
Online breath analysis with SESI/
HRMS for metabolic signatures in
children with allergic asthma

Ronja Weber1†, Bettina Streckenbach2†, Lara Welti1, Demet Inci1,
Malcolm Kohler3, Nathan Perkins4, Renato Zenobi2, Srdjan Micic1‡

and Alexander Moeller1*‡

1Department of Respiratory Medicine, University Children’s Hospital Zurich, Zurich, Switzerland,
2Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland, 3Department of
Pulmonology, University Hospital Zurich, Zurich, Switzerland, 4Division of Clinical Chemistry and
Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland

Introduction: There is a need to improve the diagnosis and management of
pediatric asthma. Breath analysis aims to address this by non-invasively assessing
altered metabolism and disease-associated processes. Our goal was to identify
exhaled metabolic signatures that distinguish children with allergic asthma from
healthy controls using secondary electrospray ionization high-resolution mass
spectrometry (SESI/HRMS) in a cross-sectional observational study.

Methods: Breath analysis was performed with SESI/HRMS. Significant differentially
expressed mass-to-charge features in breath were extracted using the empirical
Bayes moderated t-statistics test. Corresponding molecules were putatively
annotated by tandem mass spectrometry database matching and pathway
analysis.

Results: 48 allergic asthmatics and 56 healthy controls were included in the study.
Among 375 significant mass-to-charge features, 134 were putatively identified.
Many of these could be grouped tometabolites of common pathways or chemical
families. We found several pathways that are well-represented by the significant
metabolites, for example, lysine degradation elevated and two arginine pathways
downregulated in the asthmatic group. Assessing the ability of breath profiles to
classify samples as asthmatic or healthy with supervised machine learning in a
10 times repeated 10-fold cross-validation revealed an area under the receiver
operating characteristic curve of 0.83.

Discussion: For the first time, a large number of breath-derived metabolites that
discriminate children with allergic asthma from healthy controls were identified by
online breath analysis. Many are linked to well-described metabolic pathways and
chemical families involved in pathophysiological processes of asthma.
Furthermore, a subset of these volatile organic compounds showed high
potential for clinical diagnostic applications.
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1 Introduction

Asthma is the most frequent chronic condition in children in the
developed world. The disease is very heterogeneous in its
presentation and clinical course. Due to the lack of a well-
recognized and easy to apply diagnostic gold-standard (Gaillard
et al., 2021), misdiagnosis is relatively common. Reported numbers
range from 10% to 62% for underdiagnosis (Kaur et al., 1998;
Siersted et al., 1998; van Gent et al., 2007) from 48% to 53% for
overdiagnosis (Looijmans-van den Akker et al., 2016; Yang et al.,
2017). This has negative impacts on asthma related morbidity,
quality-of-life, medication side-effects, prognosis, and health
costs. Therefore, the investigation of pediatric asthma and its
associated molecular processes including airway inflammation is
of high importance for the development of novel, much-needed
diagnostic and monitoring applications.

Breath is known to contain several hundreds of metabolites that
reflect metabolism as well as disease-specific mechanisms such as
airway inflammation (Ferraro et al., 2018). Therefore, there is great
interest in discovering endogenous exhaled organic compounds that
are linked to diseases and their pathophysiological processes
(Neerincx et al., 2017). One of the few clinical tests taking
advantage of this is the quantification of exhaled fractional nitric
oxide (FeNO), which can be measured in all age groups. FeNO is a
biomarker for eosinophilic airway inflammation that is related to
allergic asthma (Ferraro et al., 2018). This exemplifies the potential
of applying breath analysis to further study allergic asthma and
improve the diagnostic power of exhaled biomarkers.

Several breath analysis studies attempted to distinguish children
with asthma from healthy controls by different techniques. Dallinga
and colleagues compared exhaled breath of children with asthma
and a healthy group by gas chromatography mass spectrometry and
identified a small set of discriminatory volatile organic compounds
(VOCs) that is potentially related to lipid peroxidation, including
various hydrocarbons, xylene, benzoic acid, and butanoic acid
(Dallinga et al., 2010). A pilot study from van Mastrigt et al.
identified VOCs discriminating children with asthma, cystic
fibrosis and healthy controls by using a broadband quantum
cascade laser spectroscopy technique (van Mastrigt et al., 2016).
The distinguishing compound classes included different carboxylic
acids, esters, and ethers. Altogether, there is only little overlap
between the detected metabolites of different studies and
sometimes even conflicting results are reported. Therefore,
standardization as well as external validation are challenges that
need further research as summarized in recent reviews (Neerincx
et al., 2017; Ferraro et al., 2018; Papamichael et al., 2021).

Secondary electrospray ionization high-resolution mass
spectrometry (SESI/HRMS) is a technology applied for online
breath analysis that links real-time measurements without sample
preparation to high mass resolution (Gaugg et al., 2019). The latter
strongly improves the confidence in compound identification of the
detected mass-to-charge features (m/z features). Previous studies
confirmed the potential of this technology to identify relevant
exhaled organic compounds, including biological metabolites, and
reveal altered molecular pathways for different respiratory diseases
(Schwarz et al., 2016; Gaugg et al., 2019; Weber et al., 2020). A
strength of SESI/HRMS lies in the detection of polar molecules with
high molecular masses and low volatility (Gaugg et al., 2016;

Bruderer et al., 2019; Chen et al., 2021). Furthermore, its
applicability in children was confirmed in our previous study on
cystic fibrosis (Weber et al., 2020).

The aim of this study was to identify metabolic signatures in
exhaled breath consisting of discriminating organic compounds
specific to allergic asthma in children by SESI/HRMS and to
assess their biological context.

