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X-ray crystallography and structure-based drug discovery have played a major
role in the discovery of antisickling agents that target hemoglobin (Hb) for the
treatment of sickle cell disease (SCD). Sickle cell disease, the most common
inherited hematologic disorder, occurs as a result of a single point mutation of
βGlu6 in normal human adult hemoglobin (HbA) to βVal6 in sickle hemoglobin
(HbS). The disease is characterized by polymerization of HbS and sickling of red
blood cells (RBCs), leading to several secondary pathophysiologies, including but
not limited to vaso-occlusion, hemolytic anemia, oxidative stress, inflammation,
stroke, pain crisis, and organ damage. Despite the fact that SCD was the first
disease to have its molecular basis established, the development of therapies was
for a very long time a challenge and took several decades to find therapeutic
agents. The determination of the crystal structure of Hb by Max Perutz in the early
60s, and the pioneering X-ray crystallography research by Donald J. Abraham in
the early 80s, which resulted in the first structures of Hb in complex with small
molecule allosteric effectors of Hb, gave much hope that structure-based drug
discovery (SBDD) could be used to accelerate development of antisickling drugs
that target the primary pathophysiology of hypoxia-induced HbS polymerization
to treat SCD. This article, which is dedicated to Donald J. Abraham, briefly reviews
structural biology, X-ray crystallography and structure-based drug discovery from
the perspective of Hb. The review also presents the impact of X-ray
crystallography in SCD drug development using Hb as a target, emphasizing
the major and important contributions by Don Abraham in this field.
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1 Introduction

1.1 Structural biology and structure-based drug discovery

Structural biology has become an indispensable tool for determining the three-
dimensional (3D) structures of macromolecules, e.g., proteins for a comprehensive
understanding of their functions on molecular level, as well as a detailed atomic level
description of potential binding cavities that can be targeted for structure-based drug design
or discovery (SBDD). Traditionally, X-ray crystallography and to a lesser extent nuclear
magnetic resonance (NMR) have been the two major structural biology techniques used to
study atomic structures, providing us with a tremendous number of macromolecule 3D
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structures. The field of structural biology and structure-based drug
discovery can be attributed to Max Perutz and John Kendrew for
using X-ray crystallography to solve the structures of hemoglobin
and myoglobin, respectively, at atomic resolutions (Kendrew et al.,
1958; Perutz et al., 1960). These incredible feats won the two
scientists the Nobel Prize in Chemistry in 1962. While X-ray
crystallography yields the highest atomic resolution of protein
structures, it has several drawbacks, including the need for a
pure, stable, and crystallizable protein in sufficient amounts.
Larger proteins and/or membrane proteins are much more
difficult to express and crystallize, making target proteins larger
than 250 kDa challenging to solve by X-ray crystallography (Davis
et al., 2003). Another major limitation of X-ray crystallography is its
inability to properly model protein dynamics; rather capturing a
static state that may or may not be the relevant physiological state of
interest. Unlike X-ray crystallography, NMR does not require the
protein to be crystallized, and most importantly captures the
structure of proteins in solution; providing unique information
about dynamics and multiple states. NMR also has an advantage
over X-ray crystallography as it can be used to obtain high resolution
structural information from unstructured proteins. NMR, however,
requires highly pure proteins and is usually unsuitable for large
macromolecules, although relatively large structures have been
solved using this technique. Nonetheless, for small proteins NMR
could be faster and practical than X-ray crystallography. Another
bottleneck of NMR is the requirement of isotopic labeled proteins
(e.g., 13C and 15N-labelled proteins) for easier and reliable analysis. It
is notable to point out that several Nobel Prizes directly related to
NMR spectroscopy have been awarded (Boesch, 2004). In 1991, the
Nobel Prize in chemistry was awarded to Richard Robert Ernst for
his contribution to the development of the methodology of high-
resolution NMR spectroscopy. In 2002, Kurt Wüthrich was also
awarded the Nobel Prize in chemistry for his development of NMR
spectroscopy for determining the 3D structure of biological
macromolecules in solution. Felix Bloch and Edward Mills
Purcell shared the Nobel Prize award in Physics in 1952 for their
development of new methods for nuclear magnetic precision
measurements. The limitations of X-ray crystallography and
NMR methodologies have raised demand for another structural
biology technique, i.e., cryo-electron microscopy (Cryo-EM), which
has shown remarkable growth in the last decade or so due to
continuing improvements in hardware and software (Vénien-
Bryan et al., 2017; Renaud et al., 2018; Drie and Tong, 2020; de
Oliveira et al., 2021). Currently, Cryo-EM can routinely produce
structures with high atomic resolutions as X-ray crystallography and
considering that Cryo-EM structures are determined close to their
native state, gives much hope for its application in structure-based
drug design. Furthermore, the method has improved tremendously
allowing for imaging or visualizing macromolecular complexes in
their functional cellular context (Cheng, 2018; Drie and Tong, 2020;
de Oliveira et al., 2021). The scientific world took notice of Cryo-EM
technique and awarded the 2017 Nobel Prize in Physics to Dr.
Jacques Dubochet, Dr. Richard Henderson, and Dr. Joachim Frank
(Elbaum et al., 2021).

Currently (as of 1 March, 2023), there are over
203,000 macromolecular structures deposited in the Protein Data
Bank (PDB), with about 174,000 determined using X-ray
crystallography, about 14,000 each with NMR and Cryo-EM

(http://www.pdb.org/pdb/search/advSearch.do). In particular,
X-ray crystallography has played a pivotal role in understanding
Hb allostery and for sickle cell disease drug discovery, with Don
Abraham as one of the pioneer in the use of this technique
(Abraham et al., 1982; Abraham et al., 1983a; Abraham et al.,
1983b; Abraham et al., 1984a; Abraham et al., 1984b; Abraham,
1984). NMR and Cryo-EM techniques have only found very little use
in Hb structural studies, although the former played a significant
role in recognizing the co-existence of multi-liganded relaxed Hb
states in equilibrium that include the classical R-state (Lukin et al.,
2003; Gong et al., 2006). About 3,600 hemoglobin structures have
been deposited in the PDB, the large majority solved using X-ray
crystallography (http://www.pdb.org/pdb/search/advSearch.do).

The 3D structures of macromolecules cannot always be
experimentally determined, necessitating the use of
computational methods, e.g., homology modeling, threading, and
ab initio techniques to “predict” the structures. In recent years,
macromolecule structures predicted by computational methods
have gained a lot of attention, with the advent of deep-learning
approaches (Lavecchia, 2019; Patel et al., 2020; Gupta et al., 2021).
The EMBL-EBI (https://alphafold.ebi.ac.uk/) reports over
200,000,000 structures predicted using the deep-learning
computational method, AlphaFold, an Artificial Intelligence (AI)
system developed by DeepMind to predict 3D structures of
macromolecules from their amino acid sequences (Jumper et al.,
2021). This technique is a vast improvement over existing
macromolecule computational techniques because of its ability to
predict structures with atomic accuracy even in the absence of a
known similar structure (Jumper et al., 2021). It begun in 2018,
when DeepMind introduced AlphaFold at the Critical Assessment of
Protein Structure Prediction (CASP13) competition, where it
achieved remarkable success in predicting the 3D structures of
proteins, outperforming all other methods. AlphaFold was later
updated and re-released as AlphaFold2 in 2020, which further
improved the accuracy of protein structure prediction (Jumper
et al., 2021). The development of AlphaFold represents a
significant breakthrough in the field of structural biology, offering
a powerful new tool for protein structure prediction and advancing
our understanding of biological systems with implications for drug
discovery, disease research, and basic biological understanding.

