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Skin fibrosis is a physiopathological process featuring the excessive deposition of
extracellular matrix (ECM), which is the main architecture that provides structural
support and constitutes the microenvironment for various cellular behaviors.
Recently, increasing interest has been drawn to the relationship between the
mechanical properties of the ECM and the initiation and modulation of skin
fibrosis, with the engagement of a complex network of signaling pathways, the
activation of mechanosensitive proteins, and changes in immunoregulation and
metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of
ECM increases, which in turn perturbs mechanical and humoral homeostasis to
drive cell fate toward an outcome that maintains and enhances the fibrosis
process, thus forming a pro-fibrotic “positive feedback loop”. In this review, we
highlighted the central role of the ECM and its dynamic changes at both the
molecular and cellular levels in skin fibrosis. We paid special attention to signaling
pathways regulated by mechanical cues in ECM remodeling. We also
systematically summarized antifibrotic interventions targeting the ECM,
hopefully enlightening new strategies for fibrotic diseases.
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1 Introduction

Dermal fibrosis is characterized by excessive deposition of ECM in the skin and belongs
to a class of diseases caused by impaired tissue regeneration and faulty repair. It can occur in
the normal repair of broken skin or as a significant hallmark in conditions such as systemic
sclerosis (SSc) and keloids (Coentro et al., 2019). There are many diseases with this clinical
manifestation of skin fibrosis. The etiology of these diseases varies and includes physical
(radiation or mechanical stimulation), chemical, biological, and immune factors (Table 1;
Figure 1). Numerous animal models have been developed and have been described in detail
in Do NN’s review (Do and Eming, 2016).

Not only in the skin, but fibrosis can also occur in almost all organs, such as the lungs,
liver, kidneys and heart. There is broad agreement between the pathological mechanisms of
different fibrotic diseases, but there are still differences. Skin fibrosis shares many signaling
pathways with other organ fibrosis in the molecular mechanism, such as transforming
growth factor-β (TGF-β) signaling pathway and Hippo signaling pathway. However, the skin
is on the surface of the human body and is susceptible to mechanical stresses from internal or
external actions of the body. Therefore, the mechanical stress-related regulation of skin is a
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TABLE 1 Diseases with skin fibrosis symptoms.

Name of disease Etiology Clinical manifestation of skin Biomarkers

Dermatofibroma (Wu, 2019) Mild trauma such as an insect bite, related to
genomic aberrations in 17q and 22q (Peng
et al., 2022)

Hard solitary slow-growing papules
(rounded bumps)

CD34 - (Bolognia et al., 2007)

Appear in a variety of colors, usually
brownish to tan

Stromelysin-3 + (Kim et al., 2007)

Most often found on the legs and arms Factor XIIIa + (Pierson, 2012)

CD64 (Llamas-Velasco et al., 2022)

Scleroderma (Fett, 2013; Ota
and Kuwana, 2021)

Autoimmune disease, caused by gene
mutations (e.g., DNASE1L3, STAT4, HLA
class II genes) or exposure to certain
chemical compounds (e.g., silica, organic
solvents)

Symmetrical skin thickening Anti-scl70 (Kuwana et al., 2021)

Skin stiffness increase Anticentromere antibodies (Chung and Utz,
2004)

Raynaud’s phenomenon Anti-U3 (Peterson et al., 2016)

Nail-fold capillary changes Anti-RNA polymerase (Lazzaroni and Airò,
2018)

Nucleolar antigens (Stochmal et al., 2020)

CCL18 (Arron, 2021)

Keloids (Lee and Jang, 2018) Related to skin tension, autoimmunity,
genetic and epigenetic factors (such as HLA
genes, TGF-β signaling pathway related
genes) but not fully understood (Tsai and
Ogawa, 2019)

Preferably in front of the sternum, earlobes,
back, shoulders

STC2, SDC4, NOX4, DAAM1 (Yin et al.,
2022)

Firm, rubbery lesions or shiny, fibrous
nodules

TNC (Xie et al., 2021)

Sometimes producing a lump many times
larger than that of the original scar

CD138 (Bagabir et al., 2016)

Vary from red to dark brown in color

Sometimes accompanied by severe itchiness,
pain, and changes in texture

Hypertrophic scars (Lee and
Jang, 2018)

Mechanical tension Not extend beyond the boundary of the
original wound

MiRNA-365a/b-3p (Lee et al., 2022)

Inherited tendency (such as ASAH1 gene,
but not fully understood) (Santos-Cortez
et al., 2017)

Not to the degree observed with keloids Gal-1 (Kirkpatrick et al., 2021)

