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Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most
aggressive and lethal malignancy with poor prognosis. To improve patient
outcomes, it is necessary to gain a better understanding of the oncogenesis
and progression of this disease. Metabolic reprogramming, particularly the
regulation of lactate metabolism, is known to have a significant impact on
tumor microenvironment and could provide valuable insights for the
management of PDAC patients. In this study, we aimed to investigate the
prognostic potential of lactate metabolism-related genes (LMRGs).

Methods: Transcriptomic data of patients with PDAC along with the clinical
outcomes were retrieved from The Cancer Genome Atlas database, and the
expression data in normal pancreas from Genotype-Tissue Expression dataset
were adopted as the normal control. By using Cox and LASSO regression models,
we identified key genes that are differentially expressed in cancerous tissues and
related to prognosis. To determine the prognostic value of LMRGs in PDAC, we
evaluated their clinical significance and model performance using both the area
under the receiver operator characteristic curve (AUC) and calibration curves. In
addition, we evaluated the drug sensitivity prediction and immune infiltration by
using oncoPredict algorithm, single sample gene set enrichment analysis and
Tumor Immune Estimation Resource.

Results: A total of 123 LMRGs were identified through differential gene screening
analysis, among which 7 LMRGs were identified to comprise a LMRGs signature
that independently predict overall survival of these PDAC patient. The AUC values
for the LMRGs signature were 0.786, 0.820, 0.837, and 0.816 for predicting 1-, 2-,
3- and 5-year overall survival respectively. Furthermore, this prognostic signature
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was used to stratify patients into high-risk and low-risk groups, with the former
having worse clinical outcomes. This observation was further validated through
analysis of the International Cancer Genome Consortium database. In addition,
lower sensitivity to gemcitabine and infiltration of immune effector cells were
observed in the cancer tissue of patients in the high-risk group.

Conclusion: In conclusion, our data suggests that a genomic signature comprised
of these LMRGs may be a novel predictor of overall clinical outcomes and present
therapeutic potential for PDAC patients.

KEYWORDS

pancreatic ductal adenocarcinoma, lactate metabolism, signature, chemotherapy,
immune infiltration

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is currently one of
the most aggressive and lethal malignancy in the world (Siegel et al.,
2020). Despite significant advances that have been made in the
development of therapeutic strategies such as radiotherapy and

pharmacological agents, the 5-year survival rate remains lower
than 10%. Notably, PDAC is currently the fourth and sixth
leading cause of cancer related death in the US and China,
respectively, and it is projected to become the second leading
cause of cancer death by 2030 (Rahib et al., 2014). One of the
biggest challenges posed in managing patients with PDAC is that

FIGURE 1
Expression levels of LMRGs in pancreatic tissues. (A) Heatmap showing the expression levels of identified LMRGs in pancreatic cancer tissues and
normal pancreas. (B) Volcano showing the relative expression of identified LMRGs in pancreatic cancer tissues and normal pancreas. (C) Boxplot showing
the expression level of identified LMRGs in pancreatic cancer tissues and normal pancreas; the y-axis shows absolute transcript expression levels
measured by FPKM. LMRGs, lactate metabolism-related genes; FPKM, fragments per kilobase of exon per million fragments mapped.
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majority of them are not diagnosed until late stages due to the lack of
symptoms, as well as early screening strategies. Once diagnosed in
later stages, a combination of different types of cytotoxic
chemotherapies is the first-line treatment strategy for PDAC,
alongside radiotherapies or immunotherapies; however, such
treatment strategies only afford modest success in improving
survival rates (Di Marco et al., 2010; Hidalgo, 2010; Wu et al., 2019).

