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RNA sequencing (RNA-seq) is a reliable tool for detecting gene fusions in acute
leukemia. Multiple bioinformatics pipelines have been developed to analyze RNA-
seq data, but an agreed gold standard has not been established. This study aimed
to compare the applicability of 5 fusion calling pipelines (Arriba, deFuse, CICERO,
FusionCatcher, and STAR-Fusion), as well as to define and develop an integrative
bioinformatics pipeline (Fusion InPipe) to detect clinically relevant gene fusions in
acute pediatric leukemia. We analyzed RNA-seq data by each pipeline individually
and by Fusion InPipe. Each algorithm individually called most of the fusions with
similar sensitivity and precision. However, not all rearrangements were called,
suggesting that choosing a single pipeline might cause missing important fusions.
To improve this, we integrated the results of the five algorithms in just one pipeline,
Fusion InPipe, comparing the output from the agreement of 5/5, 4/5, and 3/
5 algorithms. The maximum sensitivity was achieved with the agreement of 3/
5 algorithms, with a global sensitivity of 95%, achieving a 100% in patients’ data.
Furthermore, we showed the necessity of filtering steps to reduce the false
positive detection rate. Here, we demonstrate that Fusion InPipe is an
excellent tool for fusion detection in pediatric acute leukemia with the best
performance when selecting those fusions called by at least 3/5 pipelines.
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1 Introduction

Gene fusions play an important role in different cancer types. These events can result
from different structural variations, such as translocations, inversions, or deletions.
Consequently, two separated genes will be juxtaposed, producing an aberrant protein
product or a dysregulated transcription of these genes. When the affected genes are
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oncogenes or tumor suppressor genes, this fusion may lead to cancer
development. Thus, their identification is crucial, as they can be
useful for precise diagnosis, risk stratification, or as a therapy target
(Mitelman et al., 2007; Gao et al., 2018).

Acute leukemia (AL) is the most common cancer type and one
of the leading causes of cancer-related death in children (Hunger
and Mullighan, 2015). Genetics has proved to be a powerful tool in
understanding leukemia while providing essential diagnostic and
prognostic information. Currently, the identification of genetic
abnormalities in AL patients is performed by conventional
cytogenetics, Fluorescence In Situ Hybridization (FISH), and
retro-transcriptase (quantitative) PCR (RT-(q)PCR) (Malard and
Mohty, 2020). Unfortunately, with the use of these conventional
methodologies, there is a proportion of patients in whom we cannot
identify genetic abnormalities (Inaba and Mullighan, 2020).
Advances in Next-Generation Sequencing (NGS) have improved
their identification, and NGS-targeted panels are starting to be
introduced to clinical routine, facilitating the detection of less
common rearrangements. However, they look into a selection of
genes, and more extensive and complete studies, such as whole
genome sequencing (WGS) or whole transcriptome sequencing
(WTS), need to be performed to allow the detection of all the
possible disease-causing alterations.

Over the last few years, RNA sequencing (RNA-seq) has become
a well-established tool for the massive detection of fusion transcripts
and determining gene expression profiles (LaHaye et al., 2021). Its
introduction in clinical diagnostics has allowed the identification of
new driver genomic lesions, which have improved the risk-
stratification of the patients and have led to the establishment of
new leukemia subtypes (Zaliova et al., 2019).

Although a large number of bioinformatics tools have been
developed to analyze RNA-seq data to detect fusion genes, there is
still no gold standard (Liu et al., 2015; Kumar et al., 2016; Haas et al.,
2019). Each tool has its own configuration parameters and
performance characteristics that give rise to differences in
specificity and sensitivity between methods. Thus, it is crucial the
selection of the bioinformatics tools that are best suited to the study
being conducted (Audoux et al., 2017).

The main problem when analyzing RNA-seq data is the elevated
rate of false-positive fusions detected. To increase specificity, all
bioinformatic tools apply different filters in the last steps of the
analysis. Sometimes these filters can be too strict; consequently, true
positive fusions can occasionally be discarded. Therefore, an
exhaustive evaluation of fusion calls and filtering strategies are
needed to obtain good sensitivity and specificity. Furthermore,
using more than one algorithm is highly recommended to obtain
better accuracy when identifying gene fusion candidates (Carrara
et al., 2013; Dupain et al., 2017).