May be itchy or painful

Often contain nerves and blood vessels

Develop after thermal or traumatic injury

Dystrophic epidermolysis
bullosa (Tartaglia et al., 2021)

Genetic defects within the human COL7A1
gene

Highly susceptible to severe blistering COL7A1 (Pfendner et al., 1993)

Chronic scarring Tumor serine proteases C1r and C1s
(Kopecki, 2020)

HMGB1 (Petrof et al., 2013)

Porphyria cutanea tarda (Elder,
1998)

Inherited mutations Individuals with PCT present with
increasingly fragile skin on the back of the
hands and the forearms. Other sun-exposed
sites such as the face, scalp, neck, and arms
may also be affected

Granular and homogeneous deposits of C5b-
9 in vessels are characteristic
immunofluorescence findings in patients
with PCT (Vasil and Magro, 2007)

Environmental impact

Radiation dermatitis (Patel and
McGurk, 2017; Yang et al.,
2020)

Ionizing radiation, radiotherapy Pain, sclerosis, hair loss and ulcers StefinA3 and S100 calcium binding protein
A8 (S100A8) (Huang and Glick, 2017)

Some genes involved in the inflammatory
pathway have been implicated in cutaneous
radiation injury, such as IL12RB2 rs3790568

Advanced skin damage: dryness, scaly skin
hyperpigmentation and loss of skin
appendages

Chronic Cutaneous Graft-
Versus-Host Disease (Strong
Rodrigues et al., 2018)

Graft rejection host: Bone marrow
transplantation and other tissue
transplantation

Flat moss-like lesions and polygonal papules
in the early stages

ST2 (Srinagesh et al., 2019)

REG3α(350)

(Continued on following page)
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direction of interest. Compared to other tissues in the body, it is
easier for people to artificially modify the mechanical
microenvironment of the skin to inhibit skin fibrosis, which
could provide a new insight for the development of therapies
related to skin fibrosis.

Skin fibrosis is a public health issue for all humans, affecting
more than 100 million people per year in developed countries, with
a much higher prevalence in the worldwide population (Bayat
et al., 2003). Skin fibrosis affects the normal physiological function
of soft tissue and may also cause aesthetic problems and
psychological distress (Bock et al., 2006). Despite the enormous
market for anti-scar medications, estimated at over $12 billion
annually in the United States (Sen et al., 2009), universally effective
anti-scar treatment has been lacking thus far. How to reduce the
occurrence of skin fibrosis, inhibit the progression of dermal and
epidermal fibrotic diseases or even remove excess deposits of ECM
in native tissues are significant concerns in the scientific and

clinical fields. Elucidating the molecular mechanisms in the
pathogenesis of skin fibrosis is crucial to developing therapeutic
approaches.

The ECM is a collagen-based and well-organized dense
meshwork of complex macromolecules containing proteins
and polysaccharides secreted by resident cells such as
fibroblasts. In addition to providing structural support for
cells and tissues, the ECM has also been shown to significantly
affect the proliferation, differentiation, and metabolism of
parenchymal cells (Huang and Greenspan, 2012; Multhaupt
et al., 2016; Tracy et al., 2016). There is clear evidence that
ECM mechanical changes play vital roles in the occurrence and
development of various kinds of skin fibrotic diseases, and
increased ECM stiffness has been recognized as an important
marker of fibrotic diseases (Hinz, 2009). Therefore, the
mechanical properties of ECM have received increasing
attention in the last decade. In the process of skin fibrosis,
inflammatory cell infiltration, cytokine secretion, fibroblast
proliferation and differentiation are the major biological
events observed (Hsu et al., 2018). The combination of these
events leads to ECM alterations in molecular composition and
spatial structure, which is characterized as “ECM stiffness” from
a macroscopic perspective. Altered ECM stiffness brings about
changes in the extracellular mechanical microenvironment. The
physical signals of matrix stiffening are sensed through receptors
on the cell surface and further transduced intracellularly,
triggering downstream signaling cascades and ultimately
causing changes in transcription and posttranscription levels,
leading to cellular metabolism and behavior alterations.
Specifically, high ECM stiffness disrupts extracellular
microenvironmental homeostasis, which is manifested by
enhanced activation of mechanical signaling, increased levels
of profibrotic cytokines, and consequently abnormally
activated fibroblasts with promoted production of collagen
fibers. Overall, this results in a positive feedback loop of “skin
fibrosis–increased matrix stiffness–fibroblast
activation–enhanced skin fibrosis” (Long et al., 2022). This
loop accounts for the persistence and irreversibility of dermal
fibrosis, making it a challenging and formidable task to inhibit
the progression of skin fibrosis.