It has been reported that genetic signatures of mutations on
KRAS, TP53, SMAD4 and CDKN2A potentially drive the oncogenic
force in the early stages of PDAC progression (Cicenas et al., 2017);
however, such genetic signatures have little therapeutic significance
except for KRAS, since advances have been made in treating PDAC
patients harboring KRASG12D or KRASG12C mutations (Hong
et al., 2020; Leidner et al., 2022). Indeed, there is a lack of biomarkers
or tools to evaluate the prognosis of PDAC patients, with

carbohydrate antigen 19–9 (CA19-9) being the only FDA-
approved biomarker used clinically. Taken together, for better
management of PDAC patients, there is an urgent need for novel
cellular tumor-related genetic signatures to evaluate the progression
of the tumor, develop better treatment strategies, and predict the
overall clinical outcomes.

Metabolic reprogramming is one of the emerging hallmarks of all
cancers (Hanahan andWeinberg, 2000; Hanahan andWeinberg, 2011).
Oncogenic mutations reprogram cancer cells to depend on aerobic
glycolysis to maintain malignant proliferation and growth. This enables
them to metabolize glucose for energy while producing lactate even
when oxygen is adequately supplied, a phenomenon known as the
Warburg effect (Bose et al., 2021). Such a metabolic feature of cancer
cells often leads to the pathological accumulation of lactate, which
promotes proliferation and growth of cancer cells (Brown and

FIGURE 2
Cox regression analysis and LASSO analysis of LMRGs in PDAC. (A)Univariate Cox regression analysis of the identified LMRGs screened 18 prognostic
LMRGs in PDAC. (B,C) Tuning parameter (λ) selection in LASSO model using cross-validation in PDAC. (B) The changing trajectory of each independent
variable. The horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the
independent variable. (C)Confidence intervals for each lambda. The horizontal axis represents the log value of the independent variable lambda, and
the vertical axis represents the error of cross-verification. (D)Multivariate Cox regression analysis of LMRGs in PDAC. LMRGs, lactate metabolism-related
genes; PDAC, pancreatic ductal adenocarcinoma.
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Ganapathy, 2020; Watson et al., 2021), potentially through
translocation into nucleus, regulating key oncogenic activation
through epigenetic histone lactylation, or through cell surface
GPR81 receptor (Brown and Ganapathy, 2020). Additionally,
acidification of the tumor microenvironment inhibits infiltration of
immune killer cells and promotes immunosuppressive phenotypes of
macrophages, neutrophils or T cells, thus affecting the efficacy of
immunotherapy (Deng et al., 2021; Cappellesso et al., 2022).

Importantly, given the significant presence and vital role of
lactate in almost all forms of tumors, it has been reported that
genetic signature comprised of changes in a host of lactate
metabolism-related genes (LMRGs) predicts the immuno-status
of tumor microenvironment as well as overall prognosis in
hepatocellular carcinoma (Li et al., 2021) and breast cancer
(Yang et al., 2022). In the present study, we aim to identify a

novel LMRGs signature to predict overall clinical outcomes and
provide therapeutic choices for PDAC patients.

2 Materials and methods

2.1 Transcriptomic data acquisition

RNA transcriptomic sequencing data and corresponding clinical
profiles of a total of 185 PDAC patients were retrieved fromThe Cancer
Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov). In
addition, due to the limited number of normal pancreas (n = 4) in
TCGA database, the gene expressions in normal pancreas (n = 167)
were downloaded as normal control from the Genotype-Tissue
Expression (GTEx) as previously described (Huang et al., 2020).

FIGURE 3
Prognostic value of LMRGs signature in PDAC. (A) Kaplan-Meier survival analysis between high-risk and low-risk subgroups based on LMRGs
expression in PDAC from TCGA database. (B,C) PCA and t-SNE were used to assess whether the samples could be accurately grouped based on the
LMRGs scores. (D) The riskscore of each pancreatic cancer patient. (E) The survival status and survival time of patients in different groups. (F) Heatmap of
the relative expression of 7 LMRGs in high-risk and low-risk subgroups. LMRGs, lactate metabolism-related genes; PDAC, pancreatic ductal
adenocarcinoma; TCGA, The Cancer Genome Atlas.
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Furthermore, we downloaded related expression and survival data of
96 PDAC patients from International Cancer Genome Consortium
(ICGC) database (https://dcc.icgc.org/), including PACA-AU cohort
(n = 77) and PACA-CA cohort (n = 19).

