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Gastrointestinal (GI) cancer includes a variety of cancers with high incidence
that seriously threaten the lives of people worldwide. Although treatment
strategies continue to improve, patient benefits are still very limited, and the
ongoing search for new treatment strategies remains a priority. Cell
senescence is closely related to the occurrence and development of
tumors. For GI cancer, cell senescence may not only promote cancer but
also bring new opportunities for treatment. Combined with relevant studies,
we review the dual role of cell senescence in GI cancer, including the
mechanism of inducing cell senescence, biomarkers of senescent cells, and
potential of targeted senescence therapy for GI cancer.
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1 Introduction

Cell senescence is permanent cell cycle arrest associated with a variety of secretory
phenotypes. Induction of cell senescence is an important mechanism of tumor inhibition by
chemoradiotherapy and targeted therapy (Gomes et al., 2020). However, as a self-protective
mechanism of cells, senescence has both advantages and disadvantages in tumor therapy
(Song et al., 2022). GI cancer mainly includes a variety of malignant tumors, which are
difficult to treat in the clinic. A new approach to treat GI cancer is the use of the tumor
suppressive effect of cellular senescence, avoiding the tumor promoting effect, improving the
sensitivity of treatment, and preventing tumor recurrence and metastasis. The purpose of
this paper is to review the “double-edged sword” effect of cell senescence in the treatment of
GI cancer and explain the specific role of cell senescence in the process of GI cancer, and the
potential mechanism of targeting senescent cells in the treatment of GI cancer are also
discussed.

2 Major changes after cell senescence

Aging is a process of gradual loss of physiological integrity, resulting in functional
impairment and gradual death (Hill et al., 2020). Aging is characterized by genomic
instability, telomere shortening, epigenetic changes, loss of protein homeostasis,
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sensitivity to dystrophy, mitochondrial dysfunction, cellular
senescence, stem cell failure, and altered intracellular signaling
(Calcinotto et al., 2019) (Figure 1). Recent studies have found
that cellular senescence, one of the characteristics of aging, as a
response to endogenous and exogenous stress, is not only closely
related to age-associated diseases and tissue ageing, but also plays an
important role in tissue repair and tumorigenesis (Shmulevich and
Krizhanovsky, 2021). Therefore, identifying key features of cell
senescence and targeting tumor cell senescence is a promising
emerging research field in tumor therapy (Wang et al., 2022).

Unlike dormant cells, senescent cells have some common aging
phenotypes and characteristics in addition to growth stagnation.
These features include flat, enlarged morphology, endoplasmic
reticulum stress, increased mitochondrial number, and anti-
apoptosis, among others (Calcinotto et al., 2019). Although
senescent cells are in growth arrest, they still have relatively
active metabolic activity, synthesizing many proteins, such as
interleukin, growth factors, chemokines, and matrix
metalloproteinases, and affecting the tissue microenvironment in
the form of paracrine signaling. This signature feature is known as
the age-related secretion phenotype (Gomes et al., 2020). SASP has
important biological functions in wound healing and tissue
microenvironment remodeling and in promoting tumor
proliferation and metastasis (Birch and Gil, 2020). Thus, induced
cellular senescence may represent an effective cancer treatment
(Blasiak, 2020). Another characteristic of cellular senescence is
upregulation of some lysosome proteins and an increase in
lysosome content, among which beta-galactosidase related to
lysosome aging is widely used as the most common marker of
aging in the detection of cellular senescence (Levine and Kroemer,
2019).

3 Cellular senescence: A “double-
edged sword” in cancer therapy

Cellular senescence may have different intervention effects on
cancer through cellular autonomous and cellular involuntary
mechanisms (Saleh et al., 2018). Cellular autonomic mechanism
refers to the overactivation of intracellular oncogenes and the
inactivation of tumor suppressor genes or various SASP factors
produced by senescent cells through autocrine action on tumor cells,
thereby influencing cell senescence (Di Mitri and Alimonti, 2016).
Cellular involuntary mechanisms refer to the way in which senescent
cells regulate other cellular components around them through
paracrine signaling (Herranz and Gil, 2018; Saleh et al., 2018).
Therefore, we reviewed the “double-edged sword” effect of cell
senescence on tumor therapy from the aspects of autonomous
and involuntary mechanisms of tumor cells.

