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Post-translational modifications of proteins play very important roles in regulating
RNAmetabolism and affect many biological pathways. Here wemainly summarize
the crucial functions of small ubiquitin-like modifier (SUMO) modification in RNA
metabolism including transcription, splicing, tailing, stability and modification, as
well as its impact on the biogenesis and function of microRNA (miRNA) in
particular. This review also highlights the current knowledge about
SUMOylation regulation in RNA metabolism involved in many cellular
processes such as cell proliferation and apoptosis, which is closely related to
tumorigenesis and cancer progression.
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Introduction

Small ubiquitin-like modifier (SUMO), a member of the ubiquitin-like post-translational
modifiers are well conserved in eukaryotes (Wilkinson and Henley, 2010; Wang and Yu,
2021). Up to now, mass spectrometry and bioinformatics analysis provide proteomic
evidence for SUMOylation of 3,617 proteins at 7,327 SUMOylation sites (Hendriks and
Vertegaal, 2016). Although SUMO targets are distributed in various distinct sub-cellular
structures, nucleoproteins still account for the majority. SUMOylation has an important
regulatory role for most nuclear processes, including RNA transcription, primary RNA
processing, nucleocytoplasmic transport, cell cycle progression, nuclear body formation and
protein stabilization (Hendriks and Vertegaal, 2016). SUMOylation affects cancer
progression by regulating tumorigenesis, proliferation, transformation, migration,
invasion, senescence, inflammation, angiogenesis, etc. Therefore, SUMO-related enzymes
that involve in tumorigenesis can be used as targets for drug development to treat human
cancers.

SUMOylation is a reversible process of adding SUMO to substrate proteins at specific
lysine residues as a post-translational modification (PTM) (Wang and Yu, 2021). In
mammalian cells, SUMO proteins are conjugated to over thousands proteins. SUMO is
conserved from yeast to mammalian cells. Thus far, there are five SUMO isoforms with
different sequences in mammals: SUMO1, 2, 3, 4 (Han et al., 2018) and 5 (Liang et al., 2016).
SUMO1, SUMO2 and SUMO3 are widely expressed in humans, while SUMO4 and
SUMO5 are only found in specific tissues or organs (Guo et al., 2004). SUMO2 and
SUMO3 share about 97% identity in humans and are often known as SUMO2/3.
SUMO1 only have 53% identity with SUMO2/3. SUMO4 has an 86% amino acid
homology with SUMO2, containing a unique proline-90 residue may prevent the
maturation and disrupting conjugation to substrates (Owerbach et al., 2005). SUMO5 is
reported as a novel SUMO that highly homologous to SUMO1, and poly-SUMO5
conjugation on promyelocytic leukaemia protein (PML) results in the recruitment of
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proteins to form PML nuclear bodies (PMLNBs) (Liang et al., 2016).
So far, the research on SUMO4 and SUMO5 is limited.

Similar to the biochemical process of ubiquitination, SUMO
attaches to the Lys K) residues of target proteins via an isopeptide
bond between its C-terminal glycine G) and the ε-NH2 group of a
lysine residue in the target protein (Gill, 2004). SUMOylation is a
multi-step enzymatic process, including activation, conjugation and
ligation (Figure 1A). The first step of SUMO conjugation pathway is
the maturation of SUMOs, whose COOH termini is cleaved by
Sentrin-specific proteases (SENPs) to expose the di-glycine (GG)
residues required for conjugation (Hay, 2007). Second, mature
SUMOs are then activated through an ATP-dependent way by a
heterodimeric SUMO E1-activating enzyme, SAE1/2, which is a
heterodimer composed of Aos1/SAE1 and Uba2/SAE2 with a size of
110 kDa (Desterro et al., 1999). The SUMOs exclusively interact
with the SAE2 subunit, and their C-terminal GG carboxyl group is
activated by linking with cysteine C) residue of SAE2 through a
thioester bond. Third, the activated SUMO is then transferred to a
SUMO conjugating enzyme E2, Ubc9. Fourth, SUMO transferring
of Ubc9-SUMO has two ways, by which Ubc9 catalyzes an
isopeptide bond between the SUMO terminal GG and the K side

chain of the substrate proteins by direct interacting with or without a
E3 ligase enzyme. The final step, SUMOylation is reversed by the
family of SUMO-specific proteases SENPs that break isopeptide
bonds to remove SUMO from the substrate, recycling SUMO
molecules (Yeh, 2009; Chang and Yeh, 2020).

In general, the most common target proteins of SUMO
modification are to have a common motif ψ-K-X-E/D (ψ is a
hydrophobic amino acid, K is the target Lys, X is any amino acid,
D/E is amino acid Asp/Glu), but there are also some proteins
without classical motifs that have been more reported recently
(Chang and Yeh, 2020). In usual, SUMO1 modifies the substrate
proteins by one monomer, while SUMO2/3 can modify by poly-
SUMO to form multiple SUMO chains. At present there is no
evidence that SUMO4 is conjugated to K of substrate protein, but
SUMO5 seems to be able to form a poly-SUMO chain
(Figure 1B). Reader proteins can recognize and bind to
SUMOylated proteins through their SUMO interaction motifs
(SIMs). (Martin et al., 2007) (Figure 1C). Functionally, SUMO is
covalently coupled to a large number of proteins to modulate
their enzymatic activity, subcellular localization or their protein
interactions. SUMOylation may also join with ubiquitin to

FIGURE 1
The SUMOylation system. (A) SUMO is encoded as an inactive precursor that is cleaved by members of the SENP family to expose the C-terminal
diglycine motif (1). This mature form of SUMO is then activated by forming an ATP-dependent thioesler bond with the active site of the Et enzyme (a
heterodimer of SAE1 and SAE2) (2). The activated SUMO is then delivered to the active site cysteine of the E2-conjugating enzyme Ubc9. Which then
catalyzes the transfer of SUMO to the target protein, either alone or with the help of a SUMO E3 ligase (3, 4). SUMOylated sub-strates show
phenotypic differences from the unmodified form. DeSUMOylation is mediated by the SENP protease family (5). This process releases unmodified target
protein (not shown) and mature SUMO. which can then be used for further binding to the target protein. (B) SUMOmodifications most commonly target
proteins with the consensus motif w-K-X-FJD. to is a hydrophobic amino acid. K is the target Lys. X is any amino acid, and DIE is Asp or Glu.
SUM01 modifies substrates into monomers. While SUMO2/315 modifies substrates in poly•SUMO chains. (C) Proteins contain-ing SIMs mediate non-
covalent interactions with SUMO.
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degrade proteins through SUMO-targeting ubiquitin ligase
(STUbL) (Hickey et al., 2012).