2.2 Identification of differentially expressed
LMRGs

All 294 LMRGs were retrieved from the Molecular Signature
Database for this analysis (Supplementary Table S1). To identify
specific LMRGs involved in the oncogenesis and progression of
PDAC, after exclusion of pathologically non-PDAC data in TCGA,
we performed a differential expression analysis in 167 normal tissues
(from GTEx) and 163 cancer tissues (from TCGA), which were

normalized in R using normalizeBetweenArrays (Cao et al., 2019).
Genes with log2 (fold change) > 1 and false discovery rate (FDR) <
0.05 were considered as differentially expressed gene.

2.3 Evaluation of potential prognostic values
of differentially expressed LMRGs

Patients who had a follow-up time no more than 30 days or had no
clinical overall survival (OS) data were excluded, then Cox regression
analysis was performed to identify the LMRGs that have potential
prognostic value. Additionally, LASSO Cox regression (iteration = 100)
model was utilized with the “glmnet” package to prevent overfitting, a
low mean-squared error were obtained via lasso.min (Zhang W. et al.,
2022a). Finally, the selected LMRGs were subjected to multivariate Cox

FIGURE 4
Representative immunostaining images of LMRGs in normal pancreas and PDAC from HPA. (A) DNAJC19. (B) SLC19A3. (C) PITRM1. (D) COG8. (E)
CYP27A1. (F)COX20. Brown stained for positive cells; data for NDUFS7weremissing. LMRGs, lactatemetabolism-related genes; PDAC, pancreatic ductal
adenocarcinoma; HPA, human protein atlas.
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regression analysis to determine the subset of genes that comprised the
LMRGs signature.

2.4 Protein expression of LMRGs in PDAC

Protein expression of identified LMRGs in normal pancreas or
PDAC were analyzed from the Human Protein Atlas (HPA) (Uhlén
et al., 2015), which aims to create a human proteome-wide map
through integrated omics technologies.

2.5 Detection and evaluation of low-risk vs.
high-risk based on LMRGs signature

Riskscore for the current TCGA-PDAC patient cohort were
calculated with the following equation: riskscore = expressional
levels of LMRG1 * coefficient factor of LMRG1 + expressional levels
of LMRG2 * coefficient factor of LMRG2 + . . . + expressional levels of
LMRGn * coefficient factor of LMRGn.

Patients with a calculated riskscore lower than the median value
of all patients were designated as “low-risk,” while those with a
calculated riskscore higher than the median value were
considered to be in the “high-risk” category. PCA and t-SNE
analyses were performed to ensure the accuracy of subgroup
classification. Subsequently, Kaplan-Meier survival analysis was
conducted to compare the OS time between the low-risk and
high-risk subgroups.

2.6 Evaluation of potential prognostic values
of riskscore and other clinical characteristics

Univariate and multivariate Cox regression, as well as receiver
operating characteristic (ROC) analysis, were performed to evaluate the
potential prognostic values of riskscore and other clinical characteristics,
including age, gender, grade, stage, tumor stage (T) and node stage (N).
Metastasis status (M) data were excluded due to the high rate of missing
values in the TCGA-PDAC dataset. ROC curves were generated using
the “survivalROC” package in R.

2.7 Establishment of nomograms of
prognostic

Nomograms were constructed based on the LMRGs signature
and key clinical parameters to predict the 1-, 2- and 3-year
survival probabilities for patients in the TCGA-PDAC cohort.
Calibration curves were employed to evaluate the consistency
between predicted survival rates and actual survival rates.