3.1 Mechanisms and effects of cell
autonomy

3.1.1 Antitumor effects caused by cell-autonomous
mechanisms

SASP, an important characteristic of senescent cells, can affect
the effectiveness of cancer treatment (Rao and Jackson, 2016; Narita
and Narita, 2017). SASP not only antagonizes tumor cells through
autocrine effect, but also acts on tumor microenvironment (TME)
through paracrine effect, causing different biological effects
(Collado, 2010; Bian et al., 2012; Zhou et al., 2018). Recent
studies have shown that Sesn3 plays a tumor suppressor role by
modulating signal transduction and transcriptional activator 3

FIGURE 1
Senescence-inducing therapies for Gastrointestinal cancer. Studies have shown that the mechanisms regulating tumors and aging mainly involve
mitochondrial replacement, genome editing, telomere maintenance and immune editing. Persistent DNA damage caused by over-activation of cancer-
promoting signals, conventional chemoracial therapy, and treatment with telomerase inhibitors (GRN163L/BIBR15) often leads to induction of aging. A
large number of DNA damage responses trigger ATM or ATR signaling and lead to activation of p53 and p21. Aging mediated by p53-p21 signaling
can also be triggered by PTEN inhibitors. Inhibition of mediated aging by activation of p53-mediated and cyclin dependent kinases (CDK) via transcripts
encoding ARF and INK4A. CDK inhibition mediated aging can be achieved through CDK4 and CDK6 inhibitors. Aurora kinase (AURK) and PLK1 inhibitors
block the G2/M process of the cell cycle, which can also induce aging. At the same time, stable cycle arrest, β-Galactosidase (β-Gal) activation, and age-
related secretory phenotype (SASP) production were observed.

Frontiers in Molecular Biosciences frontiersin.org02

Liu et al. 10.3389/fmolb.2023.1139840

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1139840


(STAT3) signaling pathways (Liu et al., 2019). The STAT3 pathway
is closely associated with HCC progression, and phosphorylation at
Tyr705 of this pathway leads to significant enrichment of the MMP-
9 gene promoter (Jia et al., 2017). In addition, riboophorin II (RPN2)
induces the expression of MMP-9 through the STAT3 and NF-kB
pathways, thereby promoting hepatocellular carcinoma metastasis
(Bi and Jiang, 2018; Huang et al., 2019). Studies have shown that
heterochromatin protein family 1 (HP1), such as heterochromatin
protein 3 (CBX3), blocks cell cycles and promotes the occurrence,
development, invasion and metastasis of hepatocellular carcinoma
by regulating downstream genes such as p21, cyclin dependent
kinase 6 (CDK6) and CD44 (Wang et al., 2021). In addition,
activation of the insulin-like growth factor (IGF) signaling
pathway leads to tumorigenesis in a variety of cancers, including
liver cancer, and insulin-like growth factor binding protein 7
(IGFBP7) induces cancer-specific cellular senescence by
inhibiting this signaling pathway (Akiel et al., 2017; Karagiannis
et al., 2019; Kotsantis et al., 2019).

3.1.2 Tumor-promoting effects due to cell-
autonomous mechanisms

Studies have shown that senescence induced by chemotherapy
and radiotherapy enables cancer cells to acquire stem cell
characteristics. This process is closely related to the Wnt
signaling pathway, p53, p21, etc. (Butera et al., 2018; Zhong
et al., 2019) (Figure 1). Moreover, long-term culture of senescent
cells is a potential risk factor for tumor recurrence and metastasis
due to the high complexity of the surrounding microenvironment
(Wang et al., 2021). Indeed, studies have found that a small number
of senescent cells may recover their proliferative characteristics
during long-term culture, thereby promoting tumor progression
(Marongiu et al., 2014; Marongiu et al., 2016; Zhou et al., 2017). The
complexity of SASP factors is an important reason for the “double-
edged sword” effect of SASP. How to make use of the antitumor
effect of SASP and avoid its possible protumor effect are an
important problem that have not been solved in this field.