Importantly, SUMOylation plays an important role in RNA
metabolism, including messenger RNA (mRNA) and non-coding
RNA (ncRNA). Abnormal RNA metabolism caused by
SUMOylation is often the main reason affecting the occurrence
and development of tumors. On the one hand, mRNA metabolism
regulated by SUMOylation involves in transcription, processing
(e.g., capping, splicing and polyadenylation), mRNA translation
and quality control. On the other hand, SUMOylation of
regulation on ncRNA metabolism is mostly and broadly focused
on microRNAs (miRNAs). In addition, researches on cellular
processes compartmentalized by membrane-less organelles
(MLOs) have become a hotspot. MLOs typically contain
disordered proteins and RNAs by liquid-liquid phase separation
(LLPS) (Alberti and Hyman, 2021). MLOs for molecular
condensates in the nucleus include nucleoli (Tartakoff et al.,
2022), paraspeckles (Yamazaki et al., 2021), nuclear speckles (NS)
(Spector and Lamond, 2011), Cajal bodies (Nizami et al., 2010), PML
NBs (Lallemand-Breitenbach and de The, 2018) and nuclear stress
bodies (nSBs) (Biamonti and Vourc’h, 2010), and in the cytoplasm
there are P-bodies and stress granules (SGs) (Ivanov et al., 2019).
They function as RNA and protein quality control centers and are
highly sensitive to cellular stress, including proteotoxic stress
(Advani and Ivanov, 2019; Hirose et al., 2022). Growing evidence
shows that SUMOylation is critically involved in regulating both the
assembly and disassembly of MLOs, and thus therefore regulates
RNA splicing, processing and RNA stability (Hofweber and
Dormann, 2019).

This review provides insights into the role of SUMOylation in
regulating RNA metabolism in the pathophysiology of diseases,
especially cancers. We summarize the regulation of RNA
metabolism by SUMOylation from the following aspects: 1)
RNA transcription; 2) mRNA processing; 3) RNA stability; 4)

RNA editing and RNA modification; 5) Non-coding RNA
metabolism.

RNA transcription

SUMOylation plays an important role in transcriptional
regulation via SUMO conjugating to histones, histone-modifying
enzymes, transcription factors, transcriptional co-regulators and
transcriptional machinery-related proteins. The mechanisms
underlying SUMO-mediated transcriptional regulation includes
alterations in subcellular localization, DNA binding, protein-
protein interaction, stability and enzymatic activity
(Chymkowitch et al., 2015).

Histones undergo many modifications, including acetylation,
methylation, phosphorylation, ubiquitination, glycosylation, ADP
ribosylation and SUMOylation, some of which play key roles in the
regulation of chromatin structure and functions. Most histones,
including H1, H2A, H2B, H3, H4 and H2A.X are SUMOylated
(Table 1). SUMOylation of H4 leads to chromatin compaction and
transcriptional repression through the recruitment of histone
deacetylase 1 (HDAC1) and heterochromatin protein 1 (HP1)
(Shiio and Eisenman, 2003; Ryu and Hochstrasser, 2021)
(Figure 2A; Figure 1). However, SUMOylation of H4K12 has also
been reported to inhibit chromatin compaction (Dhall et al., 2014).
Moreover, SUMOylation of linker histone H1 drives chromatin
condensation and restriction of embryonic cell fate identity (Dhall
et al., 2014). The transcriptional repression mechanisms of
SUMOylation at other histones are not very clear.

As known, the acetylation level of histone is positively correlated
with gene activation. Histone acetylation is catalyzed by histone
acetyltransferases (HATs) such as CREB-binding protein (CBP) and
p300 while it is removed by histone deacetylase (HDACs). CBP and
p300 are co-regulators of many sequence-specific DNA binding

TABLE 1 SUMOylation of histones, HATs and HDACs.

Type Proteins SUMO 1/
2/3

Sites Function References

Histones H2A S1/3 Transcriptional repression or
chromatin compaction

Shiio and Eisenman (2003), Chen et al. (2013)

H2B S1/3 (Shiio and Eisenman, 2003) (Ryu et al., 2020)

H3 S1/3 K18 Shiio and Eisenman (2003)

H4 S1/3 K12 Inhibits chromatin compaction Shiio and Eisenman (2003), Chen et al. (2013), Dhall
et al. (2014), Dhall et al. (2017)

H2A.X S1 K5, K9, K13, K15, K118, K119,
K127, K133, K134

Chen et al. (2013)

H1 S1 Chromatin condensation Matafora et al. (2009)

HDACs HDAC1 S1/2 K444, K476 Enhances histone deacetylase activity David et al. (2002), Cheng et al. (2004), Citro et al.
(2013)

HDAC4 S1/2 K559 Enhances histone deacetylase activity Kirsh et al. (2002)

HDAC2 S1 K462 Recruits to promoters Brandl et al. (2012)

HATs EP300 S1/2/3 CRD Domain Recruits HDAC6 Girdwood et al. (2003), Park et al. (2017)

CBP S1 K999, K1034, K1057 Recruits DAXX and HDAC2 Kuo et al. (2005), Park et al. (2017)
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proteins in response to a variety of signaling (Yu et al., 2004), and are
regarded as key drivers of tumorigenesis (Hogg et al., 2021). Both
p300 and CBP contain a cell cycle regulatory domain 1 (CRD1),
which is a strong transcriptional repression domain. It has been
reported that SUMOylation of p300 CDR1 domain mediates
transcriptional repression by promoting the recruitment of
HDAC6 (Girdwood et al., 2003) (Figure 2A–2). Similarly,
SUMOylation of CBP negatively modulates transcriptional
activity by recruiting Death domain-associated protein (DAXX)
and then HDAC2 (Kuo et al., 2005; Park et al., 2017).

On the other hand, HDACs reverse chromatin acetylation by
removing acetyl groups and alter the transcription of oncogenes
and tumor suppressor genes governing cancer initiation and
progression (Li and Seto, 2016). HDACs family members such

as HDAC1, HDAC2 and HDAC4 can also be SUMOylated.
SUMOylation of HDAC1/HDAC4 enhances their histone
deacetylase activity, leading to the transcriptional repression
(David et al., 2002; Kirsh et al., 2002). Moreover,
SUMOylation of HADC4 can enhance its deacetylation of p53,
thus blocking the recruitment of p53 into the promoter, which
modulates the apoptotic response to genotoxic stress in cancer
cells (Brandl et al., 2012). In addition to enhancing the
deacetylase activity, SUMOylation of HDAC2 also increases its
binding to the Elk-1 regulated promoters, which directly leads to
a decrease of histone acetylation and hence transcriptional
repression at Elk-1 target genes (Yang and Sharrocks, 2004)
(Figure 2A). HDACs are abnormally high in a variety of
cancers, which govern a wide array of biological processes