2.8 GO and KEGG enrichment analysis of
differentially expressed genes between
high-risk and low-risk groups

First, as mentioned above, genes with log2 (fold change) > 1 and
false discovery rate (FDR) < 0.05 were considered as differentially

expressed gene between high-risk and low-risk group. Second, GO
and KEGG pathway enrichment analysis were performed using
“clusterprofiler” package in R (version 4) to delineate the cellular,
molecular and metabolic pathways that are potentially influenced by
the afore-identified LMRGs.

2.9 Prediction of the sensitivity of
chemotherapies

We evaluated the drug sensitivity against gemcitabine, 5-
fluorouracil, oxaliplatin and cisplatin by utilizing the oncoPredict
R package as previously reported (Zhang J. et al., 2022b),
difference in drug sensitivity between high-risk and low-risk
groups was compared by sensitivity score, which was
positively correlated with the IC50 value of chemotherapy
agents (Maeser et al., 2021).

2.10 Comparison of immune cell infiltration
between low-risk and high-risk groups in
PDAC

First, we used the Tumor Immune Estimation Resource
(TIMER; http://timer.cistrome.org/) to analyze the correlation
between LMRGs expression and immune cell infiltration
(including B cell, CD8+ T cell, CD4+ T cell, macrophage,
neutrophil and dendritic cell) in PDAC (Li et al., 2017).
Second, we adopted single sample gene set enrichment
analysis (ssGSEA) to calculate the level of tumor immune
infiltration in the R package GSVA (Hänzelmann et al., 2013).
Additionally, ESTIMATE algorithm was employed to infer
immune and stromal components for PDAC samples
(Yoshihara et al., 2013).

2.11 Validation of prognostic value of LMRGs
in ICGC

The prognostic value of LMRGs were validated by using
previously described ICGC data. First, the riskscore was
calculated based on the formula provided by the TCGA
cohort. Next, the samples were categorized into high-risk or
low-risk groups based on the median riskscore of the ICGC
cohort. Time-dependent ROC and KM survival curves were
constructed to verify the predictive values of the signature.

2.12 Statistical analysis

All analyses were performed using R software (version 4). All
sample data were tested for normal distribution; if the dataset was
not normally distributed, difference between groups were
compared using Wilcoxon rank-sum test or Kruskal–Wallis
test. Cox regression model was used to perform univariate or
multivariate analysis. The log-rank test was utilized for the
evaluation of survival. Significance was defined as a
p-value <0.05.
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3 Results

3.1 Identification of specific LMRGs in PDAC

After exclusion of RNA genes, 123 out of the total
294 documented LMRGs were identified through screening for
differentially expressed genes using cancer data from TCGA and
normal data from GTEx, among which 76 were downregulated
while 47 were upregulated. To visualize the relative expressional
levels of these LMRGs in normal pancreas and pancreatic
cancerous tissues, we generated a heatmap and volcano plot
(Figures 1A, B). In addition, we presented the expression level
of the identified LMRGs in Figure 1C.

3.2 Construction of a prognostic LMRGs-
associated model in PDAC

To further explore the potential application of the PDAC-
specific LMRGs, we evaluated their prognostic potential.
Univariate Cox regression analysis revealed that 16 out of the
123 specific LMRGs were significantly associated with prognosis
(Figure 2A). After utilizing LASSO regression model to avoid
overfitting (Figures 2B, C), a total of 10 LMRGs were subjected to
further analysis with a multivariate Cox repression model
(Figure 2D) to establish a 7-gene signature that potentially
holds specific prognostic values for the management of PDAC
patients. Next, we calculated the riskscore of each patient based
on the expressional levels of the 7 LMRGs and classified them
into two subgroups: low-risk group and high-risk group. Kaplan-
Meier survival analysis demonstrated that patients with high
riskscore had significantly lower survival probability (Figure 3A).
Additionally, PCA and t-SNE analysis indicated that the patients
in different risk groups were distributed in two directions
(Figures 3B, C). Consistently, patients with high riskscore had
a higher probability of death earlier than those with low riskscore,
and the 7 LMRGs were differentially expressed in the two groups
(Figures 3D–F). Finally, the protein expression levels of the
LMRGs in PDAC and normal pancreas were validated in HPA
(Figure 4; except for NDUFS7, as data for its expression were
missing).