Structure-based drug design remains one of the most powerful
and logical approaches in drug discovery paradigms, allowing for
targeted, efficient, and rapid process for lead discovery and
optimization. Paul Ehrlich, who won a Nobel prize in Chemistry
in 1908 is credited for envisioning receptors as atomic locks and
drugs as atomic keys (Piro et al., 2008). Structure-based drug design
revolves around structural biology with X-ray crystallography,
historically and presently, playing the most significant role. A key
step in SBDD is determination of the crystal structure of the
macromolecule target in complex with a ligand, e.g., endogenous
substrate or product, drug or effector or inhibitor or substrate
analog, or a library of hit or fragment molecules. Atomic level
information from the complex structure allows for targeted
structural modification(s) of the bound ligand that may improve
the pharmacologic activity of the ligand. This process can be iterative
until a more active agent is discovered. Not only rational design for
activity, but other moieties could be incorporated that may regulate
the selectivity, solubility, metabolism, and toxicity profile of the lead
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compound. Beside structural biology, SBDD requires integration of
a number of other independent techniques, including but not
limited to computational or molecular modeling, chemical
biology, synthetic organic chemistry, medicinal chemistry,
molecular biology, pharmacology and pharmacokinetics/ADME.

1.2 Hemoglobin—the protein of life

Hemoglobin is a multifunctional allosteric protein found in red
blood cells (RBC), primarily involved in oxygen transport (Helms
and Kim-Shapiro, 2013; Ahmed et al., 2020). It has a molecular
weight of about 64,500 Da and is formed by pairing of a heterodimer
of the polypeptide chains, α- and β-globins, into a tetrameric
functional unit α2β2 (α1β1-α2β2). The MetHb or H2O-liganded
Hb from horse was the first Hb structure to be solved, (Perutz
et al., 1960; Perutz et al., 1968; Ladner et al., 1977), followed later by
that of unliganded Hb or deoxygenated Hb (DeoxyHb) from human
(Muirhead and Perutz, 1963; Bolton and Perutz, 1970; Muirhead
and Greer, 1970). The two αβ-dimers are arranged around a two-
fold axis of symmetry, resulting in a central water cavity. There are
two openings to the central water cavity; an α-cleft (formed between
the opposite α-subunits) and a β-cleft (formed between the two β-
subunits) (Richards and Wyckoff, 1973; Schechter, 2008; Safo et al.,
2011). All four subunits contain Fe-bound heme groups that bind
and transport ligands, e.g., oxygen. Although both liganded and
unliganded Hb are tetramers, they are characterized by different
quaternary structures, resulting in several different unique structural
features, most notably different central water cavity size (with that of
the unliganded structure larger than the liganded structure),
different heme positions, different inter-subunit hydrogen-bond/
salt bridge interactions, and different α1β2 dimer interface (Perutz,
1976; Perutz et al., 1998; Safo et al., 2011). DeoxyHb is referred to as

the T-state due to the numerous salt-bridge/hydrogen-bond
interactions that stabilize the structure in the tense (T)
conformation, while liganded Hb, which is characterized by the
absence of most of the T-state salt-bridge/hydrogen-bond
interactions is referred to as the relaxed or R-state (Perutz, 1976;
Perutz et al., 1998; Safo et al., 2011; Ahmed et al., 2020).

Hemoglobin function is made possible because of its allosteric
nature, equilibrating between the unliganded or deoxygenated form
(T-state) possessing low oxygen affinity, and the liganded or
oxygenated form (R-state), possessing high oxygen affinity
(Perutz, 1972; Perutz et al., 1993; Schechter, 2008; Pittman, 2011;
Safo et al., 2011; Ahmed et al., 2020). The oxygen affinity of Hb is
reported as P50, the partial pressure of oxygen (pO2) in mmHg at
which 50% Hb is saturated with oxygen (sO2), and n is the Hill’s
coefficient that measures the cooperativity of oxygen binding (Berg
et al., 2002; Mozzarelli and Bettati, 2011; Safo et al., 2011). The P50
value of normal hemoglobin is approximately 26 mmHg. The
quantitative relationship between the pO2 and sO2 can be
represented by the oxygen equilibrium curve (OEC) or the
oxygen dissociation curve (ODC) (Figure 1) (Berg et al., 2002;
Schechter, 2008; Pittman, 2011) A right-shift of the OEC or
decrease in Hb affinity for oxygen (low Hb-O2 affinity) leads to
an increase in P50, while the converse is true. Hb oxygen transport
function is aided by the endogenous allosteric effector, 2,3-
diphosphoglyceric acid (2,3-DPG; Figure 2), which right-shifts
the OEC and allows for effective delivery of oxygen from the
protein to cells to facilitate aerobic respiration and energy
production (Figure 1) (Schechter, 2008; Pittman, 2011; Safo et al.,
2011; Ahmed et al., 2020; Safo, 2021; Pagare et al., 2022) 2,3-DPG is
able to decrease the oxygen affinity of Hb by preferentially binding
to the β-cleft of DeoxyHb, several angstroms from the ligand
binding heme pocket. Binding of 2,3-DPG ties the two β-
subunits together through hydrogen-bond/salt bridge interactions
that stabilize the T-state Hb relative to the R-state Hb (Benesch and
Benesch, 1969; Bunn and Briehl, 1970; Bunn and Jandl, 1970;
Arnone, 1972; Macdonald, 1977; Richard et al., 1993).

The crystal structures of both the liganded and deoxygenated
Hb, in the classical T and R-state conformations, were used to
formulate the two-state Monod-Wyman-Changeux (MWC) model,
which assumes that upon ligand binding the T-state allosterically
switches to the R-state without intermediate states (Monod et al.,
1965). An alternative proposed Koshland-Némethy-Filmer (KNF)
model assumes that in the absence of ligand, Hb exists in only one
conformation and ligand binding induces a conformational change
that are transmitted to other subunits (Koshland et al., 1966).
Following these two classical models, Perutz proposed a
stereochemical model embodying aspects of both the MWC/KNF
models to explain the binding of oxygen to Hb, as well as its
cooperativity effect (Perutz et al., 1998). Over the years, several
modifications and/or variations of allosteric models have been
proposed to address apparent shortcomings in the earlier models.
Some examples are the Cooperon model of Brunori et al. (1986), the
SK model of Szabo and Karplus (1972), the tertiary two-state (TTS)
model of Henry et al. (2002), and the global allostery model by
Yonetani et al. (2002). This topic has been reviewed extensively, and
the reader is referred to one such published article by Eaton et al.
(2007). A scientific achievement by Abraham and his colleagues is
using X-ray crystallography to show that the R-state Hb is actually

FIGURE 1
Oxygen equilibrium curve (OEC) of Hb. The normal P50 value
(~26 mmHg) is indicated by red dashed lines. The left shift and right
shift in the curves (blue) are associated with various conditions,
including allosteric effectors of Hb.
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an ensemble of relaxed states, e.g., R2, RR2, RR3 and R3, each with
an unique quaternary structure (Figure 3), (Mueser et al., 2000; Safo
and Abraham, 2001; Safo et al., 2002b; Safo and Abraham, 2003; Safo
et al., 2005; Jenkins et al., 2009; Safo et al., 2011) which they took
advantage of to design and develop molecules to treat cardiovascular
diseases, including sickle cell disease (Safo et al., 2011; Ahmed et al.,
2020; Safo et al., 2021; Pagare et al., 2022).

1.3 X-ray crystallography in hemoglobin
research

X-ray crystallography is the most well-established tool in
structural biology and continues to be the primary means to
characterize 3D structures of proteins and other macromolecules,
(Drenth, 2007) although as pointed out above Cryo-EM technique is
increasingly becoming popular. In particular, and as relates to Hb,
X-ray crystallography has been fundamental in the formulation of
basic theories concerning the behavior of allosteric proteins,
understanding the allostery of Hb, (Monod et al., 1965;

(Koshland et al., 1966; Szabo and Karplus, 1972; Perutz, 1976;
Brunori et al., 1986; Perutz et al., 1998; Mueser et al., 2000; Safo
and Abraham, 2001; Safo et al., 2002b; Henry et al., 2002; Yonetani
et al., 2002; Safo and Abraham, 2003; Safo et al., 2005; Eaton et al.,
2007; Jenkins et al., 2009; Safo et al., 2011; Ahmed et al., 2020; Safo
et al., 2021) and in recent years for structure-based drug discovery to
treat a number of diseases, including sickle cell disease (Safo et al.,
2011; Safo and Kato, 2014; Oder et al., 2016; Ahmed et al., 2020; Safo
et al., 2021).