Taken together, fusion gene identification has become an
important part of the diagnosis in AL, and so far, different
available pipelines have been used for the study of leukemia,
but no unique software is able to detect all fusion alterations
consistently. Thus, we continue facing different challenges when
trying to detect fusion genes. To address this topic, here we
present the study of the individual performance of five different
pipelines and the introduction of an integrative algorithm
selecting a new combination of pipelines to facilitate the
analysis in clinical routine. Furthermore, we show an analysis

of its performance in detecting driver fusion genes involved in
childhood leukemia.

2 Materials and methods

2.1 Training datasets

We used two different datasets, public transcriptomics’ data
from different cell lines and internally generated patient
transcriptomic data, for the comparison of the selected pipelines
and the evaluation of our integrative bioinformatics pipeline. We
used cell lines data from different online repositories to determine
whether the individual bioinformatics pipelines and the new
integrative pipeline were useful for detecting driver, clinically
meaningful leukemia rearrangements already identified by other
methods. Later, all these pipelines were used to analyze our training
patients’ dataset.

2.1.1 Cell lines’ data
To evaluate the performance of the analysis of the

bioinformatics pipelines, we used different cell lines RNA-Seq
datasets deposited in public repositories (ENA number:
PRJEB30312; ArrayExpress ID: E-MTAB-7721). These cell lines
present a thorough genomic characterization as they have been
used for years as leukemia disease models for different experiments.
They have been studied cytogenetically, immunologically, and
molecularly and validated by high throughput NGS approaches
(whole exome sequencing and RNA-sequencing) (Quentmeier et al.,
2019). We selected 14 different leukemia cell lines harboring
common fusion genes in main AL subtypes. The cell lines and
their genetic characteristics are listed in the (Supplementary
Table S1).

2.1.2 Patients’ data
A subgroup of fifteen patients harboring some of the most

common leukemia rearrangements were selected and studied by
RNA-seq. All the patients were previously characterized in our
center by karyotype, FISH, RT-qPCR, and NGS (amplicon-based
targeted panel). Supplementary Table S2 shows the main genetic
characteristics of the sequenced patients.

2.2 RNA-seq library preparation and
sequencing

Libraries were performed in our center following the TruSeq
stranded mRNA-seq protocol (Illumina) and sequenced in a
NextSeq500 instrument (Illumina) according to the
manufacturer’s instructions. Data were analyzed using the
selected bioinformatics pipelines (see below).

2.3 Fusion detection pipelines

The pipelines Arriba (Uhrig et al., 2021), CICERO (Tian et al.,
2020), deFuse (McPherson et al., 2011), FusionCatcher (Nicorici
et al., 2014)and STAR-Fusion (Haas et al., 2017) were selected due to
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having good-performance and as the representation of a wide
spectrum of fusion calling strategies based on literature search.
All the software packages were downloaded, installed, and run
using the default configuration on our server. A brief description
of the selected pipelines is given in the following sections.

2.3.1 Arriba (AR)
Command-line tool developed for gene fusion detection from

pair-end and single-end RNA-seq data in clinical research. It also
detects other structural rearrangements, such as internal tandem
duplications (ITD), etc. It uses STAR aligner to align sequences and
obtain the list of fusion candidates. STAR searches for split reads and
spanning reads in order to detect chimeric alignments.

2.3.2 CICERO (CI)
Local assembly-based algorithm set up for fusion gene detection

as well as ITDs. STAR is used for the alignment and mapping
followed by duplicate reads removal with Picard. The candidate
fusion list is generated by the identification of soft-clipped reads.
Then, fusion contigs are assembled and mapped, using BLAT to
identify the breakpoint.

2.3.3 DeFuse (DF)
This algorithm was developed to detect gene fusions from RNA-

seq data. It uses discordant paired-end alignments to identify split
reads, analyze, and find fusion boundaries. Predicted fusions are
then filtered to reduce the false positive candidates. Finally, a list of
fully annotated predicted fusions is generated.