3.3 Independent prognostic value of the
LMRGs signature

First, univariate and multivariate Cox regression analyses were
conducted to determine whether the riskscore was an independent
prognostic predictor for OS in PDAC. As depicted in Figures 5A, B,
the riskscore demonstrated significant correlation with OS in both
univariate and multivariate Cox regression analyses. Moreover, we
evaluated the area under the receiver operator characteristic curve
(AUC) values of riskscore along with age, gender, grade, stage, T
and N status over time periods of 1-, 2-, 3- or 5-year (Figures 5C–F,
respectively). Our results indicate that the riskscore calculated
from the expressional levels of afore-identified LMRGs might play
a vital role in PDAC progression and is an independent predictor
of OS.

3.4 Establishment of a nomogram for
predicting survival in PDAC

For accurate and consistent prediction of overall clinical
outcomes, we established a nomogram that takes into
consideration of the hazard ratio (HR) of the LMRGs-based
riskscore as well as clinical information including age and N
(Figure 6A). Not surprisingly, patients older than 60 years or
with N1 status had a worse prognosis. Furthermore, the
calibration curves in Figure 6B demonstrated a high consistency
between the prediction and observation in the TCGA cohort,
providing evidence that our model can effectively predict clinical
outcomes of PDAC patients.

3.5 Predicted functions of LMRGs in PDAC

To predict the potential biological functions of these LMRGs, we
detected differentially expressed genes between low-risk and high-
risk groups using the TCGA cohort. GO pathway analysis (Figures
7A, B) revealed that the LMRGs signature is mainly associated with
metabolic and synthetic processes, such as “glucose transmembrane
transporter activity” and “hormone metabolic process.” In addition,
KEGG pathway analysis (Figures 7C, D) revealed that this LMRGs
signature was linked to tumorigenesis signaling cascades, such as
“PPAR signaling pathway,” as well as substrate metabolism
including pyruvate. Taken together, these results suggested that
the PDAC-specific LMRGs signature was associated with tumor
metabolism.

3.6 Correlation of LMRGs-based signature
with sensitivity to gemcitabine in PDAC

To better correlate the LMRGs-based signature with clinical
practice, we utilized the “oncoPredict” tool to estimate sensitivity to
frequently-used pancreatic cancer chemotherapy agents. Our analysis
showed that patients in the low-risk group had higher sensitivity to
gemcitabine (Figure 8A). However, there were no significant differences
in sensitivity to 5-fluorouracil, oxaliplatin or cisplatin between high-risk
and low-risk groups (Figures 8B–D).

3.7 Assessment of tumor microenvironment
in relation to LMRGs in PDAC

Lactate played key roles in cancer progression and immune evasion
(de la Cruz-Lopez et al., 2019). Therefore, we explored the correlation
between expression of the 7 LMRGs and tumor-infiltrating immune
cells in PDAC with TIMER, and found a low correlation in DNAJC19
(Figure 9A; r = 0.19 for CD8+ T cells), SLC19A3 (Figure 9B; r = 0.207 for
B cell; r = 0.192 for CD8+ T cell; r = 0.274 for CD4+ T cell; r = 0.192 for
neutrophil; r = 0.17 for dendritic cell) and PITRM1 (Figure 9C; r =
0.226 for CD4+ T cell; r = 0.185 for macrophage; r = 0.151 for dendritic
cell), a medium correlation in COG8 (Figure 9D; r = 0.358 for B cell; r =
0.48 for CD8+ T cell; r = 0.542 for macrophage; r = 0.364 for neutrophil;
r = 0.434 for dendritic cell), CYP27A1 (Figure 9E; r = 0.203 for B cell; r =
0.243 for CD8+ T cell; r = 0.341 for CD4+ T cell; r = 0.402 for
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macrophage; r = 0.392 for neutrophil; r = 0.395 for dendritic cell) and
COX20 (Figure 9F; r = 0.166 for B cell; r = 0.35 for CD8+ T cell;
r = −0.159 for CD4+ T cell; r = 0.176 for macrophage; r = 0.177 for
neutrophil; r = 0.22 for dendritic cell), whereas a negative correlation in