FIGURE 2
Models for the functions of SUMOylation in RNA transcription and processing. (A) SUMOylation leads to transcnptional repression. Histone
SUMOylation mediates transcriptional repression through recruitment of HDAC1 and HP1 (1). SUMOylation of p300 and CBP recruits HDAC6 and DAXX/
HDAC2 respechvehi, leading to SUMO-dependent transcnptional repression. SUMOylation of liADC1/2/4 promotes the deacetylase activity to repress
transcription (2). The SIM domain of DAXX provides a molecular explanation for the interaction between DAXX and SUMO-mod-ified transcription
factors, resulting In transcriptional repression (3) SUMOylation of SAFE enhances its binding with RNAPII, thereby promoting gene transoiption (4). SUMO
and MYC antagonistically control global gene expression through regulating COK9 SUMOylation. P-TEFb formation and tran-scriptional elongation.
SUMOylation of CDK9 blocks its interaction with Cyclin Ti. Thereby inhibiting the formation of active P-TEFb complex (5). NELF and OSIF bind to the
potymerase in a manner that restricts Pol II mobility and impairs further RNA elongation. SUMOylation regulates the recruitment of NELF to promoters
upon stress to drive transcriptional downregulabon (6). SUMOytabon of PAF1/PD2 facilitates its interaction with PML proteins (7). (B) SRSF1. Bound to the
exonic splicing enhancer (ESE). Interacts with Ubc9 to regulate the SUMOylation of spliceosome protein components. Thuieby increasing splicing
efficiency. PRP3 acts as a component of the 114/U6 cli-snRNP. and Its SUMOylatlon Promotes U41U6/1.15 tri-snRNP formation to effect splicing. (C)
SUMOylation of CPSF. PAP and Sim-pleton affects the assembly and activity of pre-mRNA 3’complex.
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TABLE 2 SUMOylation of transcription regulators.

Genes Function in
transcription

Protein roles in cancer SUMO effects on transcription Refs

EGR1 Transcription factor An effect either as a growth promoter or as
a tumor suppressor

Promotes PTEN transcription Yu et al. (2004)

PAX6 Transcription factor Important in cancer cell proliferation and
tumor progression

Transcription activation; enhances the
DNA-binding ability of p32 Pax-6

Yan et al. (2010)

FOXM1 Transcription factor Oncogene; regulates the expression of
target genes

Transcription activation; inhibits the
negative regulatory domain of FOXM1

Schimmel et al. (2014)

P53 Transcription factor Tumor suppressor; induces growth arrest
or apoptosis

Transcription activation Gostissa et al. (1999), Rodriguez et al.
(1999), Chauhan et al. (2021)

ESR1 Nuclear hormone
receptor

Essential for the normal development of
the mammary gland and the tumorigenesis
and progression of breast cancer

Transcription activation Sentis et al. (2005)

E2F1 Transcription factor Mediate cell proliferation and
EZH2 overexpression-mediated cancer
progression

Enhances EZH2 transcription; regulates
E2F1 binding to the EZH2 promoter

Du et al. (2020)

HSF1/HSF2 Transcription factor Over expression of HSFs associates with
drug resistance and poor clinical outcomes
in various malignancies

Transcription activation; increases
HSF2 DNA binding activity

Goodson et al. (2001), Hong et al.
(2001)

SP3 Transcription factor Inductor of apoptosis and marker of tumor
aggressiveness

Transcription repression; SP3 cannot act
as a target for SUMO modification when
bound to DNA.

Sapetschnig et al. (2002)

TFAP2C Transcription factor Links to the etiology of human breast
cancer

Transcription repression Eloranta and Hurst (2002)

CEBPA/
CEBPB/CEBPE

Transcription factor Regulates of cell growth and differentiation Transcription repression Kim et al. (2002)

GATA2 Transcription factor Hematopoietic and cardiovascular
development

Transcription repression Chun et al. (2003)

SRF Transcription factor Controls the expression of genes regulating
the cytoskeleton during development,
morphogenesis and cell migration

Transcription repression Matsuzaki et al. (2003)

PLAG1 Transcription factor Oncoprotein; provides anti-anoikis and
pro-metastatic signals in LKB1-deficient
lung cancer

Transcription repression Astrom et al. (2000), Van Dyck et al.
(2004)

ELK1 Transcription factor Enhances cancer Progression Transcription repression Yang et al. (2003)

MYB Transcriptional
coactivator

Controls proliferation and differentiation
of hematopoietic progenitor cells

Transcription repression; increases its
proteolytic stability

Bies et al. (2002)

DDX5 Transcriptional
coactivator

Transcriptional coactivator of the tumor
suppressor p53 and ESRRA

Transcription repression; enhances its
interaction with HDAC1

Jacobs et al. (2007)

HIF1A Transcriptional
coactivator

Essential for embryonic vascularization,
tumor angiogenesis and pathophysiology
of ischemic disease

Transcription repression Berta et al. (2007)

IRF1 Transcriptional
activator

Tumor suppressor; antagonism of tumor
cell growth

Transcription repression Nakagawa and Yokosawa (2002)

SMAD4 Translational
corepressor

Tumor suppressor Transcription repression; enhances the
stability of SMAD4; enhances its
interaction with DAXX; activates TGF-β
signaling

Lin et al. (2003a), Lee et al. (2003),
Long et al. (2004), Chang et al.
(2005), Liu K et al. (2020)

SMAD3 Translational
corepressor

Tumor suppressor Transcription repression; influences its
DNA-binding activity; stimulates its
export from the nucleus

Imoto et al. (2008)

CTBP Transcription
corepressor

Repressor of Wnt target gene transcription Transcription repression; important for
nuclear localization

Lin et al. (2003b)

(Continued on following page)
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including cancer initiation and progression, thus the
development of HDACs-targeted imaging probes for cancer
detection and targeting HDACs for cancer therapy have

become a hotspot in epigenetic research (West and Johnstone,
2014; Tang et al., 2022). Since SUMOylation of HDACs plays an
important role in the regulation of HDACs activity in cancer

TABLE 2 (Continued) SUMOylation of transcription regulators.

Genes Function in
transcription

Protein roles in cancer SUMO effects on transcription Refs

MTA1 Transcriptional
coregulator

Important in tumorigenesis, tumor
invasion and metastasis

Transcription repression; recruits
HDAC2 onto the PS2 promoter

Cong et al. (2011)

PGR Progesterone receptors Mediates proliferation during breast
development and contributes to breast
cancer progression

Transcription repression Daniel et al. (2007)

ESR2 Nuclear hormone
receptor

Anti-oncogene Transcription repression; stabilizes ESR2;
modulates ESR2 chromatin interaction

Picard et al. (2012)

IKBA NF-kappa-B/REL
complexes

Inhibits the activity of dimeric NF-κB
complexes

Transcription repression Desterro et al. (1998)

Resistant degradation

AR Transcription factor Enhances androgen-dependent
proliferation of prostate cancer cells

Activation/Repression Poukka et al. (2000), Zheng et al.
(2006), Bawa-Khalfe et al. (2007)

SP1 Transcription factor Tumor suppressor Activation/Repression; SUMO1 and
SUMO2 exert opposing effects on
Sp1 stability

Gong et al. (2014)

FIGURE 3
The effects of SUMOylation on RNA modification and RNA editing. (A) The N6-methylad-enosine writer METTL3. Reader YTHDF2 and eraser
ALKBHS can be modified by SUMO. SUMOyIa-lion of METTL3 does not affect its stability. Subcellular localization. Or Interaction with MET11141 W-TAP.
but significantly inhibits METTL3 m6A methyltransferase activity. YTHDF2 can be modified by SUMO1 under hypoxia. Enhancing its binding affinity to
m6A-RNAs. Resulting in dysregulation of gene expression. ALKBHS SUMOylation loads to inhibition of ALKBHS m6A demethylase activity. Thereby
increasing global mRNA m6A levels. (B) SUMOylation stabilizes m5C writer NSUN2 and mediates its transport into the nucleus. (C) The RNA editing
enzyme ADAR1. Which converts ade-nosine to inosine, can be SUMOylated thereby inhibiting its RNA editing activity.
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cells, it is worthwhile to design some small chemical molecules or
other specific drugs to interfere with the SUMO modification of
HDACs in cancers.