2 Materials and methods

2.1 Study design, participants, and clinical
data

This observational cross-sectional study included children with
allergic asthma and healthy controls, aged 5–18 years. Asthmatic
patients from the outpatient clinic of the University Children’s
Hospital Zürich, Switzerland, were recruited for this study. Asthma
diagnosis was based on the recent ERS evidence-based practice
guidelines (Gaillard et al., 2021) and only children with confirmed
asthma were included. Allergic sensitization was defined by either a
positive skin prick test or an allergen-specific IgE of >0.35 kU·L–1 by
radioallergosorbent test or by ELISA for at least one common
aeroallergen. Further, eligible patients were clinically stable enough
to temporarily stop the inhalation of long-acting asthma medication at
least 1 week before the measurements. Exclusion criteria were the
inability to stop medication, and the presence of an acute
respiratory infection during the last 2 weeks before the
measurement. Clinical data was collected on the same day as breath
analysis and is summarized together with anthropometric data in
Table 1. Healthy controls without any chronic respiratory symptoms
or known lung diseases were recruited from the public. The presence of
an acute (respiratory) infection was an exclusion criterion for both
groups. The measurement and recruitment period were in parallel and
lasted for 15 months. Efforts were put into recruiting participants of
both cohorts at a randomized schedule across daytime and throughout
the study period. The sample size was based on our previous study with
a similar design (Weber et al., 2020). All participants, where appropriate
and parents gave their written informed consent in advance. The study
was approved by the local ethics committee (KEK-ZH ID 2018–00441)
and was conducted in accordance with the Declaration of Helsinki.

2.2 Breath analysis

Online breath analysis was performed using a SESI source
(SuperSESI, FIT FossilionTech, Madrid, Spain) connected to a
high-resolution time-of-flight mass spectrometer (TripleTOF
5600+, AB Sciex, Concord, ON, Canada). Methodological details
and instrumental settings were previously described by our group
(Weber et al., 2020). Minor adaptations are specified below.
Children were exhaling directly into the instrument in a sitting
position. The breathing maneuver consisted of at least three long
exhalations at a constant pressure of 5 mbar with short breaks in
between. A single-use mouthpiece (product No. 100078, ACE
Instruments, Germany) was connected to the ionization source,
which was heated to 130°C, by a sterilizable, custom-made
polytetrafluoroethylene adapter. Measurements were recorded in
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positive (4500 V) and negative (−4500 V) ionization mode between
the m/z range of 50–500 Da. The accumulation time was set to 0.5 s
per scan. The collisionally activated dissociation (CAD) gas was
adjusted to 0 to avoid fragmentation. Temperatures of the MS were
set to 0, gas 1 was used to pressurize the vial of the electrospray and
set to 24, gas 2 was not connected to the SESI source, and the curtain
gas was set to 10. The pulser frequency was adjusted to 23.983 kHz
and the pulse 1 duration was 2 µs. A net flow of 0.3 L/min was
defined by a mass flow controller (Alicat Scientific, Inc., Tucson, AZ,
United States) at the exhaust of the ionization source. The
nanoelectrospray was generated using silica emitters (50 cm
length, 20 µm diameter, New Objective Inc., Woburn, MA,
United States) and a 0.1% (v/v) aqueous formic acid solution
(Optima LC/MS Grade, Thermo Fisher Scientific, Waltham, MA,
United States). All participants were asked not to brush their teeth,
consume any food, drinks (except for water), or chewing gums 1 h
prior to the measurements (Weber et al., 2020).

2.3 Data preprocessing

All data were recalibrated in PeakView 2.2 (AB Sciex, Concord, ON,
Canada) and processed in R version 4.1.1 (R Foundation for Statistical
Computing, Vienna, Austria). The conversion and preprocessing of the
raw data were done in the same way as described in our previous work
(Weber et al., 2020). In brief, the raw mass spectra were resampled by
interpolation (Δm/z: 0.0005, m/z range: 50–500 Da), peak picking was
performed on the average mass spectra associated with exhalation and
signal intensities of the m/z features were determined by trapezoidal
integration. The intensities of the m/z features were normalized to the
total ion current, log2-transformed and arranged into a data matrix of
breath profiles for further analysis. More details on data preprocessing
are given in the Supplementary Material.

2.4 Statistical analysis

To account for confounding influences and reduce the
heterogeneity within the groups, batch adjustment was performed
by applying surrogate variable analysis (SVA) (Leek and Storey,
2007) on the data matrix of breath profiles. Identification of

differentially expressed m/z features when comparing cases and
controls was assessed by the empirical Bayes moderated t-statistics
test (Smyth, 2004). Correction for multiple hypothesis testing was
conducted using Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) with significance threshold set to the adjusted
p-value of 0.05 to determine the statistically significant features.
Additionally, the ability of the breath profiles to classify samples as
allergic asthmatic or healthy was assessed with the support vector
machines algorithm [13] trained and tested in a 10 times repeated
stratified 10-fold cross-validation. To avoid using all features for
classifier development, Boruta feature selection (Kursa et al., 2010)
was applied in each cross-validation iteration to include only the
potentially discriminating features between the allergic asthmatic
and the healthy control group. In order to prevent bias during cross-
validation all preprocessing steps, feature selection and classifier
development were strictly conducted on the training data sets,
preventing any information leak from the left-out samples
(Varma and Simon, 2006). Details on statistical analysis are given
in the supplementary material.

2.5 Feature identification

For the 100 most significantly discriminativem/z features per study
group, compound identification was based on MS2 spectra that were
recorded directly from exhaled breath by SESI/HRMS with the same
instrument set up. The settings of the SESI source and TripleTOF MS
were identical to the ones described above for the MS1 full scan
acquisition, with the following exceptions: the accumulation time
was set to 1.0 s per scan and the CAD gas to 6. Precursors were
selected with an isolation window of 0.7 Da. Collision energy for
precursor fragmentation was set to 20 eV with a ramped energy
spread of ± 10 eV. The MS2 spectra were analyzed by a workflow
adapted from a published method (Kaeslin et al., 2021) to detect
isotopes, adducts, and losses, and with the SIRIUS software (v4.9.9)
(Dührkop et al., 2019) to assign putative molecular formulae and
chemical structures. The putatively identified compounds were
screened for their biological context and subgrouped into metabolic
pathways or chemical families. Additionally, pathway enrichment
analysis using the mummichog algorithm (MetaboAnalyst, v5.0)
(Pang et al., 2021) was performed for further identification on all

TABLE 1 Participant characteristics.

