
simulation and had a more substantial binding effect. For SLC31A1/
Polydatin Figure 10F), we observed that the hydrogen bonds were
more sparse, with no hydrogen bonding even sent during the
simulation’s 7–19 ns phase, suggesting that hydrogen bonding is
not the central role of this complex in maintaining binding.

4 Discussion

Mitochondria are important organelles for copper ion storage
and regulation, and the uptake, distribution and elimination of
copper ions are tightly regulated. Dysregulation of copper
homeostasis can produce cytotoxicity, leading to developing
diseases such as Wilson′s disease (Bandmann et al., 2015) and
Menkes disease (Bertini and Rosato, 2008). Cuproposis involves a
novel type of cell death caused by toxic copper-dependent protein
stress that has been demonstrated in tumor-related diseases, and
many of copper chelation have been extensively studied and have
bright prospects for development (Denoyer et al., 2015). However,
the specific mechanisms of cuproposis and its regulatory role in
various diseases have not been further investigated (Chen L. et al.,
2022). This study comprehensively analysed the expression profiles
of cuproposis regulators in healthy control and DCM patients. We
found that CRGs expression was dysregulated in DCM patients,
suggesting that CRGs plays an essential role in the development of
the pathology. Subsequently, we calculated the correlation between
CRGs, with DBT and DLAT showing a strong synergistic effect (r =
0.81) and ATP7A and PDHA1 showing a significant antagonistic
effect (r = -0.46). After further screening for potential signature
genes using LASSO, RF and SVM-RFEmachine learning algorithms,
we finally identified two signature genes (FDX1, SLC31A1). Testing
of the external dataset GSE57338 by the XGBoost model showed
that the signature genes had good diagnostic power for DCM-related
cuprosis (AUC = 0.846), and the GSE19303 and GSE21610 datasets
further validated that the signature genes were significantly different,
which provided new insights for the diagnosis of DCM.

FDX1 is involved in fatty acid oxide (Schulz et al., 2022).
Previous studies have shown that FDX1 is an upstream regulator
of proteolipidation and a key regulator of cuproptosis in TCA

(Dörsam and Fahrer, 2016). SLC31A1 is thought to be a high-
affinity transporter protein for reduced Cu+ (Schweigel-Röntgen,
2014). It is primarily responsible for copper ions uptake, playing an
important role in cellular copper homeostasis (Kim et al., 2010).
Evidence suggests that SLC31A1 is required for copper transport to
specific organs/tissues and that deficiency of SLC31A1 leads to
abnormal cell growth (Lee et al., 2002). In contrast, the
instability of Fe-S cluster proteins is closely related to FDX1. In
addition, other studies have found that key genes related to Cu
transport, such as SLC31A1 and ATP7B, may play an important role
in regulating the development of cuproptosis. However, studies on
FDX1 and SLC31A1 in DCM are lacking.

Advances in the treatment of DCM have been made in the past
decades, and the identification of more appropriate molecular
clusters is crucial to guide individualized treatment of DCM. We
used unsupervised cluster analysis to illustrate the pattern of
cuproposis regulation in DCM patients based on the expression
profile of CRGs and identified two clusters. Subsequently, WGCNA
analysis of the cluster feature modules and enrichment analysis
showed that CRGcluster C1 was mainly enriched for the regulation
of cell membrane calcium ion concentration. Synaptic membrane
and ion channel activity, while CRGcluster C2 positively regulates
cytokine production. FGSEA analysis revealed different enrichment
pathways between CRGcluster C1 and CRGcluster C2, with
neuroactive ligand receptor interaction, calcium signalling
pathway and JAK-STAT signalling pathway having higher NES
in cluster C1. In comparison, cluster C2 showed higher NES for
glutathione metabolism, oxidative phosphorylation and Parkinson’s
disease. Subsequently, we assessed the CRG activity of each cell using
the scRNA-seq dataset, and higher AUC values were observed for
cardiomyocytes.