A wide range of transcription factors and co-transcriptional
regulators have been reported as SUMOylated proteins. In most
cases, SUMOylation is usually associated with transcriptional
repression (Rouviere et al., 2013). Here, we list transcription
regulators, especially those related to cancer, which can be
modified by SUMOs to modulate transcriptional activation
activity (Table 2). Remarkably, DAXX regulates gene expression
as a transcriptional co-repressor or co-activator by interacting with
diverse core histones, chromatin-associated proteins, transcription
factors and epigenetic regulators (Mahmud and Liao, 2019). DAXX-
regulated genes are important effectors in cell death, survival and
tumorigenesis (Mahmud and Liao, 2019), so the expression level of
DAXX is increased in several cancer types including prostate
(Tsourlakis et al., 2013), ovarian (Pan et al., 2013) and gastric
cancer (Xu et al., 2017). DAXX can be modified by
SUMO1 increasing recruitment of DAXX to PML-NBs (Jang
et al., 2002), which induces cancer cell apoptosis (Takahashi
et al., 2004). Moreover, the conserved SIMs of DAXX provide a
molecular explanation for the interactions of DAXX with SUMO-
modified proteins, leading to transcriptional activation or repression

(Figure 2A; Figure 3). For examples, DAXX can interact SUMO-
modified androgen receptor (AR) and glucocorticoid receptor (GR)
to repress their transcriptional activities by inhibiting their DNA
binding (Lin et al., 2004; Lin et al., 2006). By binding with
SUMOylated-SMAD4, DAXX inhibits the tumor suppressive
effect of transforming growth factor-β (TGF-β) signaling
mediated by SMAD4 (Chang et al., 2005), which affects the
growth arrest and apoptosis of cancer cells (Zhao et al., 2018).

Although SUMOylation of most transcription factors and
transcriptional co-regulators plays a negative role in
transcription, it also activates several transcription factors, such
as tumor suppressor p53 (Gostissa et al., 1999; Rodriguez et al.,
1999), the G2/M transcription factor forkhead box protein M1
(FOXM1) (Schimmel et al., 2014), PAX6 (Yan et al., 2010),
nuclear hormone receptor ESR1 (Sentis et al., 2005) and EGR1
(Yu et al., 2009) (Table 2). Our early data reveal that
SUMO1 modification of EGR1 contributes to EGR1-mediated
PTEN transcriptional activation (Yu et al., 2009).

There are also some evidences show that SUMOylation of
transcriptional machinery-related proteins can promote
transcriptional activation. SUMO1 marks the chromatin on the
promoters of many housekeeping genes, which encode
translation factors and ribosomal subunit proteins, to promote

FIGURE 4
The effect of SUMO modification on the miRNA pathway. (A) OGCR8 SUMOyfation increases its protein stability by preventing the degradation via
the ubiquitin proteasome pathway. The SUMOylation also enhances its affinity with pri-miRNA thus positively promoting the pri-miRNA direct
recognition and repression of the targeted mRNA. SUMOylated KHSRP inhioits interaction with Dro-sha/DGCR8 and pri-miRNAs complex, sequentially
downregulatlng a subset of miRNAS biogenesis. (B) SUMOylation of TARBP2 controls the efficiency of RNA-induced gene silencing by increasing its
interaction with AGO2 and precursormiRNAs/siRNAs (C) SUMOytation enhances AGO2 turnover and antagonizes its stability. (D) SUMOylated of LIN28 A
increases the binding affinity of LIN28 A and pre-let-7. Thereby leading to the degradation of pre•let-7 and reducingmature let-7 biogenesis. The intense
interaction between LIN28 A and pre-let-7 can efficiently recruit TUT4 to urictylate pre-let-7 and block the processing of pre-let-7.
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the transcription of these specific RNAs (Liu et al., 2012). The
C-terminal domain (CTD) of the largest subunit of RNA
polymerase II (RNAP II) is important in coupling RNA
processing and transcription (Corden and Patturajan, 1997;
Bentley, 2014). The chromatin scaffold protein SAFB (scaffold
related factor B) interacts with the CTD of RNAPII and a subset
of serine-/arginine-rich RNA processing factors (SR proteins) to
form a ‘transcriptosomal’ complex that couple the transcription
and RNA processing (Nayler et al., 1998). SUMO1-modified
SAFB1 can promote the binding of RNAPII to the promoters
of ribosomal protein genes and pre-mRNA splicing (Liu et al.,
2015) (Figure 2A; Figure 4).

The transcription profiling reveals that SUMOylation represses
the global transcription by inhibiting transcriptional elongation.
SUMOs and MYC oppositely control global gene expression by
regulating the dynamic SUMOylation and deSUMOylation of
CDK9. CDK9 is the catalytic subunit of the P-TEFb kinase and
is essential for productive transcriptional elongation. SUMOylation
of CDK9 represses global transcription, while MYC amplifies global
transcription by antagonizing CDK9 SUMOylation (Yu et al., 2018)
(Figure 2A). The oncogene MYC is part of a superfamily of genes
encoding the most commonly activated oncoproteins in human
cancers (Schaub et al., 2018). MYC is highly associated with cell
proliferation, differentiation, survival and death (Bernard and Eilers,
2006; Bretones et al., 2015; Stine et al., 2015; Baluapuri et al., 2020).
Dysregulation of MYC expression or activation has been linked to
many human cancers (Dang, 2012; Lourenco et al., 2021). Many
therapeutic agents targeting MYC are under development, among
which the inhibitors of MYC transcriptional activity may be an
attractive therapeutic intervention (Dhanasekaran et al., 2022).
Considering that MYC amplifies gene expression by antagonizing
CDK9 SUMOylation, modulation of CDK9 SUMOylation may be a
feasible therapeutic approach given that there are currently no
approved direct inhibitors of MYC.