2.3.4 FusionCatcher (FC)
This software tool was generated to detect fusion genes in pair-

end RNA-seq data from vertebrates annotated in the Ensembl
database. It performs a quality filtering of the reads before
starting with the alignment. Mapped reads are used to generate a
preliminary list of candidates by searching spanning reads. To
determine the exact breakpoint, it uses a combination of four
aligners, Bowtie, BLAT, STAR, and Bowtie2.

2.3.5 STAR-fusion (SF)
This bioinformatic tool uses the STAR aligner to align reads

from RNA-seq data, ideally, pair-end reads, and identify candidate
fusion transcripts. The output generated is processed by STAR-
fusion to map split and spanning reads to a reference annotation set.

2.4 Filtering steps

Different filters were manually applied to the candidate list of
called fusion genes in order to reduce the number of artifacts and
identify those fusions with potential clinical relevance in leukemia,
considering the current knowledge. Each of the pipelines has
different output files depending on their internal analysis
workflow and consequently they display different information of
the called fusion genes (Supplementary Table S3; Supplementary
Table S4). However, most of the given information is similar for all
the pipelines and therefore the filters that were applied were all in the
same direction; reduce and eliminate artifacts and FP variants. To
achieve this, we focused on discarding those calls with low

confidence, a low number of reads evidencing the presence of a
fusion (split and spanning reads) and, if available, we considered
their pathogenicity and other information of interest such as their
presence in healthy cohorts or information of the genes involved in
the fusion. Filters applied to each pipeline are listed in the
Supplemental Material.

Additionally, a manual inspection of the remaining fusion
candidates was performed. First, read-through fusions (e.g.,
MTAP:CDKN2B-AS1 or RAG1:IFTAP), out-of-frame fusions,
and those fusions including breakpoints out of splice-sites or
coding exons were discarded. Fusion genes containing repeat
regions, paralogs, pseudogenes, genes rearranged with more than
one gene in the same patient (promiscuous genes), and
rearrangements involving genes not related to leukemia were also
removed. Those fusions containing genes with clinical relevance in
leukemia were retained on the candidate list, regardless its
promiscuity or nature of the rearrangement, to determine later
their possible impact on the disease. Secondly, final candidate
rearrangements were visually inspected using the Integrative
Genomics Viewer (IGV). By introducing the breakpoint
coordinates on the tool, a split screen is opened, and we can
visualize the alignments. When a fusion gene is formed, part of
the reads are aligned correctly on the gene but the other part can be
seen erroneously aligned, confirming that a rearrangement has been
produced. Moreover, a blast of the sequence must confirm that the
non-aligned part of the read belongs to the expected partner of the
gene fusion to support the fusion. Finally, a bibliographic review of
the final candidates was performed to obtain information about the
rearrangement in case it had been previously described and
determine its possible pathogenicity or its involvement in leukemia.

2.5 Fusion gene integration pipeline (Fusion
InPipe)

As individual fusion callers may miss some of the fusion
candidates, we developed the Fusion Gene Integration Pipeline
[Fusion InPipe (FIP)], based on the MetaFusion model
(Apostolides et al., 2021), to standardize and integrate the
outputs from various fusion callers and get a better performance
than using the fusion callers individually.

Fusion InPipe has a modular pipeline architecture
implemented in bash and Python-based frameworks as shown
in Figure 1. In the first module, paired-end RNA-seq FASTQ files
are mapped to reference genome GRCh38 using STAR aligner.
Next, each caller runs independently to get its own fusion call
output. Lastly, the output files generated for each caller are
standardized to facilitate the combination of the results of the
different callers. The final output includes one file with all the
reported fusions by all the algorithms in a standard format and a
summary file with the fusion callers’ information (number and
names) that detect each fusion event.