The ability to produce enough and pure protein, either from a
biological source or through recombinant means, as well as able to
crystallize the protein is a prerequisite for successful crystal structure
determination using X-ray crystallography. Fortunately, normal Hb
or variant Hb for X-ray crystallography is usually obtained from the
biological source, blood (Safo and Abraham, 2001). Hb is one of the
most abundant protein in human, forming about 35% and 95% total
content and dry weight content of RBC, respectively, thus making it
easier to purify a large amount, (Weed et al., 1963; Kaza et al., 2021),
especially normal Hb using ion-exchange chromatography (Safo
and Abraham, 2001; Beatriz de la Calle Guntiñas et al., 2003). Most

FIGURE 2
Chemical structures of natural and synthetic allosteric effectors of Hb.
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variants, on the other hand occur in significantly lower quantity of
the total RBC content, requiring extra effort to get adequate amount
of pure protein for structural studies. Hb produced by recombinant
means, especially Hb variants, have also been used for X-ray
crystallography (Hoffman et al., 1990; Hui et al., 1999; Vásquez
et al., 1999; Kavanaugh et al., 2001; Cheng et al., 2002; Inayat et al.,
2006; Villarreal et al., 2008; Ahmed et al., 2020).

Many factors influence protein crystallization process, e.g., pH,
temperature, protein and precipitant concentration, as well as
protein purity and stability (Parker, 2003). For most Hb, the
concentration for obtaining diffraction quality crystals ranges
between 20 and 60 mg/mL, with liganded Hb crystals normally
requiring 20–40 mg/mL protein concentration, while unliganded
Hb (deoxygenated Hb or DeoxyHb) or T-state crystals may require
40–60 mg/mL. (Safo and Abraham, 200) DeoxyHb is usually
crystallized from high-salt (>2.8 M sulfate/phosphate) or low-salt
(e.g., polyethylene glycol) precipitants (Safo and Abraham, 2001). As
noted above, liganded Hb is characterized by a multi-relaxed states
that are conformationally distinct, including the classical R-state
(first liganded Hb structure to be solved), as well as R2-state, R3-
state, RR2-state, or RR3-state (Abraham et al., 1995; Mueser et al.,
2000; Safo et al., 2002b; Safo and Abraham, 2003; Safo et al., 2005;
Jenkins et al., 2009; Ahmed et al., 2020). The R3-state, RR2-state, or
RR3-state generally crystallizes under high-salt conditions, while the
R2-state crystallizes under both low- and high-salt conditions
(Mueser et al., 2000; Safo et al., 2002b; 2005; Jenkins et al., 2009;
Ghatge et al., 2016; Ahmed et al., 2020). This is an example of how
X-ray crystallography had been used to identify several static but
snapshots of conformationally different allosteric states of a protein.
It is also notable that NMR spectroscopy at near-physiological
conditions had previously predicted that liganded Hb exists as a
mixture of relaxed states, consistent with the crystallographic data
(Lukin et al., 2003; Gong et al., 2006). Unless noted otherwise,
henceforth the term R-state is used to denote the ensemble of relaxed
states.

The most common approach to crystallizing Hb is using the
batch method; made possible because of the availability of large
amount of protein (Perutz et al., 1968; Safo and Abraham, 2001).
DeoxyHb crystallization experiment must be conducted under inert
atmosphere, usually in a glove box, with oxygen free buffers and
precipitants to prevent oxidation to H2O-ligated ferric Hb or
methemoglobin (MetHb) (Perutz et al., 1968; Safo and Abraham,
2001). Crystallization of liganded Hb is usually conducted with
carbon monoxide bound Hb (COHb) instead of oxygen bound Hb
(OxyHb); the former being more stable and affords better diffracting
crystals, while the latter easily oxidizes to MetHb with poor
diffraction (Safo and Abraham, 2001). Note that COHb, OxyHb,
and MetHb have same tertiary/quaternary conformations and
therefore it is justified to use the more stable COHb for
structural studies. Experiments for obtaining DeoxyHb T-state
crystals or COHb R-state crystals are described in several
published articles (Perutz et al., 1968; Fermi, 1975; Safo et al.,
2001; Safo et al., 2004; Pagare et al., 2018; Abdulmalik et al.,
2020; Ahmed et al., 2020; Pagare et al., 2020; Alhashimi et al.,
2022; Huang et al., 2022). Crystals of Hb normally appear within
2–10 days, and vary in size from microscopic to very large in any
direction, and the most common crystal systems observed with Hb
are monoclinic, orthorhombic, trigonal and tetragonal (Safo and
Abraham, 2001; Safo et al., 2001; Safo et al., 2004; Deshpande et al.,
2018; Pagare et al., 2018; Abdulmalik et al., 2020; Pagare et al., 2020;
Alhashimi et al., 2022; Huang et al., 2022).

The co-crystallization technique is the most widely used method
to obtain co-crystal structures of Hb in complex with allosteric
effectors (Safo et al., 2001; Safo et al., 2004; Deshpande et al., 2018;
Pagare et al., 2018; Pagare et al., 2020; Alhashimi et al., 2022; Huang
et al., 2022). The protein solution and ligand are mixed together and
incubated for a certain period of time and then used for the
crystallization experiment. It is important to point out that
structure-based SCD drug discovery, have in most instances used
normal Hb for co-crystallization with the pharmacologic agents. The
use of normal Hb instead of sickle Hb is justified as the two
structures are similar (Safo et al., 2001; Safo et al., 2004; Ghatge
et al., 2016; Metcalf et al., 2017; Abdulmalik et al., 2020; Pagare et al.,
2020). DeoxyHb crystals are prepared and mounted under inert
atmosphere, usually in the glove box to prevent being oxidized to
MetHb (Safo et al., 2001). Following, cryo-loop protected mounted
DeoxyHb crystals are flash-frozen by storing in liquid nitrogen until
diffraction data collection at cryogenic temperature, which is
required to prevent rapid decay but also to keep the protein from
oxidizing to metHb during data collection. Liganded Hb crystals in
the R-state, on the other hand, can be mounted in the air. The flash-
frozen step could be skipped for R-state crystals as long as the
mounted crystal is used right away for X-ray data collection.

The tertiary or quaternary structures of Hb within the same
conformational state are remarkably similar in all species, making
possible an efficient means of molecular replacement to solve the
crystal structures of new crystal forms. A number of published Hb
structures also crystallize isomorphously with known Hb structures,
making it possible to use phases from the known structures for
structure determination. X-ray crystallography would not have
advanced to where it is today without a parallel revolution in
computer technology and crystallographic softwares. When the
structure of horse Hb was determined, there were no computer

FIGURE 3
Crystal structures of classical R-state (red), R2-state (gray) and
R3-state (yellow) superposed on each other. Hb subunits and hemes
are in ribbons and sticks, respectively.
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refinement programs. Therefore, the atomic positions were refined
visually against the electron density map (Perutz et al., 1960). Earlier
computer program refinements of Hb structures were done in real
space using Diamond’s method (Fermi, 1975; Ladner et al., 1977;
Baldwin and Chothia, 1979). Since these early published Hb
structures, and with improvement in data collection, computation
and crystallographic softwares, there has been an exponential
increase in the number of solved Hb structures, including those
from human (with or without allosteric effectors), and non-human,
e.g., cat, bovine, fish, pig, bar-headed goose, plants, nematodes, etc.,
(Harutyunyan et al., 1995; Knapp et al., 1999; Mueser et al., 2000;
Kidd et al., 2001; Safo and Abraham, 2001; Sundaresan et al., 2021).
Several Hb variants have also been determined by X-ray
crystallography (Smith et al., 1991; Kavanaugh et al., 1992;
Kavanaugh et al., 1998; Vasseur et al., 1992; Pechik et al., 1996;
Harrington et al., 1997; Vásquez et al., 1998; Tame and Vallone,
2000; Abdulmalik et al., 2004; Ahmed et al., 2020). It is heartening to
know that modernization of X-ray crystallography has made the
solution of Hb structures routine, allowing for structure-based drug
design of allosteric effectors of Hb with pharmacologic implication.