In response to stresses, the transcription of housekeeping genes
is usually downregulated in cells. Stress-induced SUMOylation of
negative elongation factor (NELF) is required for global
transcriptional repression by promoting the binding of NELF
to the promoters, which impairs RNAPII elongation. NELF forms
nuclear condensations in a dephosphorylation-dependent and
SUMOylation-dependent manner under stressful conditions.
Biomolecular condensation facilitates enhanced recruitment of
NELF to promoters upon stress to drive transcriptional
downregulation (Rawat et al., 2021) (Figure 2A). RNA
polymerase II-associated factor 1 (PAF1)/pancreatic
differentiation 2 (PD2) is a core subunit of the human
PAF1 complex (PAF1C) that regulates the RNA polymerase II
function during transcriptional elongation. SUMOylation of
PAF1/PD2 predominantly presents in the nucleus and
promotes its interaction with PML protein in response to
radiation. PML functions in multiple aspects of cellular
function including transcription. PML-NBs are strongly
associated with the SUMOylation process, since SUMOylation
of PML induces recruitment of other SIM-containing factors to
these bodies (Zhong et al., 2000). Furthermore, inhibition of
SUMOylation or PML reduces the cell growth and
proliferation of pancreatic ductal adenocarcinoma (PDAC)
cells (Rauth et al., 2021) (Figure 2A).

mRNA processing

Most mRNA precursors (pre-mRNAs) undergo three
processing steps: the 5′end is capped by addition of 7-
methylguanosine; introns are removed and exons ligated by
splicing; and the 3′end is created by an endonucleolytic cleavage
followed by addition of a 100–300 nt long poly(A) tail. The evidence
linking SUMOylation with the process of RNA capping, splicing and
tailing is majorly based upon proteomic analysis (Richard et al.,
2017). In the past decade, the affinity purification strategy based on
tagged-SUMO peptides has led to the development of mass
spectrometry (MS) identifying large-scale SUMOylated proteins,
many of which are involved in RNA processing events such as
capping, splicing, polyadenylation and mRNA export in mammals
(Li et al., 2004; Manza et al., 2004; Gocke et al., 2005; Guo et al., 2005;
Rosas-Acosta et al., 2005; Vertegaal et al., 2006; Blomster et al., 2009;
Golebiowski et al., 2009; Matafora et al., 2009; Matic et al., 2010;
Tatham et al., 2011; Becker et al., 2013; Schimmel et al., 2014;
Tammsalu et al., 2014; Yang and Paschen, 2015). In yeast, a
significant proportion (17%) of the SUMO-modified proteins
identified is found to be involved in RNA-related processes
(Denison et al., 2005). It is reported that enzymes in SUMO
pathway are co-located in some nucleosomes, which is believed
to be closely related to RNA processing. Nuclear speckle NS, for an
example, plays a major role in regulating the availability of splicing
factors at the transcription site since more than 50% of NS proteins
are involved in transcription or splicing regulation. NS-associated
processers are well regulated by SUMOylation because SUMO
E2 Ubc9 (Ihara et al., 2008) and E3 ligases PIAS family (Tan
et al., 2002) localize to NS. However, how SUMOylation
cooperatively modulates the function of individual NS proteins
remains to be revealed (Galganski et al., 2017). In addition,
SUMO1 and Ubc9 are also localized to Cajal bodies, which are
implicated in RNA-related metabolic processes (Navascues et al.,
2008).

Pre-mRNA splicing is one of most important RNA processing
catalyzed by the spliceosome. Spliceosome assembly occurs by the
ordered interaction of five small nuclear ribonucleoprotein particles,
termed U1, U2, U4, U5, and U6 small nuclear ribonucleoproteins
(snRNPs). Each snRNP consists of a small nuclear RNA (snRNA)
and a large set of associated proteins. In the earliest cross-intron
spliceosomal complex, U1 and U2 snRNP bound to the intron to
form A complex. Then, the activated spliceosome B Complex
generated by the recruitment of U4/U6/U5 tri-snRNP. After
numerous RNA and protein rearrangements, including the
dissociation of the U1 and U4 snRNPs, and splicing by the
DEAH-box RNA helicase PRP2, the catalytic C complex is finally
yielded. The C complex catalyzes intron excision and ligation of the
exons followed by spliceosome disassembly (Wilkinson et al., 2020).
Several spliceosomal proteins are SUMOylated in vitro and in
cultured cells, including components of U1, U2, U4/U6,
U5 snRNPs, non-snRNPs, heterogeneous nuclear
ribonucleoproteins (hnRNPs) as well as a wide range of other
spliceosome-associated factors, suggesting that SUMOylation may
play a role in multiple steps of pre-mRNA splicing (Pozzi et al., 2017;
Chanarat and Mishra, 2018).

Serine/arginine (SR) proteins, such as members of the hnRNP
family and many splicing factors, are highly SUMOylated in
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response to various stresses (Golebiowski et al., 2009; Psakhye and
Jentsch, 2012). The SR protein SRSF1 (known as SF2/ASF) acts as a
regulator of the SUMOylation pathway by interacting with Ubc9 to
modulate the activity of E3 ligase PIAS1, thus promoting
SUMOylation of specific substrates. SRSF1 is upregulated in
varies cancer type (Ghigna et al., 2005; Karni et al., 2007; de
Miguel et al., 2014; Anczukow et al., 2015) and controls
alternative splicing of many tumor-related genes, which affect cell
apoptosis (Olsson and Zhivotovsky, 2011; Anczukow et al., 2012;
Gautrey and Tyson-Capper, 2012), proliferation and migration
(Ghigna et al., 2005) thereby promoting tumorigenesis and
cancer development. Knockdown of SRSF1 suppresses SUMO
modification of splicing factors as well as tumor progression
(Pelisch et al., 2010). The splicing factor U4/U6 small nuclear
ribonucleoprotein PRP3, a component of the U4/U6 di-snRNP, is
another SUMOylation substrates during splicing and its
SUMOylation is regulated by SRSF1 (Li N et al., 2020).
SUMOylation of PRP3 is required for U4/U6/U5 tri-snRNP
formation and recruitment to activate the spliceosome. The
SUMOylation-deficient mutant PRP3/2 KR do not affect
PRP3 binding to U4 or U6 snRNAs, but prevented its interaction
with the associated splicing factors U2-SF3A1 and U5-Snu114,
suggesting that SUMOylation of PRP3 promotes U4/U6/U5 tri-
snRNP formation to affect splicing (Pozzi et al., 2017) (Figure 2B).

SAFB, which interacts with the CTD of RNAPII and RNA
processing proteins such as SR proteins as mentioned before, is
identified as an SUMO1 substrate binding to promoters of highly
expressing genes. SUMOylation of SAFB also increases splicing rates
of mRNAs encoding ribosomal proteins, suggesting a role for
SUMOylated-SAFB in coupling transcription and RNA
processing (Liu et al., 2015). SAFB is also a key player in
tumorigenesis. Overexpression of SAFB1 leads to growth
inhibition of breast cancer cells (Townson et al., 2000), and it
involved in apoptosis and the immune system as a
transcriptional repressor regulating genes in breast cancer cells
(Hammerich-Hille et al., 2010). However, the role of SAFB
SUMOylation in cancer development is unclear. Except for
factors directly involved in splicing, AKT is also involved in the
splicing process as a key sensor that translates extracellular signals
into changes in splicing patterns. AKT is modified by SUMO at
K276 and K301 within its kinase domain, and its mutation (Akt
E17 K) increases its SUMOylation levels in several human cancer
types, enhancing its capacity to regulate fibronectin and Bcl-x
alternative splicing patterns (Risso et al., 2013). In general,
SUMOylation modulates the activity of splicing-related proteins
to promote spliceosome assembly and improve splicing efficiency,
which regulates alternative splicing of many tumor-associated genes
to affect cancer progression, but more studies are needed to clarify
the detailed mechanisms of SUMOylation of splicing related
proteins in the regulation of tumorigenesis, so as to promote the
improvement of cancer treatment strategies.