This review systematically summarizes the interrelationship
between ECM stiffness and skin fibrosis, in order of histologic,
cellular and molecular levels (Figure 1). We focused on the cellular
and molecular mechanisms of the pathogenesis of skin fibrotic

TABLE 1 (Continued) Diseases with skin fibrosis symptoms.

Name of disease Etiology Clinical manifestation of skin Biomarkers

The skin becomes darker, atrophic and
fibrotic, similar to scleroderma in late stages

TNFR1 (Pratta et al., 2022)

Nephrogenic Fibrosing
Dermopathy (Woolen et al.,
2020)

Renal failure Patients present with hard, indurated,
sometimes peau d’orange plaques

CD34, CD68 and factor XIIIa (Tsai et al.,
2007)

Nephrogenic systemic fibrosis
(Kaewlai and Abujudeh, 2012)

Unknown, possibly related to exposure to
certain conventional gadolinium-containing
contrast agents in magnetic resonance
imaging

Swelling, tightness, red or dark patches,
thickening and hardening of the skin of the
trunk, burning, itching or severe tingling in
the affected area

Fibroblast growth factor (FGF)23, osteoblast
transcription factors Runt-related
transcription factor 2, and osterix
(Swaminathan et al., 2013)

FIGURE 1
Relationship between the etiology, regulation mechanisms and
targeted therapy of skin fibrosis. With environmental or genetic
pathogenic factors, fibroblasts are activated and secrete large
amounts of extracellular matrix. This process is further enhanced
by the matrix stiffness upregulation. The TGF-β signaling pathway acts
as the center of this positve feedback. Targeted therapies to break this
vicious circle is a promising pathway in skin fibrosis treatment.
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FIGURE 2
Schematic of skin histology viewed in cross-section. Three layers of mammalian skin: epidermis, basement membrane and dermis. (A) The
epidermis contains corneocytes on the surface and keratinocytes in various developmental stages. The ECM molecules include GAG, hyaluronic acid,
heparan sulfate, chondroitin sulfate and various kinds of extracellular lipids. The dermis consists of blood vessels and nerves. Many kinds of cells, including
fibroblasts and macrophages, participate in the process of fibrosis. (B) and (C) The basement membrane is composed of individual laminin and
collagen type IV, which provide mechanical connections between the epidermis and dermis.
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diseases mediated by ECM stiffness, especially
mechanotransduction and regulation.

2 ECM-related changes in skin fibrosis
from the cellular and molecular
perspectives

2.1 Histologic structure and mechanical
microenvironment of skin tissue, and its
changes during fibrosis

Mammalian skin mainly consists of three layers: the epidermis,
the dermis, and the basement membrane (BM) that connects the
epidermis and dermis (Fuchs and Raghavan, 2002; McGrath et al.,
2004) (Figure 2A). The epidermis is composed of a keratinized
stratified squamous epithelium that mainly contains keratinocytes in
various developmental stages (McGrath et al., 2004; Rittié, 2016)
(Figure 2A). Keratinocytes originate from the basal layer and
become flattened dead corneocytes without a nucleus during
maturation. During the maturation of keratinocytes, BM
persistently produces new keratinocytes, pushing the old cells to
the surface of the skin, which results in a stratum corneum with
multiple layers of corneocytes on the surface of the skin. The main
proteins expressed in different layers of the epidermis are also
different (Bhattacharjee et al., 2019). Glycosaminoglycan (GAG)
is the main component of epidermal ECM (Montagna et al., 1951),
and includes hyaluronic acid (54%), heparan sulfate (33%) and
chondroitin sulfate (13%) (Brown and Parkinson, 1983). In the
stratum corneum, corneocytes act like bricks, while mixtures of
extracellular lipids (ceramides, free fatty acids, and cholesterol) are
similar to concrete, sticking the bricks together and conferring
hydrophobic properties to the epidermis (Madison, 2003;
McIntosh, 2003; Candi et al., 2005). The matrix components are
highly organized, cross-linked, and closely integrated with
keratinocytes. This matrix forms a barrier that resists mechanical
stretching by external forces, reduces water loss from the body, and
prevents invasion from pathogenic microorganisms (Cork, 1997;
Holden et al., 2002; Baroni et al., 2012). Some studies found that
initial stretching increased the proliferation of basal keratinocytes,
leading to elongation of the basal layer and increased cellular
density. The increased number of rete ridges suggests that they
absorbed the impact of excessive proliferation, preserving the
layered organization of the epidermis (Topczewska et al., 2019).
In SSc, activated epidermal keratinocytes result in an increase in
epidermal thickness (Nikitorowicz-Buniak et al., 2014; Russo et al.,
2021). In atopic dermatitis, chronic skin injury causes
hyperkeratosis of the epidermis in addition to dermal fibrosis
(Lee et al., 2009). During the process of fibrosis, mechanical
stimulation applied to the epidermis can be translocated to the
dermis, activating fibroblasts by releasing cytokines such as
connective tissue growth factor (CTGF or CNN2) and S100A9.
This interaction demonstrates the integrity of skin structure and
function (Nikitorowicz-Buniak et al., 2014).