For the analysis of the fusion genes called by Fusion InPipe, we
first had a look at those fusions called by all the pipelines, then at the
rearrangements detected by a minimum of 4 pipelines, and finally,
the candidates called by at least 3 of the five pipelines. To reduce the
possible false-positive variants, we applied the above-mentioned
filters.
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2.6 Accuracy assessment of the pipelines

True positive (TP), false positive (FP), and false negative (FN)
fusion predictions were assessed for the different methods.

In order to ensure the performance of the tool in clinical
practice, TP fusions were defined as those gene fusions with
clinical impact previously reported by other methodologies in the
analyzed cell lines or patients and called by the different pipelines.

FN fusions were defined as gene fusions previously reported by
other methodologies that failed to be detected by RNA-seq.

Finally, in our study, we considered as FP fusions all the detected
fusions by RNA-seq that were not previously reported in the
comprehensively analyzed cell lines or patient samples. However,
for future studies in a discovery setting, not previously described
variants should not automatically be named false positive fusions
and should be confirmed by other methodologies to rule out
artifacts.

Sensitivity and precision values were calculated as:

Sensitivity � TPfusions identified( )/ TP + FNfusions( )( )

Precision � TPfusions identified( )/ TP + FPfusions( )( )

To define the general performance of the pipelines we calculated
the F1-score. F1-score is a measure that combines sensitivity and
precision. An F1-score of 0 indicates a poor measure and therefore a
bad performance of the tool, while a good F1-Measure score should
be near 1. F1-score is calculated with the following equation:

F1 Score � 2 × Sensitivity × Precision( )/ Sensitivity + Precision( )( )

3 Results

In order to evaluate if the selected pipelines were able to detect
leukemic driver rearrangements, we used RNA-seq data from

different leukemia cell lines (available in public repositories), and
from a cohort of patients sequenced in our center.

We first assessed the performance of each algorithm separately
and compared the results obtained for each sample and patient.
Secondly, we performed Fusion InPipe by combining the outputs of
the different pipelines in just one file. For the Fusion InPipe, we
compared the outputs obtained from the agreement of 5/5,
minimum 4/5, and minimum 3/5 pipelines for both cell lines and
patients’ data. In global, the different algorithms separately, as well
as Fusion InPipe, detected most of the expected rearrangements on
the cell lines and the patients’ data (Figure 2).

3.1 Fusion detection by individual currently
available bioinformatics pipelines

First, we analyzed the different pipelines separately. Each of the
bioinformatics pipelines inspected 14 cell lines. The total number of
fusions called prior to and after applying manual filters and manual
inspection differed between the different tools. However, at the end
of the analysis, all the pipelines detected most of the expected
rearrangements.

3.1.1 Fusion detection in cell lines’ data
The initial number of calls by the different pipelines was 584

(AR), 960 (CI), 6104 (DF), 7976 (FC), and 114 (SF). After manual
filtering, the number of candidate fusions was drastically reduced
to 37 (AR), 28 (CI), 61 (DF), 159 (FC) and 19 (SF). However, not
all the artifacts were discarded at this step. Finally, a manual
curation based on IGV visualization and a bibliographic review of
the filtered candidates was needed to just retain the TP fusions.
The final list of candidates varied from 15 to 22, depending on the
pipeline.

In this dataset, all the fusions were called by more than one
pipeline except for NKX2.5::BCL11B, TLX3::BCL11B, and LMO1::

FIGURE 1
The Fusion InPipe workflow for processing RNAseq data. Fusion InPipe contains three modules: Alignment, Fusion Calling, and Integration.
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TRD, which were not detected by any of the studied pipelines.
FusionCatcher was able to detect all the fusions except the ones
mentioned before. Arriba, CICERO, deFuse, and STAR-fusion,
failed in the identification of other rearrangements (Figure 2).

The sensitivity and precision for each pipeline are shown in
Table 1 and Supplementary Figure S1. FusionCatcher achieved the
highest sensitivity (84.2%) followed by Arriba (73.7%), CICERO
(73.3%), and STAR-Fusion (73.7%) while deFuse had the lowest

sensitivity (63.2%). Regarding precision, Arriba and CICERO
obtained the highest value (93.3%), and deFuse obtained the
minimum value (66.67%).