SUMOylation is also involved in regulating another key mRNA
processing step, polyadenylation, which processes the 3′-end of
nascent transcripts and requires several complexes including CFI
(cleavage factor I), CFII, CPSF (cleavage and polyadenylation
specificity factor) and CstF (cleavage stimulation factor) and
additional protein factors (Shi et al., 2009). The 3′ends of pre-
mRNAs are formed in a two-step process, with an endonucleolytic

cleavage generating a 3′OH end followed by the synthesis of a
poly(A) tail (Colgan and Manley, 1997; Proudfoot and O’Sullivan,
2002). For canonical 3′-end processing in mammals, the cleavage
site is located between an upstream polyadenylation signal (PAS),
most frequently an AAUAAA hexamer, and a GU-rich downstream
element (DSE) (Sun et al., 2020). The multi-subunit CPSF and CstF
define the poly(A) site by binding cooperatively to PAS and DSE,
respectively. Cleavage factors I and II help in the complex assembly
and in the first step, then Poly(A) polymerase (PAP) catalyzes the
addition of poly(A) (Takagaki et al., 1989; Raabe et al., 1991). It has
found that CPSF, PAP and assembly factor Symplekin are modified
by SUMO2/3 (Richard et al., 2017) (Figure 2C). Blocking
SUMOylation of CPSF and Simplekin affects pre-mRNA
3′complex assembly and activity and is lethal to cell viability
(Vethantham et al., 2007; 2008). CPSFs have multiple roles in
different tumor types. CPSF1 (Zhang et al., 2017a) and CPSF4
(Tang et al., 2016; Yi et al., 2016; Zhang et al., 2017a) promote
cell proliferation in ovarian cancer and lung adenocarcinoma
(LUAD), respectively, while CPSF2 inhibits invasion and cancer
stem cell growth (Sung et al., 2015). However, the mechanism of
CPSF SUMOylation in cancer remains unclear. PAP is highly
SUMOylated in its C-terminal regulatory domain by strong
binding with Ubc9, which is required for its correct nuclear
localization and stability. In vitro polyadenylation assays show
that SUMOylated PAP has lower poly(A) synthesis activity,
indicating that SUMOylation of PAP inhibits polyadenylation
activity to profoundly affect gene expression (Vethantham et al.,
2008). Dysfunction of PAP activity has been shown to associated
with diverse diseases. The increasing activity of PAP is correlated
with malignancy in breast cancer and leukemia (Papamichail et al.,
1983). Conversely, the inhibition of PAP activity is associated with
apoptosis (Scorilas et al., 1998). Thus, regulation of PAP mediated
by SUMOylation may have important role in cancer development
and more studies are needed to investigate its mechanism.

mRNA stability

SUMOylation regulates some of the key factors controlling RNA
stability under cellular stresses. Nucleolin is a multifunctional DNA
and RNA binding protein, closely associates with regulation of cell
proliferation and growth, which is abundant in growing and
cancerous cells (Grinstein et al., 2007). SUMOylation of nucleolin
is required for maintaining its nuclear localization and promoting its
activity in mediating gadd45α mRNA stability, which in turn
increases apoptosis under arsenic exposure (Zhang et al., 2015).
Therefore, it is likely that the SUMOylation of nucleolin has an
important regulatory role in specific stress-induced mRNA
stabilization.

N6-methyladenosine (m6A) is one of the most common
modifications in mRNA, rRNA, tRNA, microRNA and long non-
coding RNA (Alarcon et al., 2015). Human YTH domain family 2
(YTHDF2) selectively recognized m6A-RNAs to regulate
degradation by recruiting the CCR4-NOT complex through a
direct interaction between the YTHDF2 N-terminal region and
the SH domain of the CNOT1 subunit (Du et al., 2016)
(Figure 3A). We recently found that YTHDF2 can be modified
by SUMO1 under hypoxic conditions, which enhances its binding
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affinity to m6A RNAs, leading to accelerated degradation of mRNAs.
Subsequently, SUMOylation of YTHDF2 changes the gene
expression profile, thus promoting cancer progression (Hou
et al., 2021).

In response to various environmental stresses, stress granules
(SGs) rapidly form thus transiently storing mRNAs and RNA-
binding proteins (RBPs) to limit protein synthesis. SGs are
associated with various diseases including cancers, viral infections
and neurodegenerative diseases (Ivanov et al., 2019). It has been
demonstrated that SUMO-conjugating enzymes are recruited to SGs
and SUMOylation regulates SG formation and disassembly (Keiten-
Schmitz et al., 2020; Marmor-Kollet et al., 2020). As reported by
several groups, the SUMOylation level of RBPs is regulated under
stress conditions, however how SG regulates RNA metabolism
remains unclear.

RNA modification and RNA editing

SUMOylation has been implicated in RNA modifications.
m6A is the most prevalent internal RNA modification in
eukaryotes. It is a dynamic and reversible modification that
occurs primarily in 3′untranslated regions (3′UTRs) and near
the stop codons (Meyer et al., 2012). The methyltransferase like 3
(METTL3) is a key component of the large N6-adenosine-
methyltransferase complex in mammalian. Our laboratory
found that METTL3 is modified by SUMO1, which does not
affect its stability, subcellular localization, or interaction with
methyltransferase complex METTL14/WTAP, but significantly
inhibits its m6A methyltransferase activity. SUMOylation of
METTL3 enhances tumor growth in human non-small cell
lung carcinoma cell line H1299 by decreasing the m6A level in
mRNAs and subsequently changing gene expression profile (Du
et al., 2018). XU et al confirmed SUMOylation of METTL3 can
regulate hepatocellular carcinoma (HCC) progression via
controlling Snail mRNA homeostasis in a m6A
methyltransferase activity-dependent manner (Xu et al., 2020).
ROS induces a global increase in mRNAm6A via inhibition of the
m6A demethylase ALKBH5. Mechanistically, ROS promotes
ALKBH5 SUMOylation through activating ERK/JNK signaling,
leading to inhibition of ALKBH5 m6A demethylase activity by
blocking substrate accessibility. Increased global mRNA m6A
levels lead to the rapid and efficient induction of thousands of
genes involved in a variety of biological processes including DNA
damage repair (Yu et al., 2021) (Figure 3A). Methylases and
demethylases of m6A can affect the complexity of cancer
progression (Zhang et al., 2017b; Weng et al., 2018; Huang
et al., 2019; Li J et al., 2020), thus SUMOylation of remaining
enzymes should be investigated for potential clinical application
of cancer treatment.