2 Sickle cell disease

2.1 Pathophysiology of SCD and treatment
options

Sickle cell disease is an inherent genetic disorder characterized
by sickle shaped erythrocytes or RBCs. The disease currently affects
about 100,000 people in the U.S., mostly of African American origin,
and about 20 million individuals worldwide (Chaturvedi and
DeBaun, 2016; Piel et al., 2017; Thein et al., 2017; Alrayyes et al.,
2018; Safo et al., 2021; Pagare et al., 2022). James Herrick, in 1910,
first described elongated RBCs in a patient suffering from a severe
anemia, which he later referred to as “sickle shaped” (Herrick, 1910)
In 1945, Linus Pauling demonstrated by electrophoresis that SCD
originated from an abnormality in the hemoglobin molecule,
(Pauling and Itano, 1949; Pauling, 1964), coining the term a
“molecular disease” (Rees et al., 2010) John Haldane
hypothesized that SCD carriers might reflect a selective
advantage in protection against malaria caused by Plasmodium
falciparum, and proposed what we call today the “malaria
hypothesis” of SCD (Lederberg, 1999). Ingram et al., were the
first to demonstrate that the mutant sickle Hb (HbS) differs from
the normal human adult hemoglobin (HbA) by a single amino acid,
(Ingram, 1957; Ingram, 1958), that was identified to be a substitution
of βGlu6 of HbA with βVal6, forming HbS. Interestingly,
deoxygenated HbS (DeoxyHbS) and not oxygenated HbS
(OxyHbS) polymerizes (Ghatge et al., 2016). The polymer
formation is initiated by a hydrophobic interaction between the
βVal6 residue of one DeoxyHbS molecule and a hydrophobic pocket
formed by β2Ala70, β2Phe85, and β2Leu88 of an adjacent DeoxyHbS
molecule, resulting in the formation of long, rigid and insoluble 14-
stranded fibers, which lead to distortion of RBCs into the
characteristic sickled shape (Ferrone, 2004). When RBCs sickle,
they become brittle and rigid and do not “squeeze” through the
narrow vessels of peripheral capillary beds, resulting in vaso-
occlusion (VOC), which impairs microvascular blood flow and a

cascade of inter-related secondary adverse events, including but not
limited to RBC hemolysis, oxidative stress, decreased vascular nitric
oxide (NO) bioavailability, and inflammation (Belcher et al., 2003;
Aliyu et al., 2008; De Franceschi, 2009; Akinsheye and Klings, 2010;
Safo et al., 2021; Pagare et al., 2022). These downstream events lead
to extremely painful VOC, chronic endothelial damage, and
progressive end-organ injury and dysfunction that ultimately
results in morbidity, poor quality of life, and premature mortality
(Belcher et al., 2003; Aliyu et al., 2008; De Franceschi, 2009; Piel
et al., 2017).

The hypoxia-driven DeoxyHbS polymerization and RBC
sickling is made worse by the inherent high concentration of 2,3-
DPG and the concomitant increase in DeoxyHbS concentration in
sickle RBCs (Poillon et al., 1986; Poillon and Kim, 1990; Jensen,
2009; Rogers et al., 2013). In addition to the primary pathologic
interaction involving βVal6, several key secondary interactions
between adjacent DeoxyHbS molecules in the fiber, such as those
mediated by the surface-located αF-helix residues αAsn78 or
βAsp73, are important for stabilizing the polymer (Bunn, 1986;
Eaton and Hofrichter, 1990; Cretegny and Edelstein, 1993;
Harrington et al., 1997; Ferrone, 2004; Pagare et al., 2022).
Consistently, SCD individuals with a rare second mutation,
αAsn78→Lys (Hb Stanleyville) or βAsp73→Val (Hb Mobile), on
the αF-helix of Hb show reduced tendency for HbS polymerization
and RBC sickling, resulting in mild or even no disease sequelae
(Benesch et al., 1979; Rhoda et al., 1983; Burchall andMaxwell, 2010;
Pagare et al., 2022). OxyHbS, as noted above neither polymerizes nor
incorporates into the polymer fibers since the quaternary
conformation does not allow for the pathologic interaction
between βVal6 and the hydrophobic acceptor pocket (Ghatge
et al., 2016).

Despite the fact that the molecular basis of SCD was established
several decades ago, the development of therapeutic agents for SCD
has not kept pace. For a very long period, SCD treatment was
generally focused on pain management. Hydroxyurea, which
induces fetal Hb (HbF) to dilute HbS and thus prevent polymer
formation, was the first drug approved in 1998 by the U.S. Food and
Drug Administration (FDA) to treat SCD (Telen, 2016; Mvalo et al.,
2018; FDA, 2019; Commissioner, 2020). L-glutamine (Endari), with
an anti-oxidant effect was approved by the U.S. FDA in 2017 to help
neutralize the oxidative stress in sickle RBCs (Niihara et al., 1998;
Cieri-Hutcherson et al., 2019; Commissioner, 2020). Crizanlizumab,
which was approved in 2019, is a monoclonal antibody targeting
P-selectin to reduce erythrocyte adhesion and, consequently, reduce
the frequency of VOC crises and complications of SCD (Ataga et al.,
2017). Finally, Voxelotor (Figure 2), an aromatic aldehyde
developed to prevent the primary pathophysiology of
deoxygenation-induced RBC sickling by increasing Hb affinity for
oxygen, was approved in 2019 (Metcalf et al., 2017; Dufu et al., 2018;
Vichinsky et al., 2019). It is interesting to note that Voxelotor, which
is a synthetic analogue of the food flavoring agent, vanillin
(Figure 2), was developed based on decades of pioneering work
by Abraham and co-workers in the design and development of
aromatic aldehydes, including early discovery science with the
vanillin derivatives (e.g., INN-312 and SAJ-310; Figure 2) and the
furfural, 5-hydroxymethyl-2-furfural (5-HMF; Figure 2), (Abraham
et al., 1991; Safo et al., 2004; Abdulmalik et al., 2005; 2011; Safo and
Kato, 2014; Oder et al., 2016; Xu et al., 2017; Deshpande et al., 2018;
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Pagare et al., 2018) underscoring the major and important
contribution by Abraham in SCD drug discovery.

2.2 Early years of using X-ray crystallography
for SCD drug discovery

With the structure determination of liganded and unliganded
Hb by Max Perutz in the 1960s and 1970s, (Perutz et al., 1960;
Bolton and Perutz, 1970), the dawn of structure-based SCD drug
discovery begun, and accelerated by the National Institutes of Health
(NIH) request for applications to develop therapeutic agents to treat
SCD based on the 3D structures of Hb. It is no wonder that Don
Abraham became a pioneer in this burgeoning area of research. In
collaboration with Max Perutz and others, Abraham in the 1970s
and 1980s using X-ray crystallography and structure-based
techniques first focused on finding compounds that target
pockets on the surface of Hb, and later compounds that bound
to the central water cavity of the protein (Figure 4). Some of these
compounds; proline derivatives (e.g., 1-butyryl-4-((carboxymethyl)
amino)pyrrolidine-2-carboxylic acid) and substituted alkanoic acid
(e.g., 2-((4-bromobenzyl)oxy)acetic acid) (Figure 2), were designed
to bind near the βVal6 mutation site or at its receptor cavity in the
polymer, βPhe85 and βLeu88 (Figure 4), to directly disrupt the
polymer and prevent the βVal6-initiated polymer formation
(Abraham et al., 1982; Abraham et al., 1983a; Abraham et al.,
1984a; Fatope and Abraham, 1987). None of these compounds
showed significant antisickling effect. Don Abraham also
designed several antisickling aromatic halogenated acids that
were expected to bind to a surface cavity near αTrp14 (Figure 4),
and directly inhibit the polymer (Abraham et al., 1984b). One of the
studied compounds is Clofibrate (CFA; Figure 2), a marketed
antilipidemic agent that was surmised will be ideal candidate as
it could be given at high doses daily (2 gm) (Abraham et al., 1983b).
Interestingly, and as predicted even though CFA showed an

antigelling activity, it decreased the oxygen affinity of
hemoglobin, the latter activity, an undesirable property for
treating SCD as such low-O2 affinity compounds may lead to
increase formation of the polymer-forming DeoxyHbS. Low-
resolution crystallographic studies suggested three pairs of CFA
probably bind to Hb, one at the predicted αTrp14, likely explaining
CFA’s antigelling effect (Abraham et al., 1983b). Unexpectedly, two
pairs of CFA (4 molecules) bound in the central water cavity of Hb,
and located ~20 Å away from the β-cleft binding site of 2,3-DPG
(Abraham et al., 1983b). The binding at the central water cavity of
DeoxyHb tied the two heterodimers together, stabilizing the T-state
relative to the R-state; explaining CFA’s property of decreasing Hb
affinity for oxygen. Due to its ability to decrease the oxygen affinity
of Hb, and presumably increase tissue oxygenation, CFAwas studied
for use by radiation oncologists for the treatment of cancer (Hirst
et al., 1987; Hirst and Wood, 1989; Schmeel et al., 2016).