Allergic asthma (n = 48) Healthy controls (n = 56) p-value

Age [y] 12.1 ± 3.1 10.8 ± 4.0 0.07

Male sex [n] 33 (68.8%) 24 (42.9%) 0.01

BMI [kg/m2] 19.3 ± 4.2 18.3 ± 3.3 0.2

FEV1 [z-score] −0.6 ± 1.1 −0.1 ± 1.0 † 0.01

FVC [z-score] 0.1 ± 1.0 0.1 ± 0.9 † 0.86

FeNO [ppb] 28.6 IQR 34.4 6.2 IQR 9.6 <0.001

Allergic sensitization [n] 48 (100%) 12 (21.4%) <0.001

Data are presented as mean ± standard deviation (SD), n (%), or median and interquartile range (IQR). BMI, body mass index, pre-bronchodilator FEV1 = forced expiratory volume in 1 s, pre-

bronchodilator FVC, forced vital capacity, FeNO, fractional exhaled nitric oxide. p-values were determined by the two sample t-test, Fisher’s exact test for sex and allergic sensitization

distribution, and the Mann-Whitney U test for FeNO, values (no normal distribution). †: 16 spirometries were excluded because of poor quality.
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significant features including those without recorded MS2 spectra,
without compound suggestions or with excluded MS2 spectra
(exclusion criteria: see Supplementary Table S1). Lastly, the detected
m/z features were compared with previously identified compounds
from literature. The certainty of identification was indicated by an
identification (ID) confidence level ranging from ID 1 to 5, as described
by Schymanski and colleagues (Schymanski et al., 2014). More details
on the identification approach are included in the supplementary
material, including a schematic overview (Supplementary Figure S1).

3 Results

3.1 Participants and clinical data

Exhaled breath samples of 48 allergic asthma patients and
56 healthy control participants, in total 104 children, were included
in this study. The age and body mass index values of the two cohorts
were comparable, whereas the asthmatic group contained more males
than the healthy one. Detailed clinical characteristics of the two
individual study cohorts are shown in Table 1. The use of short-
acting beta-agonists was allowed until the day before measurements. All
children with asthma had a known allergic sensitization to at least one
aero-allergen and the asthma severity ranged from mild to moderate.
The FeNO values were significantly elevated in the allergic asthma
cohort. Additionally, the forced expiratory volume in 1 s (FEV1) of the
asthmatics was lower, while the forced vital capacity of the groups was
comparable. Twelve children of the healthy control group showed an
allergic sensitization according to the skin prick test, but only two
reported symptomatic allergies.

3.2 Discriminative breath patterns and their
metabolic associations

The pre-processing of the acquiredmass spectra of the study subjects
revealed 2,315m/z features associated with exhaled breath. 375m/z
features were found to be significantly different between the two

groups (Benjamini-Hochberg adjusted p < 0.05), of which 179 were
upregulated and 196 downregulated in the allergic asthma group (Figure
1A). Among those, 134 were assigned to compounds. Inspection of the
first two principal components (PCs) of the 134 putatively identified
features revealed amoderate separation between the groups along thefirst
PC (24% variance in the data, Figure 1B).

Compound identification revealed several specific metabolic
pathways and chemical families with many representatives for both
study cohorts (Tables 2, 3). For the allergic asthma group, the chemical
families of fatty acid metabolites and monosaccharides as well as the 2-
oxocarboxylic acid metabolism and two amino acid pathways, i.e., lysine
degradation and tyrosine metabolism, were elevated (Table 2). The
relations of metabolites involved in some of these elevated pathways are
visualized in Figure 2. For the diminished compounds, arginine
pathways were found to be well represented, including both arginine
and proline metabolism and arginine biosynthesis. Further, several
compounds of the linoleic acid metabolism and of the chemical
groups of aldehydes, amides, and fatty acids were identified (Table 3;
Figure 3). A full list includingmore details about the putatively identified
compounds can be found in Supplementary Table S2.

The assessment of the classification accuracy in discriminating
between the allergic asthmatic and the healthy samples resulted in an
area under the curve (AUC) of 0.83, 95% CI: 0.73–0.92, (Figure 4A;
Supplementary Table S3; Supplementary Figure S2). When
examining feature selection by the Boruta scheme (Kursa et al.,
2010) within cross-validation, 57 (±8) m/z features were selected on
average in each cross-validation iteration, many of which were
putatively identified with the compound identification workflow
above (Figure 4B). Compounds which were most frequently selected
in LOOCV are presented in Figure 4C (for box plots see
Supplementary Figure S2) and all the other selected metabolites
can be found in Supplementary Table S4.

It is of relevance to note that the adjustment with SVA captures the
components of variability within the data and reduces any effect on the
intensity levels of m/z features arising from other sources than the
primary variables of interest (i.e., allergic asthma vs. healthy controls).
Hence, any further subgroup analysis or correlation analysis to other
clinical parameters could not be performed (Leek and Storey, 2007)

FIGURE 1
Statistical analysis ofm/z features in breath profiles. (A) Volcano plot representing all detected 2,315 m/z features. Dashed line: Benjamini-Hochberg
adjusted p-value of 0.05. (B) First two principal components (PCs) score plot of the 134 putatively identified m/z features. Blue dots represent healthy
probands and red dots asthmatic patients. 95% data ellipses were added per group for visual depiction.
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TABLE 2 Pathway related metabolites elevated in the allergic asthma cohort.

m/z Charge Adj.
p-value

Log-fold-
change

Molecular
formula

Ionisation Δm
(ppm)

Compound Ann. ID
level

Lysine degradation

131.035 neg 0.0002 −0.39 C5H8O4 [M-H]- 0.1 Glutarate (pentanedioic acid)† MS2, Lit. ID1

117.019 neg 0.0004 −0.37 C4H6O4 [M-H]- −2.8 Succinate (butanedioic acid)† MS2, Lit. ID1

129.019 neg 0.0008 −0.25 C5H8O5 [M-H2O-H]- −2.6 2-Hydroxyglutarate (2-
hydroxypentanedioc acid)

MS2 ID3

131.033 pos 0.0031 −0.46 C5H6O4 [M + H]+ −6.8 Glutaconate (2-pentenedioic acid) MS2 ID3

161.0435 pos 0.0032 −0.28 C6H8O5 [M + H]+ −5.9 2-Oxoadipate (2-oxohexanedioic
acid)†

MS2 ID3

162.0755 pos 0.0070 −0.25 C6H11NO4 [M + H]+ −3.6 2-Aminoadipate (2-
aminohexanedioic acid)

MS2 ID3

97.029 neg 0.0137 −0.20 C5H8O3 [M-H2O-H]- −5.2 Glutarate semialdehyde (ω-
oxopentanoaic acid)

MS2 ID3

Tyrosine metabolism

192.0285 neg 0.0001 −0.28 C9H7NO4 [M-H]- −9.0 5,6-Dihydroxyindole-2-carboxylate MS2 ID3