5-methylcytosine (m5C) is another important
posttranscriptional modification of RNA. The modification m5C
in mRNAs is mainly catalyzed by the RNA methyltransferase
NSUN2 and specifically recognized by the mRNA export adaptor
ALYREF (Yang et al., 2017). NSUN2 is highly expressed in various
tumors but extremely low in most normal tissues (Okamoto et al.,
2012). NSUN2 is modified by SUMO2/3 stabilizing NSUN2 and
mediating its nuclear transport, which regulates the m5C

modification levels of mRNAs that are involved in GC
progression (Hu et al., 2021) (Figure 3B).

ADAR1, an RNA-editing enzyme also undergo SUMOylation to
regulate RNA metabolism. ADAR1 binds to double-stranded RNA
and converts adenosine to inosine, resulting in changes in the amino
acid coding that alter protein sequence/function (Baker and Slack,
2022). ADAR1 is commonly overexpressed in a growing number of
cancer types, and its oncogenic role in cancers is attributed to
multiple mechanisms. It has been found that ADAR1 can be
modified by SUMO1. Although SUMOylation does not affect
ADAR1 localization in the nucleolus, it appears to inhibit its
RNA editing activity (Desterro et al., 2005) (Figure 3C).

Non-coding RNA metabolism

Non-coding RNAs (ncRNAs) are a class of RNA molecules that
do not encode proteins but can function except mRNA, tRNA and
rRNA. miRNAs are small non-coding regulatory RNAs ranging
from 20–25 nucleotides, which binding to partially complementary
sequences within the 3′-untranslated regions of target mRNAs
inducing translational repression or mRNA degradation (Treiber
et al., 2019). miRNAs are extensively deregulated in human cancers,
as miRNA expression is globally suppressed in tumor cells
compared to normal cells (Lu et al., 2005). miRNA biogenesis is
strictly controlled at several levels, such as transcription, processing,
itself modification and decay and is closely related to tumors (Ha
and Kim, 2014). Aberrant miRNA biogenesis in cancer occurs at
different steps during miRNA maturation, and more importantly,
key proteins of miRNA biogenesis are post-transnationally modified
by SUMOs to regulate miRNA biogenesis and functions (Table 3).

Primary miRNAs (pri-miRNAs) are typically transcribed by
RNA polymerase II in the nucleus (Krol et al., 2010), and then pri-
miRNAs are cleaved into approximately 70 nucleotide stem-loop
structures by the nuclear RNase III-type enzyme DROSHA, in a
complex with its co-factor DGCR8 (DiGeorge syndrome critical
region 8 homolog), which is essential for pri-miRNA processing by
cleaving pri-miRNA into pre-miRNA in the nucleus. We first
reported that DGCR8 can be modified by SUMO1 at K259 and
K707. K707-SUMOylation of DGCR8 enhances protein stability by
preventing degradation by the ubiquitin-proteasome pathway (Zhu
et al., 2015), whereas K259-SUMOylation of DGCR8 is critical for its
nuclear localization for its normal miRNA processing functions
(Zhu et al., 2016). SUMOylation of DGCR8 at K707 does not alter its
association with Drosha and miRNA biosynthesis. However, K707-
SUMOylation affects its affinity for pri-miRNA to control the direct
function of pri-miRNAs in recognizing and repressing target
mRNAs (Zhu et al., 2015). SUMOylation of DGCR8 is
apparently related to the function of DGCR8 in regulating
tumorigenesis and cell migration in lung adenocarcinoma
(Figure 4A). The hnRNP K homology (KH)-type splicing
regulatory protein (KHSRP) is one major component of the
DROSHA complex. KHSRP can promote the biogenesis of
miRNAs, such as let-7 family, whose pri-miRNAs harboring
short G-rich stretches in their terminal loops (TL).
SUMO1 modification of KHSRP at K87 can be induced upon the
microenvironmental hypoxia while reduced by the treatment with
growth factors. SUMOylation of KHSRP probably increases its
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translocation from the nucleus to the cytoplasm, thus inhibiting its
interaction with the pri-miRNA/DROSHA-DGCR8 complex,
therefore SUMOylation of KHSRP results in the downregulation
of TL-G-Rich miRNAs such as let-7 family, which is linked to
tumorigenesis and cancer progression (Figure 4A) (Yuan et al.,
2017).

In the cytoplasm, pre-miRNAs are cleaved into double-stranded
RNAs (dsRNAs) by another RNase III-type enzyme, DICER with its
co-factors TRBP (TAR RNA-binding protein 2, also known as
TARBP2), resulting in an RNA duplex of ~22 nucleotides. The
short RNA duplex is bound by an AGO (Argonaute) protein, a
component of a multi-subunit complex termed miRISC (miRNA-
induced silencing complex) (Iwakawa and Tomari, 2022). Finally,
miRISC mediates the recognition of targeted mRNAs by guiding
miRNA to their specific mRNA targets through base pairing (Zealy
et al., 2017). Interestingly, we found that SUMOylation of
TARBP2 regulates the efficiency miRNA/short interfering RNA
(siRNA) (Chen et al., 2015). TARBP2 is SUMOylated at K52,
which can be enhanced by its phosphorylation. SUMOylation of
TARBP2 significantly promotes its binding with pre-miRNAs to
facilitating the efficiency miRNA-inducing gene silencing.
SUMOylated TARBP2 also represses its ubiquitination and
stabilizes AGO2 by increasing the binding with AGO2 via SIMs
of AGO2. SUMOylation of TARBP2 are implicated in suppression
of tumor growth and tumor cell migration (Figure 4B) (Chen et al.,
2015). Moreover, AGO2 can be modified by SUMO1 and SUMO2/
3 leading to reduce its stability (Figure 4C) (Sahin et al., 2014).
However, our unpublished data suggested that SUMOylation of
AGO2 does not affect its stability, but crosstalk with
phosphorylation together modulates miRNA loading to AGO2,
which affects the gene silencing activity.

In addition to key proteins in these classical miRNA biogenesis
pathways, other proteins also undergo SUMOmodification to affect
miRNA metabolism. Let-7 family members (let-7 s) are known as
important tumor suppressors, which are downregulated in multiple
cancers, and associated with increased proliferation and invasion of
cancer cells. LIN28 A is a conserved RNA-binding protein that
inhibits processing of pre-let-7 miRNAs, thus promoting cancer
progression. Our lab showed that LIN28 A is SUMOylated at K15,
which is increased by hypoxia but reduced by chemotherapy drugs
such as Cisplatin and Paclitaxel. SUMOylation of LIN28 A increases
its binding affinity with the pre-let-7 and recruits of terminal

uridylyltransferase TUT4 to block processing of pre-let-7.
Subsequently, SUMOylation of LIN28 A exacerbates its inhibition
of let-7 maturation, thereby reducing mature let-7 production.
These effects promote cancer cell proliferation, migration,
invasion and tumor growth in DU145 and T47D cell lines
(Figure 4D) (Dou et al., 2020).