3.1.2 Fusion detection in a cohort of patients’ data
We sequenced the transcriptome of 15 patients diagnosed with

pediatric leukemia and previously characterized by conventional
molecular methodologies. Results were analyzed using the different

FIGURE 2
Rearrangements detected by the different pipelines. Green boxes indicate the correct detection of the alteration. N.D. indicates no detection by the
algorithm.
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bioinformatics pipelines to confirm that the selected algorithms also
work optimally for patients’ data.

The results obtained were similar to those achieved when
analyzing cell lines’ data. The number of gene fusions called by
Arriba, CICERO, deFuse, FusionCatcher, and STAR-fusion in raw
data were 407, 1294, 714, 3,184, and 104 respectively. After
prioritization, the total number of gene fusions retained were 48
(AR), 22 (CI), 48 (DF), 133 (FC), 25 (SF). Manual curation and
visual inspection resulted in a final fusion count for each algorithm
of 19, 16, 16, 22, and 25 respectively.

STIL::TAL1 and P2RY8::CRLF2 were the gene fusions with less
percentage of detection as they were just detected by three of the five
algorithms, but all the fusions were called by at least one pipeline.

For this dataset, the highest sensitivity was achieved by
FusionCatcher (95.5%) followed by STAR-Fusion (90.9%), Arriba

(86.4%), and CICERO (72.7%). As well as in cell lines’ analysis,
deFuse presented the lowest sensitivity (72.7%). However, it
achieved a precision of 100%, as well as Arriba and CICERO.
The lowest precision (80%) was achieved by STAR-FUSION (see
Table 1; Supplementary Figure S1).

3.1.3 General performance of the individual
pipelines

Bringing together all the results for the individual performance
of the pipelines, a large number of artifacts were initially called [958
(AR), 2,224 (CI), 6790 (DF), 11,123 (FC), and 184 (SF)], giving a
high rate of FP fusions. The use of the different filters allowed for
discarding the majority of the FP fusions reducing the final number
to 1, 1, 6, 7, and 10, respectively, which manifests the need for
filtering steps.

TABLE 1 Performance of each algorithm, individually or ensembled, in cell lines’ data, patients’ sample data, and global analysis. Total fusions and true positive
fusions are referred to the number of gene fusions identified after manual curation.

Bioinformatic pipeline Total fusions identified True positive fusions identified Sensitivity Precision F1-score

CELL LINES

Arriba 15 14 73.7 93.3 0.82

CICERO 15 14 73.7 93.3 0.82

DeFuse 18 12 63.2 66.7 0.65

FusionCatcher 22 16 84.2 72.7 0.78

STAR-Fusion 19 14 73.7 73.7 0.74

Fusion InPipe 5 callers 14 13 68.4 92.9 0.79

Fusion InPipe 4 callers 16 14 73.7 87.5 0.80

Fusion InPipe 3 callers 20 16 84.2 80 0.82

COHORT OF PATIENTS

Arriba 19 19 86.4 100 0.93

CICERO 16 16 72.7 100 0.84

DeFuse 16 16 72.7 100 0.84

FusionCatcher 22 21 95.5 95.5 0.96

STAR-Fusion 25 20 90.5 80 0.85

Fusion InPipe 5 callers 12 12 54.5 100 0.71

Fusion InPipe 4 callers 28 18 81.8 100 0.90

Fusion InPipe 3 callers 23 22 100 95.7 0.98

GLOBAL

Arriba 34 33 82.5 97.1 0.89

CICERO 31 30 75 96.8 0.85

DeFuse 34 28 70 82.4 0.76

FusionCatcher 44 37 92.5 84.1 0.88

STAR-Fusion 44 34 85 77.3 0.81

Fusion InPipe 5 callers 26 25 62.5 96.2 0.76

Fusion InPipe 4 callers 34 32 80 94.1 0.86

Fusion InPipe 3 callers 43 38 95 88.4 0.92
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Taking into account the results obtained from the data of both
the cell lines and the patients’ cohort, FusionCatcher was the
pipeline with the highest sensitivity (92.5%), and Arriba had the
highest precision (97.1%). On the contrary, deFuse had the lowest
sensitivity (70%) and STAR-Fusion had the lowest precision (77.3%)
(Figure 3Table 1).