177.075 pos 0.0017 −0.41 C7H10O4 [M + H2O + H]+ −4.2 Succinylacetone MS2 ID3

183.0295 neg 0.0038 −0.30 C8H10O6 [M-H2O-H]- −2.2 Succinylacetoacetate MS2 ID3

215.052 pos 0.0076 −0.41 C9H8O5 [M + H2O + H]+ −14.0 3,4-Dihydroxyphenylpyruvate MS2 ID3

181.0505 neg 0.0123 −0.23 C9H10O4 [M-H]- −0.7 4-Hydroxyphenyllactate MS2 ID3

163.039 neg 0.0134 −0.16 C9H8O3 [M-H]- −6.6 4-Coumarate MS2 ID3

149.0245 neg 0.0163 −0.21 C8H8O4 [M-H2O-H]- 0.6 3,4-Dihydroxymandelaldehyde MS2 ID3

179.036 neg 0.0214 −0.22 C9H8O4 [M-H]- 5.7 4-Hydroxyphenylpyruvate, 4-
Hydroxy-enol-phenylpyruvate

MS1 ID4

215.052 neg 0.0268 −0.23 C9H10O5 [M-H2O-H]- 5.7 3-Methoxy-4-hydroxymandelate MS1 ID4

199.025 neg 0.0225 −0.22 C8H8O6 [M-H]- 0.9 4-Maleylacetoacetate, 4-
Fumarylacetoacetate

MS1 ID4

197.046 neg 0.0268 −0.23 C9H10O5 [M-H]- 2.3 3-Methoxy-4-hydroxymandelate† MS1 ID4

167.0345 neg 0.0271 −0.19 C8H8O4 [M-H]- −2.9 Homogentisate, 3,4-
Dihydroxymandelaldehyde, 3,4-
Dihydroxyphenylacetate

MS1 ID4

2-Oxocarboxylic acid metabolism

169.05 neg 0.0006 −0.27 C8H12O5 [M-H2O-H]- −3.7 2-Oxosuberate (2-oxooctanedionic
acid)

MS2 ID3

199.058 pos 0.0010 −0.46 C9H12O6 [M-H2O + H]+ −10.5 cis-(Homo)3-aconitate MS2 ID3

159.0645 pos 0.0015 −0.40 C7H12O5 [M-H2O + H]+ −4.3 3-Isopropylmalate MS2 ID3

161.0435 pos 0.0032 −0.28 C6H8O5 [M + H]+ −5.9 2-Oxoadipate
(2-oxohexanedioic acid)†

MS2 ID3

162.0755 pos 0.0070 −0.25 C6H11NO4 [M + H]+ −3.6 2-Aminoadipate (2-
aminohexanedioic acid)

MS2 ID3

148.06 pos 0.0077 −0.26 C5H9NO4 [M + H]+ −2.9 Glutamate MS2 ID3

146.0545 neg 0.0404 −0.31 C5(13C)H10O4 [M(C13)-H]- 7.3 2-Aceto-2-hydroxybutanoate MS1 ID4

(Continued on following page)
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Nevertheless, we decided to assess whether atopy by itself has an impact
on the breath profiles by isolating the group of healthy samples and
repeating our analysis pipeline to find differences between the healthy

children with sensitization and the ones without. We found no
significantly different features between the two groups (see
Supplementary Figure S5).

TABLE 2 (Continued) Pathway related metabolites elevated in the allergic asthma cohort.

m/z Charge Adj.
p-value

Log-fold-
change

Molecular
formula

Ionisation Δm
(ppm)

Compound Ann. ID
level

Fatty acid metabolites

117.019 neg 0.0004 −0.37 C4H6O4 [M-H]- −2.8 Butanedioic acid (succinate)† MS2, Lit. ID1

131.035 neg 0.0002 −0.39 C5H8O4 [M-H]- 0.1 Pentanedioic acid (glutarate)† MS2, Lit. ID1

147.0645 pos 0.0070 −0.40 C6H10O4 [M + H]+ −4.7 Hexanedioic acid (adipic acid) MS2 ID3

131.033 pos 0.0031 −0.46 C5H6O4 [M + H]+ −6.8 Pentenedioic acid (glutaconate) MS2 ID3

143.0345 neg 0.0363 −0.23 C6H8O4 [M-H]- −3.7 Hexenedioic acid Lit. ID4

157.0505 neg 0.0230 −0.26 C7H10O4 [M-H]- −0.8 Heptenedioic acid† Lit. ID4

97.029 neg 0.0137 −0.20 C5H8O3 [M-H2O-H]- −5.2 ω-Oxopentanoaic acid (glutarate
semialdehyde)

MS2 ID3

125.06 neg 0.0195 −0.23 C7H12O3 [M-H2O-H]- −6.4 ω-Oxoheptanoic acid MS2 ID3

113.024 neg 0.0424 −0.15 C5H8O4 [M-H]- −3.7 ω-Oxopentenoic acid Lit. ID4

155.071 neg 0.0268 −0.20 C8H12O3 [M-H]- −2.1 ω-Oxooctenoic acid Lit. ID4

167.071 neg 0.0264 −0.18 C9H12O3 [M-H]- −1.9 ω-Oxononadienoic acid Lit. ID4

181.086 neg 4.83E-05 −0.48 C10H14O3 [M-H]- −5.6 ω-Oxodecadienoic acid Lit. ID4

87.0445 neg 0.0471 −0.58 C4H8O2 [M-H]- −7.5 Butanoic acid† Lit. ID2

101.0605 neg 0.0214 −0.59 C5H10O2 [M-H]- −0.2 Pentanoic acid† Lit. ID2

197.081 neg 0.0004 −0.46 C10H14O4 [M-H]- −4.6 2,7-Dimethyl-2,4-octadienedioic acid MS2 ID3

129.019 neg 0.0008 −0.25 C5H8O5 [M-H2O-H]- −2.6 2-Hydroxypentanedioc acid (2-
hydroxyglutarate)

MS2 ID3

178.0355 neg 0.0129 −0.18 C5H9NO6 [M-H]- −1.2 2-Amino-3,4-dihydroxypentanedioic
acid

MS2 ID3

161.0435 pos 0.0032 −0.28 C6H8O5 [M + H]+ −5.9 2-Oxohexanedioic acid (2-
oxoadipate) †