PIWI interacting RNAs (piRNAs) and long non-coding RNAs
(lncRNAs) are also influenced by SUMOylation. Several studies in
Drosophila have demonstrated the role of SUMOylation in primary
piRNA biogenesis (Muerdter et al., 2013) and piRNA-guided
transcriptional silencing and heterochromatin formation (Mugat
et al., 2020; Ninova et al., 2020; Andreev et al., 2022; ElMaghraby
et al., 2022). Moreover in C. elegans, PIE-1 is itself modified by
SUMO and acts as a SUMO E3 together with the conserved SUMO-
E3 GEI-17/PAIS1 to promote piRNA-dependent silencing. PIE-1
SUMOylation promotes SUMOylation of HDA-1 and the assembly
of a MEP-1/Mi-2/HDA-1 chromatin remodeling complex in the
adult germline to promote fertility and embryonic development
(Kim et al., 2021). However, there is relatively limited study of
SUMOylation on the function of piRNAs in cancers.

A growing body of evidence has shown that many lncRNAs
contribute to regulate the SUMOylation of some proteins, leading to
cancer development and progression. LncRNA myosin heavy chain
associated RNA transcript (MHRT) can regulate the SUMOylation
levels of NAD-dependent protein deacetylase sirtuin-1 (SIRT1),
peroxisome proliferator-activated receptor γ coactivator-1 α
(PGC-1α)/peroxisome proliferator-activated receptor-α (PPARα),
specificity protein 1 (SP1)/HDAC4 in cardiac hypertrophy (Liu
et al., 2022). LncRNA ELNAT1 promotes lymphangiogenesis and
lymph node (LN) metastasis in bladder cancer (BCa) cell lines by
inducing Ubc9 overexpression to catalyze SUMOylation of
hnRNPA1 (Chen et al., 2021). LncRNA small nucleolar RNA
host gene 1 (SNHG1) enhanced SUMOylation of
Bhlhe40 protein by facilitating the binding of SUMO E3 ligase
PIAS3 to Bhlhe40, resulting in increased nuclear translocation of
Bhlhe40 (Li S et al., 2022). LncRNA SDCBP2-AS1 binds to hnRNPK
to repress its SUMOylation, which facilitates the ubiquitination of
hnRNP K and β-catenin, thereby promoting the degradation of β-
catenin and suppressing tumorigenesis and metastasis in gastric
cancer (Han et al., 2022). Oncogene glucose transporter 1 (GLUT1)
associated lncRNA (GAL) interacts with GLUT1 protein, which
increases GLUT1 SUMOylation and inhibits the ubiquitin

TABLE 3 SUMOylation affects miRNA biogenesis and functions in cancer.

Protein SUMOylation mechanism SUMO regulation in
miRNA biogenesis

SUMOylation role in
tumor

References

DGCR8 Promote by phosphorylation; enhances protein stability by
blocking ubiquitination; increases affinity with pri-miRNA

Increases miRNA biogenesis and
the microprocessor activity

Promote tumorigenesis and
cancer progression

Zhu et al. (2015), Zhu
et al. (2016)

KHSRP Promotes cytoplasmic localization; interferes interaction with
pri-miRNAs

Inhibits the biogenesis of TL-G-
Rich miRNAs

Promote tumorigenesis and
cancer progression

Yuan et al. (2017)

TARBP2 Stabilizes TARBP2; promotes binding with pre-miRNAs;
stabilization of AGO2 by increasing the binding between them

Efficiency miRNA-inducing gene
silencing

Suppress tumor progression Chen et al. (2015)

AGO2 Negatively regulates AGO2 turnover Does not alter RNA interference Sahin et al. (2014)

LIN28 A Increases its binding to pre-let-7; promotes pre-let-
7 uridylation and inhibits pre-let-7 processing

Enhances inhibition of let-7
biogenesis

Weaken oncogenic capacity Dou et al. (2020)
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proteasome system on the GLUT1 protein, thus promoting
colorectal cancer cell migration and invasion (Li B et al., 2022).
LncRNA rhabdomyosarcoma 2 associated transcript (RMST)
enhances FUS SUMOylation, which contributes to the interaction
between FUS and hnRNPD to suppress glioblastoma cell mitophagy
(Liu C. et al., 2020). LncRNA RP11-214F16.8 decreases the protein
level of tumor suppressor NISCH by replacing SUMOylation with
ubiquitination, which drives breast cancer (Lv and Zhang, 2022).
LncRNA p53-stabilizing and activating RNA (PSTAR) can bind to
hnRNP K and enhance its SUMOylation, thereby strengthening the
interaction between hnRNP K and p53, ultimately resulting in the
accumulation and transactivation of p53 to suppress hepatocellular
carcinoma (Qin et al., 2020). Interestingly, c-Myc promotes
p53 polyubiquitination and turnover by reducing
p53 SUMOylation through c-Myc-inducible LncRNA inactivating
P53 (MILIP), driving cancer pathogenesis (Feng et al., 2020). In
addition, lncRNA TINCR can encode an evolutionary conserved
ubiquitin-like protein (UBL) named pTINCR. pTINCR increases
CDC42 SUMOylation and promotes its activation, leading to
epithelial differentiation and tumor suppression, which acts as a
tumor suppressor in epithelial cancers (Boix et al., 2022). These
findings suggest lncRNA regulating SUMOylation can be as a new
potential direction for the cancer treatment strategies.

Concluding remarks

In the past decade, SUMOylation research has found a large set
of SUMO target proteins, which regulate the different stages of RNA
metabolism. In this article, we summarize the regulatory roles of
SUMOylation in RNA metabolism in cancer cells. A tight control of
mRNA metabolism is crucial to allow cells in response to
physiological stresses. SUMO proteome with key proteins/
enzymes of mRNA transcription, splicing or nuclear complex is
subject to spatio-temporal regulation and cellular stress remodeling
to control mRNA metabolism. Since most of SUMOylation
substrate proteins are localized in the nucleus, the effect of
SUMOylation is mainly to inhibit the global transcription
activity. When SUMOylation sites are located within the
inhibitory or repressive domains, mutations of these sites can
dramatically enhance the transcriptional activity.

MiRNA biogenesis is closely regulated by SUMOylation, thus
affecting tumorigenesis and cancer progression. SUMOylation has
no uniform effect on miRNA biogenesis process and miRNA-
induced RNA silencing efficiency. Considering that the activity
and abundance of core proteins and their partners in different
stages of miRNA biogenesis are not consistent in different
cancers, there is no comprehensive understanding and definite

conclusion on how SUMO specifically affects miRNA metabolism
in specific types of cancer. Moreover, a lot of lncRNAs mediate
SUMOylation of target proteins, which plays complex and precise
regulatory roles in cancer progression. However, the role of
SUMOylation in the transcription, processing, stability and
functions of lncRNAs is limited and unclear. Finally,
understanding the impact of SUMOylation on RNA metabolism
may provide new therapeutic strategies for cancer treatment.
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