The F1-score showed good performance for all the pipelines
working individually (range 0.76–0.89). Arriba has the better
performance while deFuse has the worst (Table 1).

3.2 Fusion detection by Fusion InPipe

The use of a unique approach is associated with low sensitivity
and poor precision. To avoid having multiple files from different
tools and thus to harmonize, improve, and facilitate the analysis, we
performed Fusion InPipe, which combines the output data from
different pipelines: Arriba, CICERO, deFuse, FusionCatcher, and
STAR-Fusion.

We compared the results obtained when we selected those
fusions called by the 5 pipelines (FIP-5), by minimum 4 (FIP-4),
or by minimum 3 of the pipelines (FIP-3) in both cell lines’ and
patients’ data.

3.2.1 Fusion detection in cell lines’ data using
Fusion InPipe

For Fusion InPipe, the initial number of calls for FIP-5 was 28;
we obtained 49 calls for FIP-4 and 100 for FIP-3. Once we applied
our set of filters for each algorithm individually and we performed a
manual curation of the fusions, the retained fusions resulted in 14
(FIP-5), 16 (FIP-4), and 20 (FIP-3).

As happened when we analyzed the data using each pipeline
individually, the fusions NKX2.5::BCL11B, TLX3::BCL11B, and
LMO1::TRD were not identified by any of the algorithms.
However, the FIP-3 pipeline was able to detect the rest of the
rearrangements, while FIP-4 and FIP-5 also missed other variants.

The highest sensitivity (84.2%) was achieved when we first
selected the fusion genes called by a minimum of 3 pipelines
(FIP-3). Despite its great sensitivity, FIP-3 presented the lowest
precision (80%). On the contrary, the highest precision (92.9%) was
achieved when we kept the information of the rearrangements called
by all the pipelines (FIP-5), which also had the lowest sensitivity
(68.4%) (Table 1; Supplementary Figure S1).

3.2.2 Fusion detection in a cohort of patients’ data
using Fusion InPipe

To further benchmark this approach, we tested it in our cohort.
FIP-5 initially detected 23 rearrangements, FIP-4 called 43 fusions,
and FIP-3 identified a total of 74. After the filtering step and the
manual curation the number of called fusions was reduced to 12
(FIP-5), 18 (FIP-4), and 22 (FIP-3). Selecting those fusions called by
all the pipelines, only 12 of the expected fusion genes were detected.
This resulted in a sensitivity of 54.5%.When we looked at the fusions
called by at least 4 algorithms the sensitivity increased to 81.8%, and
only P2RY8::CRLF2 and STIL::TAL1 were missed. Nevertheless, all
the rearrangements were called, and therefore the highest sensitivity
was reached (100%) when we used data from the consensus of 3/
5 pipelines (Table 1; Supplementary Figure S1).

Regarding precision, the highest value (100%) was obtained
for the output derived from the consensus of the minimum of
all five pipelines or at least 4 pipelines. However, the
performance of 3/5 was not far from 4/5 and 5/5, presenting
similar precision values (95.7%) (Table 1; Supplementary
Figure S1).

3.2.3 General performance of Fusion InPipe
The number of artifacts obtained for each of the options before

applying the manual filters was also considerably high [26 (FIP-5),
60 (FIP-4), and 136 (FIP-3)], even though much lower than in the
individual pipeline performance. However, after manually applying
different filters, we discarded most of the fusions, and the number of
FP retained was 1, 2, and 5 respectively.

FIGURE 3
Global sensitivity and precision for each individual pipeline and for Fusion InPipe (FIP-5, FIP-4, FIP-3).
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Globally, FIP-3 was the option with the highest sensitivity (95%).
The lowest sensitivity was achieved by FIP-5 (62.5%), which was the
pipeline that called a less number of TP fusions. Nevertheless, FIP-5
obtained the highest precision (96.2%), and FIP-3 the lowest (88.4%)
(Figure 3, Table 1). F1-score was calculated for FIP-5, FIP-4, and
FIP-3 to assess the global performance of each option. All showed
good results, FIP-3 being the one with the highest value (0.92) (see
Table 1).