The epidermal BM is a reticular complex composed of
individual laminin or collagen type IV (Uitto et al., 1989), which
provides mechanical connections between the epidermis and dermis
through two structurally independent networks consisting of

laminin 332, collagen type IV and XVII and laminins with α5-
chains (Behrens et al., 2012) (Figures 2B,C). The epidermal BM plays
a crucial role in skin fibrosis. The information transduction of the
epidermis and dermis in both directions relies on specific structures
on the BM, such as adhesive patches and hemi-bridging granules. In
pathological cases, the damaged epidermis can also release
inflammatory factors and chemokines, which cause a local
inflammatory response in the skin and dermal inflammatory cell
infiltration in the area covered by the epidermis. Nikitorowicz-
Buniak et al. (2014) found that the number and size of basal cells
in BM significantly increased in SSc compared to healthy tissue.

The dermis is the inner layer of the skin, beneath the epidermis
and BM. Compared with the epidermis, the dermis consists of blood
vessels and nerves. The ECM is differentiated at different dermal
levels and can be distinguished at the tissue level using histochemical
staining, such as Herovici’s picropolychrome. Collagen, the most
abundant protein in the dermal ECM, is secreted by fibroblasts and
exists extracellularly as fibrin. The papillary dermis (PD) closest to
the BM has a thin and loose arrangement of collagen fibers, which
appear blue under Herovici’s picropolychrome staining; in the
reticular dermis (RD), which is below the PD, collagen fibers are
thicker and more densely arranged and stain purple (Watt and
Fujiwara, 2011). The dermis is the main site of skin fibrosis. Using a
combination of optical coherence tomography (OCT) and high-
frequency ultrasound (HFUS) techniques, an increase in skin
thickness during skin fibrosis was demonstrated (Ud-Din et al.,
2019). Herovici staining demonstrated excessive collagen type III
deposition in scar tissue and greater mechanical rigidity than normal
tissue (Ud-Din et al., 2019). Elastin also undergoes significant
changes during skin fibrosis, becoming broken in damaged skin,
and is difficult to repair. Conversely, local tissue secretes more
collagen, eventually leading to ECM stiffness (Wagenseil and
Mecham, 2012). Furthermore, the molecular changes of the ECM
during the fibrosis will be discussed later in Section 2.3. Interestingly,
fibulin-5, an integrin-binding matricellular protein, can reduce
tissue mechanical stiffness by promoting fiber assembly, as
shown by the treatment of mice in a skin fibrosis model (Ikeda
et al., 2009; Yanagisawa et al., 2009; Nakasaki et al., 2015). In normal
tissue, the direction of collagen fiber is random (ultimately arranged
in a mesh-like lattice under multiphoton microscopy) (Ueda et al.,
2019).

The relationship between mechanical force and fibrosis was
observed a long time ago. Although the detailed mechanism is
unclear, antifibrotic therapy by modulating mechanical forces has
been widely used in the clinic. In 1861, the anatomist Karl Langer
summarized Dupuytren and Malgaigne’s earlier observations and
pointed out that when puncturing cadaver skin with a conical spike,
the puncture port was oval rather than circular (Carmichael, 2014).
Further intensive puncturing of the skin surface and connecting the
lines results in the formation of lines on the skin surface, now known
as Langer’s lines (Abyaneh et al., 2014). This discovery helps reduce
scar formation by making surgical incisions parallel to Langer’s lines
(Paul, 2017). Langer’s lines also indicate the direction of maximum
local skin tension, which is mainly affected by the arrangement
direction of the main protein components of ECM, muscle
contraction, and other factors (Silver et al., 2003; Bush et al.,
2007; Casale et al., 2021). Ogawa et al. (2012) measured the
distribution and skin stretching of 483 keloid patients and
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showed that mechanical force is an important factor driving keloid
formation, even in genetically susceptible individuals. Hypertrophic
scarring can be produced in experimental animal models by
repeated mechanical force or sustained stretching at the incision
edges (Shan et al., 2017). In addition, dilators are widely used in
plastic and reconstructive surgery to obtain additional skin for
grafting. This is because the continuous stretching force
promotes the proliferation of the skin, including the ECM (Wang
et al., 2015). In a large animal and phase I clinical study, Gurtner
et al. (2011) showed that using a dynamic stress-shielding polymer
device significantly reduced scar formation.