3.2 Cellular non-autonomous mechanisms
and effects

3.2.1 Antitumor effects caused by non-cell-
autonomous mechanisms

Studies have shown that SASP can induce the senescence of
adjacent tumor cells through paracrine, maintain the senescence
state of cells, and exert tumor inhibition effect (Mossanen et al.,
2019). Observed the expression of NRAS proto-carcinogen in
mouse hepatocytes and found that senescence hepatocytes
directly secrete some cytokines, including interleukin (IL)-1α,
monocyte chemotactic protein-1 (MCP1) and skin T cell
attraction chemokine (CTACK) (Loo et al., 2017).
Inflammatory cells such as CD4 + T cells, monocytes and
macrophages (Kupffer cells) were recruited to eliminate
precancerous liver cells and inhibit the occurrence of liver
cancer. In conclusion, SASP factors can interact with immune
cells in the tumor microenvironment and become targeted drugs
for specific anti-tumor therapy (Kang et al., 2011; Lee et al., 2017;
Mossanen et al., 2019; Prasanna et al., 2021).

3.2.2 Tumor-promoting effects caused by cell-
nonautonomous mechanisms

SASP plays a very complex role in the process of tumorigenesis.
In addition to inhibiting cancer, SASP can also partly promote
cancer. This is closely related to the secretion and production of
cytokines and chemokines that alter the tumor microenvironment
(Zhou et al., 2017). Studies have shown that senescence tumor-
associated fibroblasts (CAFs) can synthesize and secrete large
amounts of IL-6 and other SASP factors, thus promoting the
invasion and metastasis of pancreatic cancer (Yamao et al.,
2019). On the other hand, epithelial-mesenchymal transformation
(EMT) is involved in tissue remodeling, trauma recovery, and the
regulation of embryonic development in vivo. SASP factor can
promote tumor migration and metastasis by promoting EMT
(Ortiz-Montero et al., 2017). Studies have shown that senescent
cells release SASP factors such as IL-6 and IL-8 into the tumor
microenvironment, which can induce epithelial-mesenchymal
transformation and thus play a role in promoting metastasis and
invasion (Coppe et al., 2008). Matrix metalloproteinases (MMP) are
components responsible for the breakdown and reconstruction of
extracellular matrix and basement membrane that promote tumor
metastasis (Falk et al., 2018). It was found that senescence
hepatocytes regulate and enhance the expression of matrix
metalloproteinases through nuclear factor (NF)-κB signaling
pathway. This suggests that cell senescence may be involved in
the invasion and metastasis of liver cancer by up-regulating the
expression of MMP.

4 Mechanism of inducing senescence
of tumor cells

Senescence and tumorigenesis have similar biological bases; that
is, the abnormal mitochondrial function of tumor cells is consistent
with the decline in mitochondrial function during senescence. Since
tumors and senescence have a common mechanism, regulation of
tumor cells and senescence can treat tumors and achieve
antisenescence. Recent studies have shown that the mechanisms
regulating tumors and senescence mainly involve mitochondrial
replacement, genome editing, telomere maintenance and immune
editing (Yu et al., 2020) (Figure 1).

4.1 Mitochondrial replacement

Mitochondria play an important role in the process of
tumorigenesis and senescence. Replacement of defective or
dysfunctional mitochondria undoubtedly resists aging of the
body. The reconstruction of fat1 function by gene editing may
also regulate mitochondria and indirectly control tumor and
senescence (Song et al., 2022).

4.2 Genome editing

CRISPR‒Cas9 RNA-mediated DNA endonuclease has led to
new breakthroughs in the life sciences, enabling gene editing in
living cells based on cluster-separated short palindromic repeats. It
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is conceivable that genes regulating the growth of tumor cells can be
integrated into senescent cells by genome editing technology to resist
senescence. On the other hand, incorporating genes that control
senescence into tumor cells can cause them to age. In addition,
cellular or gene therapies, including bone marrow suppression and
gene recombination, can inhibit immune senescence (Faget et al.,
2019).

4.3 Telomere maintenance

Telomeres maintain the stability of normal cell genomes, but the
gradual shortening of telomeres during cell division induces
chromosome instability. Gene mutation may activate telomerase,
reconstructed telomerase promotes tumor occurrence and
development, and telomerase inhibitors have become the target
of precision tumor therapy. Approximately 10% to 15% of
human cancers maintain telomere length through homologous
DNA repair via telomere-lengthening replacement mechanisms.
Tumor cells use a special replication for DNA breaking-induced
telomere synthesis (Prasanna et al., 2021) (Figure 1).