NDUFS7 (Figure 9G; r = −0.222 for B cell; r = −0.434 for CD8+ T cell;
r = 0.283 for CD4+ T cell; r = −0.238 for macrophage; r = −0.228 for
neutrophil; r = −0.238 for dendritic cell). Next, we explored the
correlation between LMRGs signature and the tumor

FIGURE 5
Prognostic value of LMRGs score and other clinical characteristics in PDAC. (A) Univariate Cox regression analysis of the riskscore based on the
LMRGs signature and other clinical characteristics, including age, gender, grade and stage in PDAC patients. (B)Multivariate Cox regression analysis of the
riskscore and other clinical characteristics in PDAC patients. (C–F) ROC analysis to evaluate the 1-year, 2-year, 3-year, and 5-year OS of PDAC patients.
LMRGs, lactate metabolism-related genes; PDAC, pancreatic ductal adenocarcinoma; ROC, receiver operating characteristic; OS, overall survival.
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FIGURE 6
Nomogram for estimation of the survival rate of PDAC patients. (A) Development of a nomogram by combining LMRGs score with age and N status
to predict the survival probability of PDAC in TCGA dataset. (B)Calibration curves of the nomogram for 1-year, 2-year, and 3-year survival. LMRGs, lactate
metabolism-related genes; PDAC, pancreatic ductal adenocarcinoma; TCGA, The Cancer Genome Atlas.

FIGURE 7
Identification and enrichment analysis of LMRGs in PDAC. (A,B) Barplot and bubble map of GO enrichment analysis. (C,D) Barplot and bubble map of
KEGG pathway enrichment analysis. LMRGs, lactate metabolism-related genes; PDAC, pancreatic ductal adenocarcinoma.
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microenvironment. As for immune cell infiltration, ssGSEA showed
that there were more B cells, immature dendritic cells (iDCs),
neutrophils, plasmacytoid dendritic cells (pDCs), T helper cells and
tumor infiltration lymphocytes (TIL) in the low-risk group
(Figure 10A). For immune cell function, “T_cell_co-stimulation” and
“Type_II_IFN_Response” were more activated in the low-risk groups
(Figure 10B).

In addition, since the tumor microenvironment was dominated by
fibroblast in PDAC, we used the “ESTIMATE” algorithm to calculate the
stromal and immune scores.Our results indicated that the immune score
in low-risk group was significantly higher than that in high-risk group,
whereas the between-group difference for the tumor purity or stromal
score did not reach significance (Figure 10C). Figure 10D depicted the
variation in tumor purity, estimate score, immune score, stromal score,
immune cell infiltration and function with increasing riskscore.

3.8 Validation of the prognostic value in
ICGC datasets

The prognostic value of the LMRGs signature was externally
validated using ICGC datasets. As shown in Figure 11A, patients in

the low-risk group had better OS than those in the high-risk group (p <
0.05), with the AUC for 1-year OS being 0.64 (Figure 11B).