From a drug development perspective, Hb surface binders faced
many challenges in becoming effective pharmaceutical products. For
example, the surface cavities, e.g., the βVal6 mutation site or the
βPhe85 and βLeu88 acceptor site or the αTrp14 site (Figure 4), are
too shallow to bind compounds with high affinity, and coupled with
the fact that since large amount of drug would be required to modify
the large amount of Hb (5 mmol) to reach therapeutic level, these
compounds would likely exceed toxicity thresholds. Even though
this earlier work by Abraham, targeting surface cavities of Hb, failed
to find a promising therapeutic agent, the research laid the
foundation for several future novel findings by Abraham and
other groups. One such discovery, which continuous to have a
scientific impact, is the hemoglobin allosteric effector, RSR-13 (aka
Efaproxiral) (Figure 2), which binds to the central water cavity of
Hb, (Figure 4), and potently decreases Hb affinity for oxygen
(Randad et al., 1991; Abraham et al., 1992; Khandelwal et al.,
1993; Phelps Grella et al., 2000; Safo et al., 2001; Safo et al.,
2002a; Youssef et al., 2002). Additionally, these earlier work by
Abraham set the stage for the discovery of several potent antisickling
agents, including Voxelotor.

2.3 Discovery of efaproxiral

Although, this review article is focused on SCD drug discovery, it
will be amiss if we do not mention Don Abraham’s pioneering work
on Hb allosteric effectors that shift the OEC to the right and decrease
Hb affinity for oxygen, particularly with respect to Efaproxiral
(Randad et al., 1991; Abraham et al., 1992). With the discovery
that CFA binds to the central water cavity of DeoxyHb to stabilize
the T-state Hb and pharmacologically increase O2 delivery to tissue,
(Abraham et al., 1983b), scientists, and most notably Abraham
recognized the importance of structure-based drug design of
synthetic allosteric effectors that would have high oral
bioavailability, easily traverse RBC, bind with high affinity to Hb,
and potently increase Hb oxygen delivery to tissues. Physiologically
Hb with a bound 2,3-DPG releases 25%–40% of oxygen, (Safo and
Bruno, 2011; Ahmed et al., 2020; Alramadhani et al., 2022), and it
was expected that more potent right-shifters would lead to an even
more increase of oxygen to tissues, and potentially useful for treating
hypoxic underlying diseases, such as angina, stroke, trauma, blood
storage, and to enhance radiation treatment of hypoxic tumors

FIGURE 4
Crystal structure of sickle Hb in the T-state conformation
showing targeted binding sites (βVal6 mutation site, βPhe85/
βLeu88 acceptor site, central water cavity, and αTrp14 site) for
antisickling drug discovery. Hb is shown in ribbon while hemes
are shown in sticks.
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(Randad et al., 1991; Abraham et al., 1992; Mehta and Khuntia, 2005;
Rosenberg and Knox, 2006; Stea et al., 2006; Safo and Bruno, 2011).
The discovery of Efaproxiral involved careful iterative targeted
modifications starting from earlier studied analogs, e.g., CFA and
bezafibrate through both structure activity relationship (SAR) and
SBDD using X-ray crystallography (Abraham et al., 1992; Phelps
Grella et al., 2000; Safo et al., 2002a; Youssef et al., 2002; Safo and
Bruno, 2011). Like bezafibrate, Efaproxiral bound to Hb in a 2:
1 ratio, each molecule spanning two CFA binding sites in the central
water cavity of Hb to make hydrophobic and hydrogen-bond
interactions with several residues from two α-subunits and one
β-subunit of the protein in a symmetry-related fashion (Figure 5)
(Phelps Grella et al., 2000; Safo et al., 2001; Safo et al., 2002b; Youssef
et al., 2002; Safo and Bruno, 2011). In contrast, 2,3-DPG binds only
one molecule at the 2-fold dyad of the β-cleft of Hb, making mainly
salt-bridge/hydrogen-bond interactions with the β-cleft residues to
stabilize the T-state Hb (Arnone, 1972; Arnone, 1972; Gupta et al.,
1979; Richard et al., 1993; Safo et al., 2011). Like 2,3-DPG,
Efaproxiral and its analogs binding to DeoxyHb led to significant
increase in tissue oxygenation, (Abraham et al., 1992; Khandelwal
et al., 1993; Phelps Grella et al., 2000; Youssef et al., 2002; Grinberg
et al., 2003; Safo and Bruno, 2011), as well as positive hemodynamic
effects due to higher concentrations of circulating oxygen (Kunert
et al., 1996). Not surprisingly Efaproxiral was reported to be used in
the 2011 Cycling Masters National Championship leading to the
national champion being disqualified (SoCalCycling.com, 2012).

Efaproxiral formed the basis of a small company, Allos
Therapeutics, which was founded by Don Abraham in 1992,
and emerged as a candidate for several clinical applications
(Khandelwal et al., 1993; Kunert et al., 1996; Grinberg et al.,
2003; Peacock and Lesser, 2006; Stea et al., 2006; Suh et al., 2006;
Kaal and Vecht, 2007; Scott et al., 2007; Viani et al., 2009). For
example, Efaproxiral underwent Phase II study for pulmonary
by-pass surgery, as well as a radiation-sensitizing agent
associated to radiotherapy of solid tumors. In a multicenter

randomized Phase II clinical study in the treatment of brain
metastases originating from breast carcinoma, (Peacock and
Lesser, 2006; Kaal and Vecht, 2007), Efaproxiral resulted in an
extended survival and an improved quality of life (Scott et al.,
2007). In a phase III clinical study, “Radiation Enhancing
Allosteric Compound for Hypoxic Brain Metastases
(REACH)” Efaproxiral was tested in association with oxygen
in whole brain radiation therapy (WBRT), (Suh et al., 2006), with
the outcome showing survival improvement. A subsequent meta-
analysis, however, refuted the efficacy of Efaproxiral in the
treatment of brain metastases (Viani et al., 2009). Following
the discovery of Efaproxiral, and based on its crystallographic
binding to Hb, Abraham designed several follow-up right-
shifting analogs, some showing even more potent allosteric
activities than Efaproxiral (Abraham et al., 1992; Phelps Grella
et al., 2000; Safo et al., 2002a; Safo et al., 2011; Youssef et al., 2002;
Safo and Bruno, 2011). However, none of these compounds have
generated the same attention as Efaproxiral.

2.4 Early years of aromatic aldehyde-based
SCD drug discovery

Aromatic aldehydes have been one of the most widely studied
class of compounds for the treatment of SCD. It begun in the late
1970s when Irvin Klotz tested several aromatic aldehydes,
including vanillin for their antisickling potentials (Zaugg
et al., 1977; Zaugg et al., 1980). Klotz showed that these
compounds inhibit erythrocyte sickling by forming Schiff-base
adduct with Hb, (Zaugg et al., 1977), however, their actual
molecular mechanism of action was not revealed. Even though
Klotz was the first to identify the potential of aromatic aldehydes
as therapeutic agents, it was Abraham and a group from the
pharma company Burroughs Wellcome subsequent study of
vanillin and its derivatives that catapulted this class of

FIGURE 5
Crystal structure of deoxygenated T-state Hb in complex with two molecules of RSR-13 bound at the central water cavity. (A) A global view of RSR-
13 molecules (orange spheres) in complex with Hb (gray ribbon). (B) A close-up view of RSR-13 (brown sticks) making hydrogen-bond and hydrophobic
interactions with the α1-subunit (magenta ribbon and stick), α2-subunit (cyan ribbon and sticks), and β2-subunit (yellow ribbon and sticks). Water
molecules are shown as red spheres. The other RSR-13 molecule (not shown) makes symmetry-related interactions with the protein.