4.4 Immunoediting

Immunosenescence is characterized by cell-mediated immune
decline, age-related humoral decline, and age-dependent T cell and
B cell dysfunction. Natural killer (NK) cells are congenital cytotoxic
immune cells that specifically kill tumor cells and virus-infected
cells. Immunosenescence of NK cells is manifested by low
expression of activated receptors in subsets of NK cells, leading
to reduced cytotoxicity, and NK cells with low expression of
activated receptors are common in tumor patients. Re-editing the
immune system to reverse the body’s immune senescence can not
only resist senescence but also be an effective way to treat tumors
(Prieto and Baker, 2019).

5 The role of senescence markers in GI
cancer

5.1 p53 and phosphorylated p53

Colorectal cancer is the cancer entity with the highest prevalence
of p53 mutations, with 43% of CRCs carrying p53 mutations. As a
major player in the DNA damage response (DDR) pathway, p53 is
also a key regulator of the cell cycle, whereby increased
phosphorylation of p53 activates cyclin-dependent kinase
inhibitors (CDKIs) and ultimately leads to cell cycle arrest. In a
mouse tumor model, deletion of the p53 mutant gene slows cancer
growth and prolongs survival in mice (Alexandrova et al., 2015). In
another mouse study, the authors examined the GOF properties of
two p53 mutants (R172H and R270H, corresponding to human
R175H and R273H) expressed from endogenous p53 loci. The p53−/−

mice spontaneously developed more extensive tumors than the
p53−/− mice, including more cancers and more frequent
endothelial tumors (Olive et al., 2004), which shows the
biological effect of mutant p53 GOF. However, in a CRC mouse

model carrying a p53 R270H mutation, p53−/− mice showed tumor
load, frequency of metastasis, and overall survival similar to that of
p53−/− mice that opposed p53 GOF (Tang et al., 2019).

5.2 Age-related secretory phenotype (SASP)

Although senescent cells have many common characteristics,
each senescent cell population shows different levels of cytokines,
growth factors, and proteases, which is known as the age-related
SASP (Cuollo et al., 2020). SASP secretion is essential for senescence
function, and ILK or its downstream signaling partners, including
PTEN, PI3K/Akt/mTOR, and NF-κB, may influence SASP
regulation (Lopes-Paciencia et al., 2019; Almasan, 2021). This is
accompanied by immunosuppressive SASP secretion, but
upregulation of the immunostimulant SASP also occurs. This
subsequently increases MDSC infiltration without CD4 T cells,
CD8 T cells, and NK cells (Hinshaw and Shevde, 2019). This
study also showed that SASP can be programmed by targeting
STAT3 to suppress immunosuppressive secretions while
maintaining immunostimulant secretions, resulting in a decrease
in infiltrating MDSCs and an increase in CD4 T cells, CD8 T cells,
B cells, and NK cells (Figure 2). Inhibition of ILK has been shown to
block activation of NF-κB and inhibit production of TNF-α, IL-6,
and IL-1β as well as infiltration of inflammatory cells in a mouse
model of colitis (Figure 2). Therefore, ILKmay influence secretion of
SASP factors in the cancer background by regulating NF-κB
(Almasabi et al., 2021).

5.3 Ki67

Ki67 is a cytonuclear protein that is also a proliferative marker.
As senescent cells are marked by permanent exit from the cell cycle,
they do not express Ki67, a nuclear antigen specifically related to cell
proliferation (Yang et al., 2018). Many studies have confirmed that
high expression of the Ki67 protein is closely related to the biological
characteristics and prognosis of tumors (Menon et al., 2019).
Therefore, Ki67 has become one of the most reliable indicators
to detect the proliferation activity of tumor cells and has been used
for routine detection in clinicopathological diagnosis to guide the
selection of postoperative treatment and prognosis assessment.
However, retrospective studies have also reported no direct
correlation between the Ki67 expression level and the clinical
outcome of CRC patients (Ma et al., 2020).