4 Discussion

PDAC is among the most prevalent and aggressive types of
cancer worldwide, with a reported 5-year survival rate of 10% or
less (Siegel et al., 2020). Due to lack of symptoms as well as early
screening strategies, unfortunately vast majority of patients do
not receive the diagnosis until the tumor reaches metastatic
stages and become ineligible for surgical resection (Lin et al.,
2015). Cytotoxic chemotherapies or radiotherapy was relied on
for the treatment of advanced PDAC; however, very modest
success has been shown with such treatment strategy (Goess and
Friess, 2018). On the other hand, over the last decades, extensive
efforts have been made to identify novel prognostic and
predictive factors in PDAC, including glypican-1 expressing
circulating exosome (Moutinho-Ribeiro et al., 2022), micro-
and long-non-coding RNAs (Ashrafizadeh et al., 2022; Prinz
et al., 2022), circulating tumorous DNA and cells (Chapin et al.,
2022), as well as CA19-9 (Zhao et al., 2022). Notably, CA19-9 is

FIGURE 8
LMRGs signature is associated with chemotherapy response in PDAC. To predict the drug sensitivity of high- and low-risk patients to gemcitabine
(A), 5-fluorouracil (B), oxaliplatin (C) or cisplatin (D), sensitivity scores were generated by OncoPredict. LMRGs, lactate metabolism-related genes; PDAC,
pancreatic ductal adenocarcinoma. Lower score represent higher sensitivity.
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FIGURE 9
Correlation between expression of LMRGs and tumor purity or immune infiltration levels in PDAC through TIMER. (A) Scatter plots showing the
correlations between DNAJC19 expression and tumor purity or immune cell infiltration. (B) Scatter plots showing the correlations between
SLC19A3 expression and tumor purity or immune cell infiltration. (C) Scatter plots showing the correlations between PITRM1 expression and tumor purity
or immune cell infiltration. (D) Scatter plots showing the correlations between COG8 expression and tumor purity or immune cell infiltration. (E)
Scatter plots showing the correlations between CYP27A1 expression and tumor purity or immune cell infiltration. (F) Scatter plots showing the
correlations between FAM36A expression and tumor purity or immune cell infiltration. FAM36A is one of aliases for COX20. (G) Scatter plots showing the
correlations between NDUFS7 expression and tumor purity or immune cell infiltration. LMRGs, lactate metabolism-related genes; PDAC, pancreatic
ductal adenocarcinoma; TIMER, Tumor Immune Estimation Resource. p < 0.05 was considered statistically significant.
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FIGURE 10
Features of tumor microenvironment in different LMRGs subgroups of PDAC. (A,B) Different immune cell infiltration (A) or immune cell function (B)
between low-risk and high-risk groups, which was calculated using ssGSEA algorithm. (C) The Boxplots showing the difference in purity, immune score,
and stromal score between low-risk and high-risk groups, which was calculated using ESTIMATE algorithm. (D) The heatmap displayed the tumor purity,
ESTIMATE score, immune score, and stromal score of each PDAC sample. LMRGs, lactate metabolism-related genes; PDAC, pancreatic ductal
adenocarcinoma; ssGSEA, single sample gene set enrichment analysis.
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the only FDA-approved and clinically used biomarker.
Therefore, identification of novel prognostic and targetable
biological markers are warranted to improve the management
for PDAC patients.

There is a growing body of evidence indicating that lactate
homeostasis plays a vital role in the progression of nearly all types
of cancers. Cancer cells often rely on aerobic glycolysis to

maintain malignant proliferation and growth, which leads to
excessive production of lactate, (Hanahan and Weinberg, 2000;
Hanahan andWeinberg, 2011). It has been proposed that LMRGs
may be involved in the oncogenesis and progression of various
types of cancers. Indeed, a LMRGs signature consisted of 6 genes
was reported to be independent prognostic predictor for
hepatocellular carcinoma (Li et al., 2021). Building on this

FIGURE 11
Validation of the prognostic value in ICGC datasets. (A) Kaplan-Meier for OS in PDAC patients in ICGC datasets stratified by the mean LMRGs score.
(B) The ROC curve for 1-year OS in PDAC patients in ICGC datasets, according to the LMRGs signature. ICGC, International Cancer GenomeConsortium;
OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; LMRGs, lactate metabolism-related genes; ROC, receiver operating characteristic.

FIGURE 12
Flow chart of data selection and analysis in this study.
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observation, we aimed to construct a unique LMRGs signature
with accurate prognostic value for PDAC patients in the current
study (Figure 12).