MS2 ID3

162.0755 pos 0.0070 −0.25 C6H11NO4 [M + H]+ −3.6 2-Aminohexanedioic acid (2-
aminoadipate)

MS2 ID3

133.05 neg 0.0104 −0.39 C5H10O4 [M-H]- −4.8 2,3-Dihydroxypentanoic acid MS2 ID3

Monosaccharides and metabolites

163.024 neg 0.0002 −0.20 C5H8O6 [M-H]- −5.0 2-Dehydro-xylonate MS2 ID3

151.0585 pos 0.0013 −0.51 C5H10O5 [M + H]+ −10.6 Arabinose MS2 ID3

163.0595 pos 0.0158 −0.33 C6H12O6 [M-H2O + H]+ −3.7 Galactose† MS2 ID3

193.035 neg 0.0196 −0.24 C6H10O7 [M-H]- −2.0 Glucuronate MS2 ID3

209.03 neg 0.0244 −0.20 C6H10O8 [M-H]- −1.4 Glucarate MS1 ID4

91.04 neg 0.0261 −0.79 C3H8O3 [M-H]- −0.7 Glycerol MS1 ID4

119.0345 neg 0.0319 −0.39 C4H8O4 [M-H]- −4.1 Erythrulose MS1 ID4

Putatively identified compounds elevated in the allergic asthma cohort, grouped by metabolic pathways or chemical families and ordered by their adjusted p-value. Exception: fatty acid

metabolites are sorted based on their chemical relation. Log-fold-change: negative values indicate higher average expression in the asthmatic group. Log-fold-change was calculated using

R-package “limma” (Ritchie et al., 2015); see Supplementary Section S3 for more details. The listedm/z values represent the measured values and the mass error (Δm) to the theoretical mass is

reported in ppm. Annotation (Ann.) e.g., based on literature (Lit.), references for literature-based identification are included in Supplementary Table S2. †: compounds that were detected several

times in different ionisation forms (listed in Supplementary Table S2). MS1: assignment based on full scan mode by literature match or pathway analysis, MS2: assignment based on real-time

tandem mass spectrometry spectra, ID: identification confidence level ranging from ID1 (high) to ID5 (low).
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TABLE 3 Pathway related metabolites downregulated in the allergic asthma cohort.

m/z Charge Adj.
p-value

Log-fold-
change

Molecular
formula

Ionisation Δm
(ppm)

Compound Ann. ID
level

Arginine and proline metabolism

104.07 pos 0.0002 0.41 C4H9NO2 [M + H]+ −5.8 4-Aminobutanoate† MS2, Lit. ID3

60.0805 pos 0.0083 0.80 C4H9NO [M-CO + H]+ −4.7 4-Aminobutanal MS1 ID4

C4H9NO2 [M-CO2+H]+ −4.7 4-Aminobutanoate MS1 ID4

116.07 pos 0.0122 0.42 C5H9NO2 [M + H]+ −5.2 Proline MS1, Lit. ID4

C5H12N2O2 [M-NH3+H]+ −5.2 Ornithine MS1 ID4

193.13 pos 0.0251 0.53 C6H14N4O2 [M + H2O + H]+ 2.5 Arginine MS1 ID4

118.086 pos 0.0252 0.39 C6H11NO3 [M-CO + H]+ −2.2 4-Acetamidobutanoate MS1 ID4

114.0545 pos 0.0264 0.38 C5H7NO2 [M + H]+ −4.0 1-Pyrroline-2-carboxylate† MS1 ID4

C5H9NO3 [M-H2O + H]+ −4.0 Hydroxyproline, Glutamate 5-
semialdehyde

MS1 ID4

112.075 pos 0.0313 0.31 C6H11NO2 [M-H2O + H]+ −6.2 N4-Acetylaminobutanal MS1 ID4

102.0545 pos 0.0381 0.31 C5H9NO4 [M-HCOOH + H]+ −4.5 4-Hydroxyglutamate semialdehyde MS1 ID4

C5H7NO3 [M-CO + H]+ −4.5 1-Pyrroline-3-hydroxy-5-carboxylate† MS1 ID4

Arginine biosynthesis

61.039 pos 0.0076 0.36 CH4N2O [M + H]+ −10.5 Urea MS2 ID3

96.9925 neg 0.0113 0.25 C4H4O4 [M-H2O-H]- −6.4 Fumarate MS2 ID3

C4H4O4 [M-H2O-H]- −6.4 Maleate MS2 ID3

116.07 pos 0.0122 0.42 C5H9NO2 [M + H]+ −5.2 Proline MS1, Lit. ID4

C5H12N2O2 [M-NH3+H]+ −5.2 Ornithine MS1 ID4

193.13 pos 0.0251 0.53 C6H14N4O2 [M + H2O + H]+ 2.5 Arginine MS1 ID4

102.0545 pos 0.0381 0.31 C5H9NO4 [M-HCOOH + H]+ −4.5 4-Hydroxyglutamate semialdehyde MS1 ID4

C5H7NO3 [M-CO + H]+ −4.5 1-Pyrroline-3-hydroxy-5-carboxylate MS1 ID4

Linoleic acid metabolism

281.2475 pos 7.12E-06 0.79 C18H32O2 [M + H]+ −0.04 Linoleate† MS2 ID3

295.225 pos 2.09E-04 0.62 C18H32O4 [M-H2O + H]+ −6.0 13(S)-HPODE† MS1 ID4

297.242 pos 4.73E-04 0.73 C18H32O3 [M + H]+ −1.4 13(S)-HODE†, 12 (13)-EpOME†, 9
(10)-EpOME†

MS1 ID4

Aldehydes

115.075 pos 0.0491 0.49 C6H10O2 [M + H]+ −3.1 4-Hydroxy-2-hexenal† Lit. ID2

146.117 pos 0.0210 0.30 C7H12O2 [M + NH4]+ −3.8 4-Hydroxy-2-heptenal Lit. ID4

143.106 pos 0.0179 0.41 C8H14O2 [M + H]+ −4.6 4-Hydroxy-2-octenal† Lit. ID4

258.243 pos 0.0225 0.34 C15H28O2 [M + NH4]+ 1.0 4-Hydroxy-2-pentadecenal Lit. ID4