6 Mechanism of anti-senescence
therapy in GI cancer

6.1 Clinical pro-senescence therapy

Cyclin D1 is the activator of CDK4 and CDK6. Cyclin D1-
CDK4/6 directly phosphorylates, stabilizes, and activates the
transcription factor FOXM1, which promotes cell cycle
progression and protects cancer cells from senescence
(Tchakarska and Sola, 2020). Cyclin D-CDK4/6 also
phosphorylates and inactivates TSC2, a negative regulator of
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mTORC1, resulting in activation of mTORC1. Conversely,
inhibition of CDK4/6 results in decreased mTORC1 activity and
reduced protein synthesis in different human tumor cells. Cyclin
D1-CDK4/6 also increases the catalytic activity of PRMT5/MEP50,
reduces the level of MDM4 protein, and leads to activation of p53,
ultimately blocking cell cycle progression (Montalto and De Amicis,
2020). CDK6 expression has been shown to be elevated and
associated with poor prognosis in gastric cancer. The CDK4/
6 inhibitor PD-0332991 promotes the apoptosis and senescence
of gastric cancer cells and inhibits the migration and invasion of
gastric cancer cells (Liu et al., 2022). In the NCT03446157 study, the
CDK4/6 inhibitor palbociclib was used in combination with the
CD73 inhibitor AB680, showing potential for antitumor efficacy in
animal models of CRC (He et al., 2018; Noh et al., 2022).

p53 mutations associated with cancer are mainly divided into
two categories: mutations involving DNA contact with amino
acids, which have very little effect on structure; and
conformational mutation, which can lead to large structural
changes or even misfolding. Both mutant p53 and wild-type
p53 can regulate the tumor microenvironment to inhibit or
promote tumors (Wang et al., 2015). P53 inhibits tumor
progression by controlling the composition of microRNAs
carried by exosomes and the pattern of cytokine secretion,
thereby maintaining the differentiated state of tumor-
associated nerves, and inhibiting neutrophil infiltration,
respectively (Zhou et al., 2021). Conversely, p53 mutants
support tumor progression by regulating exosome content,
causing macrophages to reprogram to the M2 state, resulting

in a more favorable tumor microenvironment (Liebl and
Hofmann, 2021) (Figure 2).

Cycloastragenol induces apoptosis and inhibits the proliferation
of colon cancer cells by activating p53 (Park et al., 2022). Cancer cells
also disrupt p53 signaling through deregulation of non-coding
RNAs. Studies have shown that miR-1827 and miRNA-766, two
microRNAs targeting MDM2 and MDM4, respectively, are often
downregulated in CRC samples; hence, their reduced expression in
CRC may lead to impaired p53 stability (Chen et al., 2019).
Telomerase can be treated with vaccines that stimulate an
immune response to surface hTERTs (Bernardes de Jesus and
Blasco, 2013). Cancer cells process endogenous hTERT and
present hTERT peptides on the cell surface via major
histocompatibility complex (MHC) I and II molecules. hTERT
vaccines usually contain enzymatic peptides that are injected into
the dermis, where dendritic cells present antigens to CD4+ T-helper
1 (TH1) cells in the lymph nodes (Kailashiya et al., 2017). These
hTERT-specific TH1 cells migrate to tumors, where they stimulate
the activity of CD8+ T cells against hTERT-expressing cancer cells or
directly kill cancer cells by releasing cytokines, FAS, or tumor
necrosis factor-associated apoptosis-inducing ligand (TRAIL)
apoptosis-inducing receptor interactions (Ahmed and Tollefsbol,
2003).

The CXCR2 axis forms an immunosuppressive
microenvironment involved in tumor immune regulation
(Korbecki et al., 2022). Studies to date on CXC-mediated
formation of immunosuppressive cells that promote tumor
growth include tumor-associated macrophages (TAMs), myeloid