Frontiers in Molecular Biosciences frontiersin.org08

Donkor et al. 10.3389/fmolb.2023.1136970

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1136970


compounds for treating SCD to the limelight, (Beddell et al.,
1984; Kneen, 1985; Merrett et al., 1986; Abraham et al., 1991; Safo
et al., 2021; Pagare et al., 2022), which eventually led to the
approval of the vanillin derivative, Voxelotor for the treatment of
SCD in 2019 (Oksenberg et al., 2016; Metcalf et al., 2017;
Vichinsky et al., 2019).

While Abraham was designing compounds to bind to the
surface cavities of Hb, the research group from Burroughs
Wellcome led by Peter Goodford was also actively developing
antisickling aromatic aldehydes to treat SCD (Beddell et al., 1984;
Kneen, 1985; Merrett et al., 1986). Based on the classical R-state
liganded Hb structure, Peter Goodford designed a series of
benzaldehyde-carboxylate compounds, which they proposed
would crosslink the two α-subunits through a Schiff-base
formation between the aldehyde moiety of the benzaldehyde-
carboxylate with the αVal1 amine of one Hb α-subunit, and a
salt-bridge interaction between the carboxyl group of the
benzaldehyde-carboxylate and the αVal1 amine of the opposite
α-subunit (Beddell et al., 1984; Merrett et al., 1986). The mode of
binding was expected to stabilize the classical R-state and increase
the oxygen affinity of sickle Hb, preventing polymer formation
(Beddell et al., 1984; Kneen, 1985; Merrett et al., 1986). Two of
the most promising compounds to come out of the study were
Tucaresol and Valeresol (Figure 2), however the latter failed the
phase I clinical study because of poor oral bioavailability (Fitzharris
et al., 1985; Keidan et al., 1986). Tucaresol even though showed
extremely good pharmacokinetic properties, including oral
bioavailability and very long half-life, (Rolan et al., 1993; Rolan
et al., 1995; Arya et al., 1996), it was found to cause immune-
mediated toxicity during the phase II clinical studies (Rhodes, 2002).

Although, the in silico design of the benzaldehyde-carboxylate
compounds by Peter Goodford and associates was based on the
classical R-state Hb structure, a subsequent crystallographic study by
Abraham with DeoxyHb showed that these molecules rather bind to
the α-cleft of T-state DeoxyHb instead of the proposed α-cleft of
classical R-state liganded Hb to effect their antisickling activities
(Wireko and Abraham, 1991). The crystallographic study led
Abraham to propose that the antisickling mechanism of aromatic
aldehydes was due to the compounds binding to and destabilizing
the T-state Hb, increasing the concentration of the non-polymer
forming OxyHbS (Wireko and Abraham, 1991). Two decades later,
Don Abraham and Martin Safo correctly elucidated the antisickling
mechanism of aromatic aldehydes, which as will be discussed later,
was primarily due to binding of these compounds to the R2-state Hb
(not the classical R-state Hb) to increase the oxygen affinity of Hb
(Safo et al., 2004). Even though aromatic aldehydes did not bind as
originally designed by Peter Goodford, the discovery of Tucaresol
and Valeresol provided the impetus that structure-based drug design
could produce viable clinical candidates in a very acceptable time
frame.

Abraham suggested three important things that could be learned
from Klotz and Goodford work, as well as his earlier SCD drug
discovery research. First, among the several classes of compounds
studied for their antisickling activities, aromatic aldehydes appear to
be unique since not only do they bind to Hb with higher affinity but
show significantly more potent pharmacologic activity (Abraham
et al., 1991), as clearly demonstrated by Tucaresol (Arya et al., 1996;
Pagare et al., 2022). Second, targeting Hb α-cleft with allosteric

effectors appear to be the most pharmacologically viable since Hb
surface binders show weak antisickling activities. Finally, because of
the failure of Tucaresol, aromatic aldehyde that are food based may
have better chance of becoming a pharmacologic agent (Zaugg et al.,
1977; Abraham et al., 1991; Safo et al., 2004). With these
observations in mind, Abraham revisited and further studied the
natural flavoring aromatic aldehyde vanillin, (Abraham et al., 1991),
which has previously been reported by Klotz as an antisickling agent
(Zaugg et al., 1977). Even though Abrahams’s study with vanillin
showed proof of concept in vitro and early pre-clinical studies for
treating SCD, (Abraham et al., 1991), it became clear that like
Valeresol, vanillin was also plagued by metabolic instability,
which made it orally nonbioavailable (Godfrey et al., 1999;
Pagare et al., 2022). The aldehyde moiety of aromatic aldehydes
(-CHO) is the most important structural feature for their
pharmacologic activity, as the antisickling activity depends on the
compounds ability to form a Schiff-base interaction with the
N-terminal αVal1 nitrogen of Hb α-subunits (Godfrey et al.,
1999; Pagare et al., 2022). However, oxidative metabolism of the
functional aldehyde into acid, e.g., by NAD-dependent aldehyde
dehydrogenases (ALDH) in the liver and RBC, (Yoshida et al., 1998;
Godfrey et al., 1999; Vasiliou et al., 2000), limits the compounds
bioavailability, leading to sub-optimal pharmacokinetic/
pharmacodynamic (PK/PD) properties (Safo and Kato, 2014;
Oder et al., 2016; Pagare et al., 2022). It is notable that
introduction of a hydroxyl group on the benzene ring ortho to
the aldehyde has led to protection of the aldehyde from oxidative
metabolism, resulting in significant improvement in both PK and
PD properties as observed with Voxelotor and later compounds
(Metcalf et al., 2017; Abdulmalik et al., 2020; Pagare et al., 2020;
Pagare et al., 2022).

As the vanillin study was ongoing, and the realization that
aromatic aldehydes hold hope for SCD therapy, Abraham
decided to test several other small molecule aromatic aldehydes,
including 5-formylsalicylic (5-FSA; Figure 2) and several of its
benzyloxy-formyl benzoic acid analogs for their antisickling
potentials (Abraham et al., 1995; Boyiri et al., 1995; Safo et al.,
2011). Unexpectedly, the compounds instead of increasing the
oxygen affinity of Hb exhibited the opposite effect of decreasing
the protein affinity for oxygen. X-ray crystallographic study with
DeoxyHb showed the compounds to bind to the α-cleft of Hb and
form Schiff-base interaction with the αVal1 amines in a symmetry-
related fashion as predicted (Abraham et al., 1995). What is most
interesting is that, the carboxylic acid moiety on the benzaldehyde
ring (ortho or para to the aldehyde moiety) was disposed to make a
strong inter-subunit salt-bridge interaction with the guanidinium
group of αArg141 from the opposite α-subunit, leading to
stabilization of the T-state Hb, and explaining the compounds
biological activity of decreasing Hb affinity for oxygen.
Obviously, these molecules are not candidates for SCD therapy
since they will lead to increase formation of the polymer forming
DeoxyHbS. Nonetheless, the study gave insight into how aromatic
aldehydes bind to the same α-cleft, forming the same Schiff-base
interaction with αVal1 amine but exhibit opposite allosteric
activities. This discovery started a new program of structure-
based bis-aldehyde crosslinkers utilizing X-ray crystallography
and structure-based drug design by Abraham to discover several
agents, e.g., 5-((2-carboxy-4-formylphenoxy) methoxy)-2-
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formylbenzoic acid (Figure 2) that cross-link αVal1 amine from one
Hb α-subunit and the opposite αLys99 (amine)/αArg141
(guanidinium) to potently decrease Hb affinity for oxygen with
potential use as blood substitutes and treatment of hypoxic diseases
(Abraham et al., 1995; Boyiri et al., 1995; Safo et al., 2011).
Unfortunately, these compounds were not cell permeable.