158.1175 pos 0.0082 0.39 C8H12O2 [M + NH4]+ −0.4 4-Hydroxy-2,6-octadienal Lit. ID4

172.133 pos 0.0004 0.57 C9H14O2 [M + NH4]+ −1.2 4-Hydroxy-2,6-nonadienal Lit. ID2

228.196 pos 0.0238 0.44 C13H22O2 [M + NH4]+ 0.9 4-Hydroxy-2,6-tridecadienal Lit. ID2

283.191 neg 0.0292 0.46 C15H26O2 [M + HCOO]- −1.7 4-Hydroxy-2,6-pentadecadienal Lit. ID4

253.2155 pos 0.0008 0.49 C16H28O2 [M + H]+ −2.8 4-Hydroxy-2,6-hexadecadienal Lit. ID4

(Continued on following page)
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4 Discussion

Wepresent the first online breath analysis study performed by SESI/
HRMS on a pediatric population with allergic asthma. The study
revealed group-specific breath patterns with a large number of
discriminative m/z features, many of which were putatively identified
and could be grouped to metabolic pathways or chemical families.
Moreover, some of the relevant compounds and pathways were
previously published in metabolomic studies in pediatric asthma
(Neerincx et al., 2017; Ferraro et al., 2018; Papamichael et al., 2021)
or reported in SESI/HRMS studies (see Supplementary Table S2).

As described by Papamichael et al., an altered energy
metabolism is expected in children with asthma due to the
hypoxic environment, bronchoconstriction, and other associated
changes as well as increased efforts for breathing (Papamichael et al.,
2021). However, this explanation might not apply to the included
asthmatic group of our study, as they did not suffer from acute
exacerbations. The lung and gut microbiomes are also potential
contributors to the pathophysiology of asthma (Barcik et al., 2020).
Several previous breath analysis studies identified compounds and
molecular pathways associated with pediatric asthma. However,
some of the potential biomarkers were of exogenous origin and
only a handful of them were consistently detected in more than one
study (Neerincx et al., 2017; Ferraro et al., 2018; Papamichael et al.,
2021). The pathways and chemical families identified in our study
are biologically relevant and reflect both an altered state of energy
metabolism as well as changes in products from the microbiome.

The metabolism of lysine was the most significantly elevated
pathway in asthma and all associated compounds were identified
based on direct MS2 spectra. Two different degradation pathways of

lysine were found, one is taking place in humans and the other in the gut
microbiota (Figure 2). The associatedmetabolites succinate and glutarate
were unambiguously identified (ID1, see Table 2), and have been
reported as associated with pediatric asthma in previous metabolomic
studies in blood (Chang et al., 2015), urine (Saude et al., 2011), and
breath (Carraro et al., 2018). Carraro et al. also reported a decreased level
of oxoadipate in early asthma, which is not in line with our findings but
could be explained by the different study design focusing on wheezing in
preschool children (Carraro et al., 2018). However, a study linked an
enzymatic complex involved in the lysine degradation pathway to the
formation of reactive oxygen species from 2-oxoadipate (Jordan et al.,
2019), which could potentially be a link to asthma pathophysiology.

Tyrosine metabolism was also significantly upregulated in the
allergic asthmatic group. As illustrated in Figure 2, some of the
metabolites belong to the main human degradation pathway whereas
other tyrosine-derived metabolites are of human or microbiotic origin.
An increased level of tyrosine in asthmatic children was reported in
previous metabolomics studies (Saude et al., 2011; Papamichael et al.,
2019; Tao et al., 2019). Additionally, the bacterial tyrosine metabolite 4-
hydroxyphenylacetate was reported to be negatively correlated with the
FEV1 in urine (Papamichael et al., 2019). It is hypothesized that high
levels of tyrosine metabolism might be related to inflammation and
oxidative stress in asthma (Papamichael et al., 2021). Also, tyrosine-
derived catecholamines are important during conditions of stress and
play a role in the regulation of the immune system (Barnes et al., 2015).
In contrast to these findings, Carraro et al. reported a lower level of some
tyrosinemetabolites in children with early asthma compared to transient
wheezers (Carraro et al., 2018).

The largest elevated group consisted of 20 fatty acid metabolites,
including saturated and unsaturated dicarboxylic acids, ω-oxo-acids,

TABLE 3 (Continued) Pathway related metabolites downregulated in the allergic asthma cohort.

m/z Charge Adj.
p-value

Log-fold-
change

Molecular
formula

Ionisation Δm
(ppm)

Compound Ann. ID
level

Fatty amides

200.201 pos 0.0008 0.63 C12H25NO [M + H]+ 0.5 Dodecanamide MS2 ID3

256.263 pos 0.0008 0.80 C16H33NO [M + H]+ −1.9 Hexadecanamide MS2 ID3

302.305 pos 0.0093 0.90 C18H37NO [M + H2O + H]+ −1.2 Octadecanamide MS2 ID3

288.253 pos 0.0003 0.74 C16H33NO3 [M + H]+ −1.1 N,N-bis(2-hydroxyethyl)
dodecanamide

MS2 ID3

316.2845 pos 0.0001 1.04 C18H35NO2 [M + H2O + H]+ −0.4 Palmitoleoylethanolaimde MS2 ID3

318.3 pos 0.0001 1.13 C18H37NO2 [M + H2O + H]+ −0.8 Palmitoylethanolamide MS2 ID3

Fatty acids

271.2265 pos 0.0006 0.77 C16H32O4 [M-H2O + H]+ −1.0 10,16-Dihydroxyhexadecanoic acid MS2 ID3

220.1905 pos 0.0041 0.37 C11H23NO2 [M + H2O + H]+ −1.0 11-Aminoundecanoic acid MS2 ID3

151.096 pos 0.0159 0.29 C6H12O3 [M + H2O + H]+ −3.2 6-Hydroxyhexanoic acid MS1 ID4

Putatively identified compounds downregulated on the allergic asthma cohort grouped by metabolic pathways or chemical families and ordered by their adjusted p-value. Exception: aldehydes

and fatty amides are sorted based on their chemical relation. Log-fold-change: positive values indicate higher average expression in the healthy group. Log-fold-change was calculated using