4 Discussion

The identification of driver fusion genes at the diagnosis is
important in patients with pediatric acute leukemia, as it may help to
refine the diagnosis and prognosis and be useful as a therapeutic
target. Therefore, gene fusions are screened as a part of molecular
pathology testing for patient management (Mertens et al., 2015).
The wide range of available algorithms for the analysis of RNA-seq
data and their differences in efficiency may difficult the selection of
the pipeline that fits the best to the analysis. In this study, we have
evaluated the performance of five of the most commonly used
pipelines for the detection of gene fusions. Moreover, we have
introduced Fusion InPipe, a pipeline that integrates the
information of different pipelines for the identification of
clinically relevant gene fusions in pediatric AL, and we have
analyzed its performance.

We carried out the analysis using data from 14 different
leukemia cell lines and data from a cohort of 15 previously
characterized pediatric AL patients. All the pipelines separately,
as well as FIP, performed well with leukemia data, as they were able
to detect most of the gene fusions previously reported by gold-
standard methodologies. Based on the general F1-score, Arriba was
the pipeline with better individual performance (F1 = 0.89) as
previously described (Uhrig et al., 2021), and FIP-3 was the
option with better results using the new Fusion InPipe (F1 = 0.92).

Using only one algorithm for the identification of gene fusions
can lead to poor sensitivity and precision (Carrara et al., 2013;
Dupain et al., 2017). To improve this, we generated the Fusion
InPipe that combines the results from different algorithms and
provides the fusion candidates that are called by more than one
tool. The Fusion InPipe has the advantage that is compounded by
modules, so new callers can be introduced or removed at any time
according to the user’s necessities. We evaluated the results obtained
from the consensus calls from the five pipelines, from at least four
pipelines and from at least three pipelines. As expected, trusting only
those fusions called by all the pipelines employed and therefore
being more restrictive resulted in low sensitivity. By contrast, when
we usedmore permissive strategies and we selected the fusions called
by three or more pipelines, the sensitivity increased and precision
slightly decreased. As not all the pipelines are able to detect all the
rearrangements, being too conservative may cause the loss of some
TP fusions. However, it is important to avoid filters too lax to select
the minimum FP fusions. Hence, it is necessary to find a balance
between sensitivity and specificity such as the one obtained in our
case by FIP-3.

An accurate fusion detection is important in clinical practice, as
fusion detection may help to refine the diagnosis and guide targeted
therapy management (Mitelman et al., 2007; Starý et al., 2018). In

this sense, Fusion InPipe may be a good strategy. Each pipeline,
when performed individually, resulted in different precision and
recall values leading to inconsistent results between callers and
consequently making difficult the analysis standardization.
However, their combination using Fusion InPipe improved the
accuracy, as it merged the information from all the pipelines and
therefore facilitated the identification of the driver disease-causing
fusion. FIP-3 presented the highest sensitivity, which demonstrates
that Fusion InPipe is able to detect the highest number of TP
rearrangements in contrast to the individual pipelines.