2.5 Development of modern aromatic
aldehydes for the treatment of SCD

The late 1990s and early 2000s could be described as the “dark
days” of targeting Hb for drug discovery to treat SCD. The 80s
had seen the failure of Hb surface binders as antisickling agents.
Moreover, several much-touted antisickling aromatic aldehydes,
e.g., Valeresol, Tucaresol, and vanillin despite their early
promising results had all failed to become therapeutic agents.

There was a general concern in the scientific community about
the druggability of Hb, primarily due to efficacy and/or toxicity.
The mechanism of antisickling action of increasing Hb O2-
affinity by aromatic aldehydes was also called into question
because of the potential for treated cells (high-affinity cells) to
“steal” oxygen from untreated cells (low-affinity cells), possibly
resulting in adverse effects. Despite these concerns, Abraham and
associates continued their quest to target Hb for SCD treatment.
Starting with the non-toxic vanillin and application of X-ray
crystallography, Abraham and Safo, and their colleagues from the
Children’s Hospital of Philadelphia (Toshio Asakura and
Osheiza Abdulmalik) made several targeted and iterative
modifications where the benzaldehyde moiety was substituted
with methoxypyridine, as well as methoxy or alkyl groups
(Nnamani et al., 2008; Abdulmalik et al., 2011). Some of the
compounds showed as much as 50- to 100-fold potency over
vanillin in increasing Hb affinity for oxygen and/or preventing

FIGURE 6
Crystal structure of liganded Hb (in the R2-state conformation) in complex with two molecules of INN-312 bound at the α-cleft. (A) A global view of
INN-312molecules (yellow spheres) in complex with Hb (gray ribbon). The surface-located αF-helix is shown in red ribbon, and hemes shown in sticks. (B)
A close-up view of Schiff-base interaction between INN-312 (yellow sticks) and Hb αVal1 amine, as well as close interactions with the αF-helix residues
(sticks). Other protein interactions are not shown for clarity. α1-subunit and α2-subunit are shown in pink and cyan, respectively.

FIGURE 7
Crystal structure of liganded Hb (in the R2-state conformation) in complex with two molecules of VZHE-039 bound at the α-cleft. (A) A global view
of VZHE-039 molecules (marine blue spheres) in complex with Hb (gray ribbon). The surface-located αF-helix is shown in red ribbon, and hemes shown
in sticks. (B) A close-up view of Schiff-base interaction between VZHE-039 (marine blue sticks) and Hb αVal1 amine, as well as close interactions with the
αF-helix residues (sticks). Other protein interactions are not shown for clarity. α1-subunit and α2-subunit are shown in pink and cyan, respectively.
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hypoxia-induced RBC sickling (Nnamani et al., 2008;
Abdulmalik et al., 2011). Two of the most potent compounds
were INN-312 and SAJ-310, (Abdulmalik et al., 2011; Pagare
et al., 2018), which interestingly, in addition to their ability to
prevent RBC sickling by increasing Hb affinity for oxygen, also
appear to directly destabilize the polymer to prevent RBC
sickling; an antisickling mechanism that is independent of
oxygen. Crystallographic studies showed INN-312 or SAJ-310
and similar analogs to make additional interactions to the protein
compared to vanillin, explaining their potent allosteric and
antisickling activities (Abdulmalik et al., 2011; Pagare et al.,
2018). Importantly, the binding of INN-312 or SAJ-310
directed the pyridine-methoxy moiety (which is ortho to the
aldehyde group) toward the mouth of the α-cleft to make a weak
hydrophobic interaction with the surface-located αF-helix
(Abdulmalik et al., 2011; Pagare et al., 2018). The αF-helix has
been implicated in stabilizing the HbS fiber by mediating
hydrogen-bond interactions between adjacent HbS molecules
in the polymer, (Benesch et al., 1979; Rhoda et al., 1983;
Burchall and Maxwell, 2010). The interaction between αF-
helix and INN-312 or SAJ-310 was proposed to perturb the
αF-helix-mediated polymer interaction, explaining the
compounds’ O2-independent antisickling effect (Abdulmalik
et al., 2011; Pagare et al., 2022). Unfortunately, even though
these compounds showed significantly improved antisickling
activities, they suffered the same fate as Valeresol or vanillin
for being orally nonbioavailable because of metabolism of the
aldehyde moiety in vivo (Fitzharris et al., 1985; Keidan et al.,
1986; Oder et al., 2016).

While the rational modification of vanillin was ongoing,
Abraham and his colleagues also studied another aromatic
aldehyde, 5-HMF and several of its analogs (Safo et al., 2004;
Abdulmalik et al., 2005; Kato et al., 2013; Safo and Kato, 2014; Xu
et al., 2017; Alhashimi et al., 2022; Pagare et al., 2022). 5-HMF is a
by-product of the Maillard reaction that occurs during thermal
decomposition of sugars (Hodge, 1953; Hodge, 1955; van Putten
et al., 2013; Liu et al., 2018; Lucas et al., 2019). It is present
naturally in many foods and drinks such as coffee, caramel, fruits
and honey. 5-HMF showed remarkable in vitro antisickling
biological effects (Safo, 2004; Safo et al., 2004; Abdulmalik
et al., 2005; Kato et al., 2013; Safo and Kato, 2014; Kato,
2016). Like vanillin and other aromatic aldehydes, 5HMF
forms Schiff base-adduct with Hb by interacting with the two
α-chain αVal1 amines that led to increase in Hb affinity for
oxygen; preventing hypoxia-induced RBC sickling. 5-HMF also
improved the survival of transgenic (Tg) “sickle” mice after a
hypoxic challenge (Abdulmalik et al., 2005). It was during the
study of 5-HMF that aromatic aldehydes’ true antisickling
mechanism of action was elucidated, which revolutionized and
speeded development of aromatic aldehyde structure-based SCD
drugs (Safo et al., 2004). As noted above, Peter Goodford using in
silico study has assumed that aromatic aldehydes bind to liganded
Hb in the classical R-state conformation to increase Hb affinity
for oxygen, (Beddell et al., 1984), while Abraham through
crystallographic study suggested that these compounds
biological effect is due to binding to the DeoxyHb and
destabilizing the T-state to increase Hb affinity for oxygen
(Wireko and Abraham, 1991). However during the 5-HMF

study, it was realized that aromatic aldehydes primarily bind
to the R2-state Hb structure and not the classical R-state Hb, the
latter α-cleft too small to fit the compounds, to stabilize the
relaxed state Hb and increase Hb affinity for oxygen (Safo et al.,
2004; Abdulmalik et al., 2005; 2011). The compounds also even
though bind to DeoxyHb as previously suggested by Abraham,
the binding is significantly weaker, and probably does not
contribute significantly to the allosteric potential of the
compounds (Safo et al., 2004; Abdulmalik et al., 2005;
Abdulmalik et al., 2011).