R-packege “limma” (Ritchie et al., 2015); see supplementary material section S3 for more details. The listedm/z values represent the measured values and the mass error (Δm) to the theoretical

mass is reported in ppmAnnotation (Ann.) e.g., based on literature (Lit.), references for literature-based identification are included in Supplementary Table S2. †: compounds that were detected

several times in different ionisation forms (listed in Supplementary Table S2). MS1: assignment based on full scan mode by literature match or pathway analysis, MS2: assignment based on real-

time tandem mass spectrometry spectra, ID: identification confidence level ranging from ID1 (high) to ID5 (low). 12(13)-EpOME: 12,13-Epoxyoctadec-9(Z)-enoic acid; 9 (10)-EpOME: 9,10-

Epoxyoctadec-12(Z)-enoic acid; 13(S)-HPODE: 13(S)-Hydroperoxy-9Z, 11E-octadecadienoic acid; 13(S)-HODE: 13(S)-Hydroxy-9Z, 11E-octadeca-dienoic acid.
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hydroxy-acids, and alkanoic acids. All lysine metabolites are additionally
fitting into this chemical family. A large part of these identified fatty acids
were previously reported being decreased in chronic obstructive
pulmonary disease exacerbations by SESI/HRMS and described as
metabolites of the ω-oxidation, a minor pathway of the fatty acid
oxidation (Gaugg et al., 2017a; 2019). Interestingly, important
molecules in asthma pathophysiology including arachidonic acid,
leukotrienes, and prostaglandins, although not detected in this study,
are also common substrates of the cytochrome P450ω-hydroxylases (Ni
and Liu, 2021). Therefore, our findings support the hypothesis that ω-
oxidation might be upregulated in allergic asthma. Butanoic and
pentanoic acid are both identified (ID2, Supplementary Table S2)
and were both reported to distinguish asthmatic from healthy
children in previous studies (Dallinga et al., 2010; van Mastrigt et al.,
2016; van Vliet et al., 2016). Furthermore, the findings from previous
metabolomic studies of an altered fatty acid metabolism in asthma is
supported by our data (Neerincx et al., 2017; Ferraro et al., 2018;
Papamichael et al., 2021).

Further, the 2-oxocarboxylic acid metabolism was also elevated in
the allergic asthmatic (Figure 2). 2-Oxoadipate and 2-aminoadipate are
overlapping with the lysine degradation pathway and glutamate is a
common metabolite involved in multiple metabolic pathways. The
metabolism of 2-oxocarboxylic acids is solely happening in archaea,
which are also represented in the gut microbiota. A review linked
methanogenic archaea as potential important contributors to atopic
diseases (Sereme et al., 2019). Additionally, 2-oxoadipate was previously
detected as an exhaled metabolite from the gut microbiota in a mice
model study (Lan et al., 2022).

Lastly, monosaccharides and derived metabolites were increased in
allergic asthma. This difference in carbohydratemetabolism of asthmatic
children is expected due to an altered energy demand and metabolism
(Papamichael et al., 2021).

A recently published study comparing children with acute asthma
exacerbations and healthy controls reported similar results to ours.
Despite investigating urine by high-performance liquid
chromatography mass spectrometry, they also reported an elevated
level of tyrosine metabolism including gentisate and increased
glucuronate as well as a downregulated linoleic acid metabolite and
palmitic acid in children with acute asthma (Li et al., 2022).

The most prominent group of downregulated metabolites was
associated with arginine and proline metabolism as well as arginine
biosynthesis. Arginase, an enzyme that converts arginine into ornithine
and urea is an important contributor to asthma pathophysiology
(Maarsingh et al., 2011). According to Maarsingh et al., increased
expression and activity of arginase in asthma mouse models resulted
in the promotion of inflammatory processes, decreased arginine and
increased ornithine and proline levels (Maarsingh et al., 2011). This is
not completely in line with our findings where these downstream
pathways are decreased in allergic asthma. However, a study about
amino acids in blood serum of asthmatics reported decreased arginine,
proline and ornithine levels (Morris et al., 2004).

Further, the linoleic acid metabolism was well-represented
amongst the diminished compounds. While conjugated linoleic
acid was consistently reported as having anti-inflammatory
properties, the effect of linoleic acid especially on asthma is in
dispute due to controversial observations in clinical trials

FIGURE 2
Schemes of metabolic pathways well-represented by compounds that were elevated in the allergic asthma group and putatively identified. Tyrosine
derivedmetabolites besides themain degradation pathway in humans are summarised in the box. Two unrelated compounds of the 2-oxocarboxylic acid
metabolism are not shown (see Table 2). Solid lines: direct metabolic relations; dashed lines: indirect metabolic relations (metabolites in between were
not identified); colored: putatively identified compound; bold: identified byMS2, regular: identified based on exactmass and pathwaymapping, or on
literature; italic: metabolites from gut microbiota; *, °, +, #, ,̂ ‘: several possibilities for 1 m/z feature based on exact mass and pathway mapping.
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(Wendell et al., 2014). Interestingly, a more recent study found
genetically predicted linoleic acid to be associated with a lower risk
for asthma, which is in line with our results (Zhao and Schooling,
2019).

Within the group of amides, palmitoylethanolamide (PEA) was
found to be decreased in the allergic asthma group. This is in line with
the well-studied anti-inflammatory effect of PEA (Clayton et al., 2021).
More recently, also an inhibitory effect for the development of allergic
airway symptoms was reported for PEA in mice (Roviezzo et al., 2017).

Another group of downregulated compounds was assigned to
aldehydes. Aldehydes are indicative of oxidative stress and originate
from lipid peroxidation (Jesenak et al., 2017), which is involved in asthma
pathophysiology, and are thus expected to be increased in asthmatics.
However, the results in literature on breath analysis in asthma are not
consistent: Some studies observed an increased level of certain aldehydes
in the asthmatic group (Gahleitner et al., 2013; van de Kant et al., 2013;
Smolinska et al., 2014), whereas others reported unaltered or even
decreased levels (Ibrahim et al., 2011; Sagdic et al., 2011; Caldeira
et al., 2012; Riscassi et al., 2022). Beyond this, aldehydes are also used
as common additives in cosmetics or food and are known environmental
contaminants (Sinharoy et al., 2019), which could influence their exhaled
concentrations. Furthermore, the annotation of aldehydes in our study
was based solely on exact mass matches with previously published
compounds by SESI/HRMS (see Supplementary Table S2).