There have been studies exploring the prognostic value of
metabolic-related signature in PDAC (Huo et al., 2021), the
authors focused mainly on the metabolic enzymes and
transporters, therefore, some LMRGs were not in the list of
analyzed genes. In our study, a genetic signature comprised of
7 LMRGs, namely, DNAJC19, SLC19A3, PITRM1, COG8,
CYP27A1, COX20 and NDUFS7, was identified through
differential analysis (Figure 1) and Cox/LASSO regression
analysis (Figure 2). When stratify the current patient
population into low- or high-risk subgroups based on the
expressional levels of the aforementioned LMRGs, we observed
a significantly lower OS in the high-risk patient subgroup,
suggesting the prognostic value of the LMRGs signature
(Figure 3), in addition, the protein expression of these LMRGs
was validated in HPA (Figure 4). More importantly, such
prognostic value of the riskscore is independent of other
clinical factors including age, gender, grade and tumor stage
(Figures 5, 6).

Interestingly, SLC19A3(36) and CYP27A1 (Arem et al., 2015)
have been previously implicated in the oncogenesis and progression
of PDAC, which partially confirmed the results of our study.
Whereas the precise function of DNAJC19, PITRM1, COG8,
COX20 or NDUFS7 in PDAC remains unknown. DNAJC19 was
the only gene which showed negative correlation with OS (HR
18.059). It plays an important role in mitochondrial protein import
machinery in the inner mitochondrial membrane and has been
reported to play an important role in cardiomyopathy (Al Tuwaijri
et al., 2022; Wachoski-Dark et al., 2022); in non-small-cell lung
cancer, DNAJC19 was demonstrated to promote tumor cell growth
and metastasis by regulating PI3K/AKT signaling (Zhou et al.,
2021). PITRM1 belongs to metallopeptidase and has been
reported to be associated with hypoxia and glucose deprivation
in glioma cells (Minchenko et al., 2020). COG8 played key roles in
protein glycosylation and correlated with favorable OS in kidney
renal clear cell carcinoma (Zhang et al., 2021).

Not unexpectedly, genes correlated with the LMRGs
signature were enriched in metabolic pathway, such as
“pyruvate metabolism” (Figure 7). Since acid tumor
microenvironment contributed to chemotherapy and
immunotherapy resistance (Wang et al., 2020), we then
investigated whether the LMRGs signature is capable of
prognosticating the patients’ response to the most commonly-
used chemotherapeutic agents in PDAC. Our findings revealed
that patients with higher riskscore were less sensitive to
gemcitabine, but not 5-fluorouracil, oxaliplatin, or cisplatin
(Figure 8), these results suggest that the LMRGs signature
may serve as a potential predictive marker for treatment
response to gemcitabine in PDAC patients. Moreover, we
found that high LMRGs score correlated with low infiltration
of effector immune cells and low immune cell function (Figures 9,
10), which was in accordance with other studies that showed
lactate plays a key role in constructing the immunosuppressive

microenvironment of PDAC (Husain et al., 2013; de la Cruz-
Lopez et al., 2019), and it has been previously indicated that
SLC19A3 or COG8 was highly associated with immune
infiltration in PDAC or dermatomyositis (Huang et al., 2022;
Meng et al., 2022)

Finally, the prognostic value of LMRGs signature was
validated by using ICGC dataset (Figure 11). Taken together,
lower sensitivity to gemcitabine and less immune cell
infiltration could partially explain the poor prognosis in the
high-risk group.

Collectively, the results of our study indicate that a genomic
signature comprised of these LMRGs may be a novel predictor of
overall clinical outcomes and holds therapeutic potential for
PDAC patients. However, since our data mainly relied on
bioinformatics analysis, future experimental studies are
warranted to investigate the potential biological mechanisms
of these LMRGs, such as DNAJC19, in PDAC.
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