In recent years as the pathological mechanisms of DCM have
been investigated, the role of abnormal immune cells in ventricular
remodelling has been revealed, and the role of immune-mediated
inflammatory injury in the progression of DCM has been confirmed
by several studies (Harding et al., 2023). Therefore, we analyzed the
differences between the immune cells of DCM and healthy control
Cardiac tissue. Analysis of the abundance of immune cells revealed
that DCM patients exhibited higher levels of infiltration of B-cell
navie, Dendritic cells activated, Dendritic cells resting, Macrophages
M0, Macrophages M1, Neutrophils, and T-cell CD8. Correlation
analysis of immune cells and CRGs revealed a significant positive
correlation between Eosinophils and SLC31A1 (r = 0.572), while a
significant negative correlation was found between DLD and
Monocytes (r = -0.426). The role of different subpopulations of
macrophages in DCM has been revealed by several studies (Kühl
et al., 1995; Zhu et al., 2022), and they are not only involved in the
development of apoptosis but also play an important role in the
process of cardiac fibrosis (Cojan-Minzat et al., 2021). In addition,
we also evaluated the immune infiltration between cluster C1 and
cluster C2 versus normal samples. B-cell naive showed an increase in
two clusters, while Eosinophils, NK cells activated and T-cell
CD4 memory resting were decreased in two clusters. Further
assessment of the correlation of the signature gene with immune
cells in both clusters revealed a positive correlation between
SLC31A1 and Eosinophils in both clusters. The Eosinophils
(Zhang et al., 2022), NK cells activated (Kanda et al., 1992) and
T-cell (Fang et al., 2022) in DCM have been confirmed by several
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studies, while the role of B-cell naive in DCM has not been
investigated. This suggests that not only does cuproptosis play an
important role in DCM immune inflammation, but that there are
specific differences between Clusters.

The therapeutic role of herbal medicines in DCM has been
confirmed by clinical studies (Zhu et al., 2016; Wang et al., 2021). In
the present study, we identified a natural herbal medicine
Polygonum cuspidatum Sieb. Zucc. [P. reynoutria Makino;
Reynoutria japonica Houtt.] for the potential treatment of DCM,
and 11 validated natural compounds were identified through HERB
database. Molecular docking and molecular dynamics simulations
were used to screen for targeting signature genes from 11 potential
natural compounds. Rutin bound best to FDX1 with an energy of
-9.3 kcal/mol, and Polydatin bound to SLC31A1 with an energy of
-5.5 kcal/mol. MD simulations showed structural stability of both
complexes, with pooling effects for FDX1/Rutin and SLC31A1/
Polydatin, where FDX1/Rutin had a powerful binding affinity
(-37.16 ± 2.19 kcal/mol). In contrast, the main contribution to
binding was the van der Waals energy, followed by electrostatic
energy and non-polar contribution to solvation. Several studies have
confirmed the role of FDX1 and SLC31A1 in cuproposis, but drugs
with therapeutic effects are lacking at this stage. Rutin is a herbal
component that has also shown promising efficacy in treating
several cardiovascular diseases. Rutin has antioxidant, anti-
inflammatory, anti-apoptotic and improved energy metabolism
properties and may play a therapeutic role in cardiovascular
disease by reducing damage from toxic substances (Xianchu
et al., 2018; Oluranti et al., 2021; Oluranti et al., 2022). Polydatin
is therapeutic in cardiovascular disease by increasing superoxide
dismutase (SOD) activity, inhibiting cardiomyocyte hypertrophy
and regulating cellular calcium levels (Ding et al., 2014; Zhang et al.,
2015; Yu et al., 2018). Rutin and Polydatins are the two compounds
we found to have an inhibitory effect on cuproposis, primarily
because they can bind tightly to FDX1 and SLC31A1. These results
imply the potential of DCM drugs in inhibiting cuproposis.

This study is the first to systematically assess the role of cuproposis
in DCM, identify signature genes and cell types, and predict potential
natural compounds. However, some limitations need to be
highlighted. First, our current study is based on retrospective data
obtained from public databases and requires additional clinical or
experimental evaluation for validation, and downstream mechanisms
need further investigation. In addition, the potential correlation
between CRG and immune response needs to be further explored.

5 Conclusion

In conclusion, we identified FDX1 and SLC31A1 as signature
genes for cuproposis in DCM, and cardiomyocytes exhibiting higher
cuproposis scores, B-cell naive, Eosinophils, NK cells activated and
T-cell CD4 memory resting associated with immune infiltration of
cuproposis in DCM, and identified potential natural compounds
rutin and Polydatin. Our study advances the understanding of

cuproposis in DCM and provides new insights into the role of
mitochondria in its pathology.
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Glossary

DCM dilated cardiomyopathy

DEG differential expressed gene

CRGs cuproptosis-related genes

PPI protein-protein interaction

LASSO least absolute shrinkage and selection operator

RF random forest

SVM-RFE support vector machine-recursive feature elimination

XGBoost eXtreme Gradient Boosting

CDF cumulative distribution function

ROC receiver operating characteristic curve

AUC area under curve

PR precision-recall

WGCNA Weighted gene co-expression network analysis

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

MSigDB Molecular Signatures Database

FGSEA Fast gene set enrichment analysis

NES enrichment scores

GEO Gene Expression Omnibus

MD molecular dynamics

PCA principal component analysis
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