5-HMF progressed through phase I/II clinical trials in healthy
volunteers and adults with SCD under the NIH Therapeutics for
Rare and Neglected Diseases Program, TRND (ClinicalTrials.gov
Identifier NCT01597401) (Stern et al., 2012; Safo et al., 2021;
Pagare et al., 2022) The study conducted by Dr. Gregory Kato at
the NIH/NHLBI and AesRx LLC showed significant
improvement in several clinical outcomes, including reduced
pain (with synergistic effect when used with HU), decreased
RBC hemolysis, reduction in blood pressure, and increase in
blood oxygen levels (SpO2) during hypoxia challenge
(ClinicalTrials.gov identifier NCT01597401) (Stern et al., 2012;
Mendelsohn et al., 2013; Oder et al., 2016; SAIC-Frederick, Inc.,
2021) Even though Abraham had retired from active research
during the latter part of 5-HMF clinical study, it is an
understatement that he was very elated with the phase I/II
clinic result, which is captured in one of his interviews, and I
quote, “I threw everything, my whole heart and science into sickle
cell disease. For a while it was not the wisest thing to do. But I so
wanted to use structural biology to develop a drug. I started to
discover a drug to treat sickle cell disease in 1975. Since that time,
my research groups at the University of Pittsburgh and Virginia
Commonwealth University have spent nearly 40 years in pursuit
of an agent to treat sickle cell anemia. We have also collaborated
with numerous researchers at US universities, and internationally
at and with some of the most renowned laboratories and
scientists, i.e., the Medical Research Council Laboratory of
Molecular Biology (MRCLMB) Cambridge United Kingdom,
INSERM in Paris, and the University of Parma in Italy. It is
fair to say that our research group has conducted the longest
ongoing research in the world to attempt to discover an effective
anti-sickling agent. My firm conviction from my many years of
studying sickle cell anemia is that 5-HMF provides the highest
chance of clinical success of any agent yet discovered.”

Don Abraham retired from VCU in 2007, as the phase I/II
clinical study with 5-HMF begun to wind down. Unfortunately,
the phase II study did not fare well and was terminated due to
several reasons: First, due to low oral bioavailability as a result of
extensive oxidative metabolism of 5-HMF in humans; second due
to premature unblinding of the clinical data results, and lastly due
to the reported study of Voxelotor, which showed this compound
to be significantly more potent, and most importantly
significantly better oral bioavailability than 5-HMF (Kato,
2016; Metcalf et al., 2017; Dufu et al., 2018; Vichinsky et al.,
2019; Safo et al., 2021; Pagare et al., 2022). As noted above,
Voxelotor would go on to be approved for the treatment of SCD
(Vichinsky et al., 2019). Although 5-HMF failed in the clinical
study, the findings, coupled with those from the vanillin
derivatives and Efaproxiral studies once again provided a
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strong rationale and validity for the concept of aromatic
aldehydes for SCD therapy, as well as justification for a
structure-based approach to design potent aromatic aldehydes
that exert their therapeutic effects via multiple mechanisms of
action and improved PK profiles. For example, the outcomes of
Don Abraham’s study spurred further investigations into
improving the metabolic stability of aromatic aldehydes, as
well as discovering antisickling mechanism(s) beyond
increasing Hb affinity for oxygen.

2.6 Targeted identification of dual acting
antisickling agents for sickle cell disease
therapy

Although SCD is caused by a single-point mutation, multiple
downstream pathways are affected, with each contributing to the
pathogenesis of the disease (Kato et al., 2007; Rees et al., 2010;
Chaturvedi and DeBaun, 2016; Habara and Steinberg, 2016;
Thein et al., 2017; Ware et al., 2017; Alrayyes et al., 2018; Safo
et al., 2021; Pagare et al., 2022). This complexity poses a
fundamental challenge for therapeutics focused on mitigating
a single pathologic process. There are two key mechanisms by
which the tendency for polymerization of HbS may be reduced:
(1) decreasing the intracellular concentration and/or fraction of
polymer-forming HbS by increasing the oxygen affinity of HbS
(O2-dependent antisickling mechanism), or (2) directly
destabilizing polymer formation (O2-independent antisickling
mechanism) (Safo et al., 2021; Pagare et al., 2022). While
Voxelotor approval sets the stage for broad adoption of the
O2-dependent therapeutic modality, (Oksenberg et al., 2016;
Metcalf et al., 2017; Dufu et al., 2018; Safo et al., 2021; Pagare
et al., 2022), this antisickling mechanism has limitations. The
allosteric effect of increasing O2 affinity is inherently limited by
the need to avoid impeding O2 unloading to tissues. Moreover,
Voxelotor bound HbS tetramers even though may be
incorporated into fibers in areas of severe regional hypoxia
may not exhibit any pharmacologic effect since it required
presence of oxygen for its pharmacologic activity.

Previous studies by Abraham and Safo have identified several
novel compounds, e.g., INN-312, which not only prevented RBC
sickling through O2-dependent antisickling mechanism of action
as Voxelotor, but also showed weak direct polymer
destabilization effect, a unique O2-independent antisickling
property (Abdulmalik et al., 2011). With this knowledge in
mind, Safo (mentored by Abraham) and his collaborative team
begun a systematic structure-based drug discovery to develop
next generational compounds that when bound to HbS tetramers
(like fetal Hb tetramers), would resist co-polymerization not only
due to increased O2 affinity, but also because of destabilization of
HbS intermolecular contacts that are critical to the stability of
insoluble fibers (Abdulmalik et al., 2011; Deshpande et al., 2018;
Pagare et al., 2018; Abdulmalik et al., 2020; Pagare et al., 2020;
Safo et al., 2021; Pagare et al., 2022). Starting with the
crystallographic binding mode of INN-312 at the α-cleft of Hb
that showed the ortho-positioned methoxy-pyridine substituent
making weak hydrophobic interactions with the surface-located
Hb αF-helix (Figure 6), the group work spanning several years

discovered very potent dual antisickling compounds, with
examples as PP-14 and VZHE-039 (Figure 2) (Abdulmalik
et al., 2011; Abdulmalik et al., 2020; Pagare et al., 2020;
Pagare et al., 2022) PP-14 and VZHE-039 bind to the α-cleft
of R2-state Hb in a similar fashion as INN-312, however, these
two compounds made closer and stronger hydrogen-bond
interactions with the αF-helix compared to INN-312
(Figure 7), resulting in potent antisickling effect even in the
absence of oxygen when compared to INN-312. Some of these
compounds are undergoing IND-enabling studies for the
treatment of SCD. As noted above, the αF-helix is known to
be an important polymer stabilizer, (Benesch et al., 1979; Rhoda
et al., 1983; Bunn, 1986; Burchall and Maxwell, 2010), and thus
weakening the αF-helix mediated polymer stabilization
interactions is expected to lead to antisickling effect (Pagare
et al., 2020; Pagare et al., 2022; Safo et al., 2021). The
theoretical basis for this novel antisickling mechanism comes
from individuals of Sudanese and Congolese ancestry who
inherited a rare double mutant Hb variant, referred to as HbS
Stanleyville II, possessing both the classic HbS (βGlu6→βVal6)
mutation and an amino acid substitution (αAsn78→αLys78) on
the surface of the Hb αF-Helix (Rhoda et al., 1983; Burchall and
Maxwell, 2010). Like Hb Stanleyville individuals with benign
disease, it is expected that these dual antisickling compounds
with several innovative features would offer a unique and
promising approach to SCD treatment that is superior to
existing options to combat SCD pathophysiology.

3 Conclusion and perspective

Here we present how X-ray crystallography and SBDD have
played a pivotal role in the discovery of antisickling agents for the
treatment of sickle cell disease, and to improving the
pharmacologic properties of next-generation antisickling drug
candidates. We also present the major and important role played
by Donald Abraham in this field. It all started in the late 70s,
when Don Abraham had a vision to use X-ray crystallography
and crystal structures of hemoglobin for structure-based drug
discovery to develop antisickling drugs to treat SCD. He was on a
quest to find a drug to treat the primary pathophysiology of the
disease even though he knew it was not going to be easy. But
against-all-odds and obstacles, false starts, dogged
determination, he made significant contribution in this field.
Abraham’s groundbreaking work in SCD drug discovery
provided the foundation for the SBDD paradigm, which has
successfully been used not only to develop antisickling agents,
but also to develop pharmacologic agents for a myriad of diseases.
He took three Hb-targeting drugs to the clinic, two for the
treatment of SCD that include vanillin and 5-HMF, and a
third Efaproxiral for the treatment of hypoxia-underlying
diseases. The work by Abraham has also led to many good
lessons being learned; his early findings with structure-based
drug design have enabled better design of next generational
compounds for SCD, and credit should be given to him for
the eventual discovery of Voxelotor, which was based on one
of his earlier discovery, INN-312. Finally, the impact of his
mentoring of so many young scientists, e.g., Safo and
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Abdulmalik had been enormous, by spurring these generational
scientists on a quest to discover superior drugs to treat SCD.
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