One of the biggest problems when analyzing RNA-seq data is the
elevated rate of false positive fusion genes called by the pipelines
(Carrara et al., 2013). Once the different pipelines are run, the
generated files contain a large list of fusion candidates. Most of the
fusions reported are artifacts generated by technical errors during the
library generation, sequencing errors, mapping errors, etc. (Conesa
et al., 2016). The initial number of called fusions differ between pipelines
probably due to intrinsic characteristics of the algorithm
(Supplementary Table S2). All the pipelines used for this study had
the same strategy to align the reads to a reference except for deFuse,
which uses bowtie instead of STAR-aligner, and Fusion Catcher which
uses four different aligners including STAR-aligner and Bowtie
(Supplementary Table S3). Focusing on that, we observed that the
pipelines that use STAR-aligner (Arriba, CICERO, and STAR-fusion)
presented an initial number of candidates lower than deFuse or Fusion
Catcher which used Bowtie. Another reason that could explain
differences in the initial calling is that some of the pre-filters applied
can be more relaxed and therefore the initial output will contain a
higher number of candidates as it happens with Fusion Catcher or
deFuse. In order to determine whether a fusion is real and reduce the
number of FP fusions, it is necessary to introduce filtering steps.
Although each pipeline includes its own filters during the processing
of the data, our study highlights the necessity of applying more filters
during the analysis and performing a manual and visual curation. This
is shown when after applying manual filters, the number of final
candidates it is radically reduced and therefore the precision
increases (Supplementary Figure S2). In the case of Fusion InPipe,
the first step of selecting only the fusions called by 5, 4, and 3/5 pipelines
helped to reduce the list of artifacts and FP fusions. Thus, in some cases,
we excluded up to 99% of the fusions without losing any TP fusions,
which is also important and demonstrates good performance of our
pipelines.

In the cell lines’ training dataset, three gene fusions were not
called by any of the pipelines. The non-identified fusions were
present in T-ALL cases. However, none of them are currently
applied to modify the clinical management of patients. In
particular, NKX2.5::BCL11B and TLX3::BCL11B are two cryptic
rearrangements affecting chromosomes 5 and 14. In both cases,
the breakpoint in BCL11B covers a large region and contains base
pair insertions that can difficult the alignment, which might explain
the lack of detection by the algorithms (Nagel et al., 2007). LMO1::
TRD is the third not detected rearrangement. No explanation was
found to describe the lack of detection of this rearrangement other
than the possible complexity of the TRD gene structure. On the
other hand, P2RY8::CRLF2 and STIL::TAL1 were the gene fusions
with a higher rate of failure to be detected by the different pipelines
individually. This may be due to the biological characteristics of
these rearrangements, as they are produced by intrachromosomal
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deletions. An explication could be that pipelines interpret these
fusions as read-through fusions and therefore do not pass the
internal filters to be called (Tian et al., 2020). However, we were
able to detect them by our pipeline FIP-3.

Taking all of this together, this study highlights that not only more
studies should be done to increase the good performance of the different
pipelines to detect all the variants and not lose TP variants but also the
importance of identifying those rearrangements that are difficult to
detect by RNA-seq. Thus, if we suspect the presence of a fusion gene
and we cannot find it using this methodology and pipelines, we should
use another technique to identify or discard them.

Finally, the turn-around time is still a challenge when
performing NGS methodologies. Individual fusion callers
generate large final outputs that contain an extensive list of
candidates. This results in an arduous and time-consuming task
of prioritization that will be even larger if we want to perform the
analysis with several pipelines. Fusion InPipe offers a standardized
output, which facilitates the comparison of the results between the
different pipelines and provides an output file that integrates all the
information. Thus, only one file has to be analyzed. Taken together,
it simplifies the analysis and reduces the time spent on the analysis of
each patient, being able to inform the results faster.

In summary, several pipelines are currently available for RNA-
seq data analysis. Although there are no standards for the analysis, it
is recommended to use two or more pipelines to identify gene
fusions with high confidence (Carrara et al., 2013; Mertens et al.,
2015; Dupain et al., 2017). For that reason, we generated Fusion
InPipe, which harmonizes and combines information from different
pipelines and allows obtaining a fast and accurate gene fusion
analysis. Moreover, we showed that the use of manual filters is
necessary, and help to reduce FP variants and therefore, to achieve
better precision.

5 Conclusion

Here we describe Fusion InPipe, a new bioinformatics tool that
combines information from different pipelines facilitating the analysis
of RNA-seq data for the detection of driver fusions in leukemia. This
study reveals that Fusion InPipe is a good approach for the detection of
different gene fusions involved in pediatric acute leukemia with a good
balance between high sensitivity and good precision. Furthermore, we
have shown that keeping those fusions called by at least 3 pipelines (FIP-
3) increments the number of TP fusions detected. Altogether, the use of
FIP-3 with the use of filtering steps allows us to achieve a better
sensitivity performance, which is important for diagnostic analysis.
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