FIGURE 2
Approach to enhance the efficacy of pro-senescent the therapy. Immunotherapies may en-hance tumour clearance in tumours treated with pro-
senescence therapies. Pharmacological reprogramming of the SASP may increase theanti-tumour immune response in tumours upon treatment with
pro-senescence therapies. Senolytic therapies may remove senescence tumourcells in tumours where senescence surveillance is impaired, to avoid
negative effects induced by the SASP. With immunosuppression of SASP secretion, the infiltration of NK cells decreased. At the same time, M1-type
macrophages and their related secretory factors TGF-β as well as secretory factors IFN-γ and TNF-α of TH1 cells further play a role, thus promoting tumor
treatment. The CXCR2 axis forms an immunosuppressive microenvironment involved in tumor immune regulation. Anti-CXCR2 treatment limits MD-SC
recruitment in the tumour, favouring senescence induction and/or antitumour immunity.
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suppressor cells (MDSCs), regulatory T (Treg) cells, tumor-
associated neutrophils (TANs), plasmacytoid dendritic cells
(pDCs) and B cells (Figure 2). In vitro and in vivo experiments
on a variety of tumors have proven that high expression of CXCR2/
CXCL1-2-5-8 correlates with the invasion of TAMs, MSDCs, Tregs
and TANs and plays a role in promoting tumors (Zhang et al., 2020).

6.2 Preclinical senescence promotion
therapy

SIRT1 plays a complex role in the senescence process, and
SIRT1 levels increase during senescence in response to increased
oxidative stress and its deacetylation, thus reducing the regulatory
effect of gene transcription. SIRT1 can regulate expression of
ARHGAP5 and inhibit the migration and invasion of gastric
cancer cells (Dong et al., 2018). SIRT1 expression is also
significantly associated with shorter overall survival and relapse-
free survival. It is an important prognostic index for patients with
gastric cancer (Cha et al., 2009). Detection of SIRT1 gene expression
in gastric epithelial cells can be used as a prognostic indicator for
gastric cancer progression (Mohammadi Saravle et al., 2018).
Catalpol mediated microRNA-34a can directly target and regulate
SIRT1, and play a role in inhibiting the occurrence and development
of CRC through the inhibition of SIRT1. PMID: 32323786. miR-373
can specifically target the 3′-UTR of SIRT1, reduce its expression in
pancreatic cancer cells, and exert anti-proliferation and pro-
apoptosis effects on pancreatic cancer cells. PMID: 34096221.

Attempts to directly target MYC have focused on the MYC\/
MAX heterodimerization domain. A dominant-negative mutant
MYC peptide (OmoMYC) that directly binds to MYC and
eliminates MYC function has been developed. Several small-
molecule inhibitors (e.g., 10075-G5 and 10058-F4) destroy
MYC\/MAX dimerization and have been shown to reduce MYC
activity. Other methods include disrupting MYC function with
covalent inhibitors. Hypusinated EIF5A promotes the growth of
colorectal cancer (CRC) cells by directly regulating MYC
biosynthesis at specific paused motifs (Coni et al., 2020). lncRNA
GLCC1 can be stabilized by direct interaction with the
HSP90 partner, ubiquitination of c-Myc transcription factors, and
reprogramming glycolytic metabolism to promote CRC occurrence.
PMID: 31375671. Helichrysetin targets c-Myc, inhibits lactic acid
production and efflux in gastric cancer MGC803 cells, and
significantly inhibits the growth of MGC803 cells in vitro and in
vivo. PMID: 34462561.

BET family proteins, especially BRD4, are important
transcriptional and epigenetic regulatory factors that are closely
associated with the progression of a variety of tumors, including
colorectal cancer. Enhanced BRD4 protein stability weakens its
binding ability to BET inhibitors, induces chromosome
remodeling, promotes proto-oncogene enhancer activity, and

ultimately leads to CRC resistance to BETis and increased tumor
malignancy. To evaluate expression of pBRD4 in CRC, targeted
activation of BRD4 provides a new direction for the treatment of
CRC patients (Wang et al., 2021). Exosome circLPAR1 reduces
BRD4 translation through METTL3-eIF3h interaction, thus
inhibiting CRC occurrence. PMID: 35164758.

7 Conclusion

In conclusion, inducing senescence of tumor cells is of great
significance for the treatment of GI cancer. Cellular senescence is a
double-edged sword for cancer treatment. In future studies, we will
further explore the molecular mechanism of tumor cell senescence,
further enrich the therapeutic targets of GI cancer, find new
treatment strategy to improve the therapeutic effect.
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