Altogether, many of the enriched pathways that we reported
either elevated or decreased in allergic asthma could be linked to
previous findings of metabolomic studies using various methods for

blood, urine, or breath analysis. This strengthens the putative
compound identification performed in this work and supports
the possible biological and diagnostic value of these metabolites.

Assessing the predictability of the disease with supervised
machine learning in a 10 times repeated 10-fold cross-validation
revealed an AUC of 0.83 (CI: 0.73–0.92), indicating that the
metabolic profiles could be applied for potential diagnostic
purposes. Some compounds that were allocated to subgroups of
metabolic pathways or chemical families were frequently selected
during cross-validation (Figure 4C; Supplementary Table S4)
suggesting that a smaller group of compounds might not only be
pathophysiologically relevant, but also has potential for diagnostic
models. The two dicarboxylic acids and lysine metabolites, succinate
and glutarate, are promising candidates and were unambiguously
identified. Nevertheless, while efforts have been taken to prevent bias
by preprocessing data in each cross-validation loop and reducing the
dimensionality of the feature set for training the classifier with
machine learning, the risk of overfitting cannot be completely ruled
out (Vabalas et al., 2019). An independent and increased study
cohort would be needed to help in validating the model performance
and the selected predictors (Fijten et al., 2017).

Due to a rather large number of significant m/z features, a main
focus was set on putative compound identification. We aimed at
establishing an objective workflow that is based on matching direct
MS2 spectra with database fragment spectra, adapted from previous
work (Kaeslin et al., 2021), refined for a more extensive screening of
suggested compounds, and expanded by pathway enrichment

FIGURE 3
Schemes ofmetabolic pathways well-represented by compounds that were decreased in the allergic asthma group and putatively identified. Proline
metabolism: One component is not directly connected to the displayed pathway and is shown in the box. Solid lines: direct metabolic relations; dashed
lines: indirect metabolic relations; colored: putatively identified compound; bold: identified by MS2; regular: identified based on exact mass and pathway
mapping, or on literature; *, °, +: several possibilities for 1 m/z feature based on exact mass and pathway mapping.
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analysis to strengthen the feature annotation. A limitation in our
identification approach is the lacking chromatographic separation in
SESI/HRMS, which hinders the distinction of isomeric compounds.
Further, with a minimum isolation window of 0.7 Da, co-
fragmentation of several compounds with similar masses can
occur, which complicates the annotation of fragment spectra. To
address this, we excluded several MS2 spectra with insufficient
quality from further analysis, as specified in Supplementary Table
S1. The confidence of identification is only moderate for most
compounds, as they are putatively annotated based on fragment
spectra analysis with the SIRIUS software that uses computational
power to determine chemical structures that potentially have a
matching fragmentation pattern (Dührkop et al., 2019) or the
exact mass comparison to the literature and/or known
metabolites. Therefore, there is a general risk for
misclassification, and the confirmation of the unambiguous
chemical structures requires further time-consuming experiments,
including the measurement of standards. Especially, the molecules
that were annotated based on their exact mass or solely detected as
adduct or loss species without their primary ion being amongst the
significant features need further investigation. However, our aim for
this study was to get a broad overview over the potentially involved

metabolic pathways rather than accurately identifying a small set of
single compounds.

A strength of this study design is that all enrolled patients were
taken off long-term therapy at least 1 week prior to the study visit
and did not take any short-acting relievers on the day of
measurement. While direct breath analysis by SESI bypasses any
contamination during sample preparation, this adds up to also
diminish confounders and signal interferences from medications
in exhaled breath. This is an important aspect, as it was previously
shown that the methodology can detect drugs, including the asthma
medication Salbutamol, in breath (Gaugg et al., 2017b; Chen et al.,
2021; Singh et al., 2021).

While asthma is a heterogeneous disease with different
phenotypes, this study focused only on allergic asthma, the most
frequent phenotype in children. Therefore, our findings cannot be
extrapolated to all forms of pediatric asthma. We included all
sensitized healthy controls and all asthmatics with allergic
comorbidities such as allergic eczema or hay fever in order to
represent the real population for future applications. 21.4% of the
healthy cohort had an allergic sensitization to at least one common
aeroallergen, which is in line with the estimated prevalence in children
(Kölli et al., 2022). However, performing subgroup analysis on the

FIGURE 4
Disease prediction based on breath profiles. (A) Average receiver operating characteristic curve (ROC) with an average AUC of 0.83 resulting from
the 10 times repeated 10-fold cross-validation. ROC curves resulting from predictions on each of the left-out data sets in the cross-validation were used
to calculate the average ROC curve (Fawcett, 2006) (vertical averaging). Vertical grey bars: pointwise confidence intervals computed using bootstrapping
(10.000 repetitions); red dashed line: line of no discrimination. (B) Stacked bar plots of the selected features in each cross-validation iteration. Red/
blue color scheme: upregulated features in the allergic asthmatic/healthy group. (C) Heat map of the most frequently chosen features (standardized
intensities) as predictors in the cross-validation. Columns: study participants; rows:m/z features with putatively identified compounds (right), a chemical
formula is provided if compound identification was not possible.
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entire data set was not feasible since surrogate variable analysis is
known to adjust for confounding influences and reduce heterogeneity
in the data (e.g., demographic variations like age and sex, or disease
heterogeneity) (Jaffe et al., 2015). We decided to apply SVA to adjust
for unmodeled factors, since the study was conducted over a period of
15 months on a highly sensitive instrument. Therefore, despite a strict
adherence to standard operating procedures, we had to assume that
apart from demographic variation also unknown environmental or
technical confounders might have impacted the m/z feature
intensities. In order to nevertheless assess the interesting question
whether the described markers and pathways might also be related to
atopy by itself, we chose to perform an independent subgroup analysis
in the healthy cohort. No significant features that could distinguish
healthy children with allergic sensitization from the ones without
could be found. Therefore, the identified metabolites and pathways
represent promising candidate biomarkers for allergic asthma that
need to be validated in a larger and independent study cohort.

This study confirms the applicability of SESI/HRMS to a
pediatric population and shows its potential to distinguish
children with allergic asthma from healthy controls based on
their breath signatures. Moreover, well-represented metabolic
pathways that are potentially linked to the pathophysiology of
allergic asthma in children could be identified. A smaller subset
of the differentiating compounds could possibly be used for
predictive modelling. These findings might set the path for
much-needed, non-invasive clinical applications to improve early
diagnosis of asthma.
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