2.2 Major cell types in skin tissue and their
role in fibrosis

During skin fibrosis, abnormal changes occur in the number,
variety, and metabolism of cellular populations, including resident
cellular components and migratory cells in the skin (Smith and
Chan, 2010; Deng et al., 2021). This process is often accompanied by
changes in the cellular microenvironment, including mechanical
properties and signaling molecular components of humoral
components, and is observed macroscopically as immune
inflammatory responses and immune cell infiltration (Pfisterer
et al., 2021).

2.2.1 Fibroblasts and myofibroblasts
Fibroblasts and myofibroblasts are key parenchymal cell

populations, and they play significant roles in maintaining the
homeostasis of the skin’s mechanical microenvironment under
physiological conditions. When subjected to abnormal
mechanical stimulation, however, excessive activation,
hyperproliferation, and differentiation of fibroblasts can lead to
excessive ECM deposition, which contributes to the progression
of fibrosis and further leads to the formation of keloids, scars and SSc
(Macarak et al., 2021) (Figure 3). Myofibroblasts are typically
activated fibroblasts that can be transformed by soluble growth
factors such as TGF-β and mechanical signaling (Elson et al., 2019).
They are the most critical cellular populations in tissue remodeling
and wound healing. Their main feature is the expression of smooth
muscle actin, which enables contractility. Considering the tight
junctions of myofibroblasts with ECM components, such as
collagen, myofibroblasts can alter the mechanical properties of
the local ECM and promote wound contraction and scar
contracture. There is an intermediate stage called the proto-
myoblast stage during the activation of fibroblasts (Watsky et al.,
2010). The rate of transformation to proto-myoblasts is related to
mechanical changes, such as the stiffness of the tissue. The stiffness
is mainly influenced by external stretching forces and the contractile
forces exerted on the ECM by the myofibroblasts, which leads to a
positive feedback mechanism maintaining steady states of proto-
myoblasts and myoblasts (Figure 3). The mechanical changes can
also activate the secretion of TGF-β, a crucial factor during fibrosis;
the detailed mechanism will be discussed in Section 3.2.1 and
Figure 5. Fibroblasts and myofibroblasts can participate in ECM
remodeling by secreting matrix metalloproteinases (MMPs) and
tissue inhibitors of metalloproteinases (TIMPs). MMPs are
endopeptidases, which are capable of ECM degradation and

bioactive molecules processing. MMPs and TIMPs are important
factors in skin ECM remodeling, which will be discussed in detail in
Section 2.3.1 (Leong et al., 2021). Recent studies have shown that
M2 macrophages promote fibroblasts to differentiate into
myofibroblasts through an acid-sensing ion channel
3—macrophage colony-stimulating factor–TGF-β1 positive
feedback loop in keloid patients. This further proves that the
pathogenesis of skin fibrosis is not a single factor but the result
of the long-term joint action of mechanical homeostasis and the
inflammatory response in tissues (Wu et al., 2022) (Figure 4).

In addition to fibroblasts, myofibroblasts can also be derived
from other cell types. Single-cell sequencing identified a bone
marrow-derived fibroblast subgroup (Deng et al., 2021). Bone
marrow-derived progenitor cells enter the bloodstream and
circulate to specific tissues, where they colonize and further
differentiate into fibroblasts that promote local collagen
deposition, especially during wound repair (Fathke et al.,
2004; Ishii et al., 2005; Suga et al., 2014; Sinha et al., 2018).
Many recent studies have indicated that myofibroblasts in skin
fibrosis can also be adipocyte-derived (El Agha et al., 2017)
(Figure 3).

Fibroblasts exhibit functional diversity due to different origins,
anatomical locations, and tissue microenvironments (Griffin et al.,
2020). In skin tissue, fibroblasts perform functional diversity in
different anatomical localizations and microenvironments (Driskell
and Watt, 2015). Fibroblasts in the papillary layer play an
irreplaceable role in forming hair follicles and PD, while
fibroblasts in the reticular layer play an important role in
developing the reticular layer and part of the subcutaneous tissue
in the skin. After skin damage, reticulofibroblasts first migrate to the
damaged site, producing a collagen-rich dermis, but the hair follicles
cannot regenerate. In contrast, papillary fibroblasts are involved in
wound healing at a later stage. The study of fibroblast heterogeneity
can provide a better understanding of the differences between skin
scarring and fibrosis after wound healing.

2.2.2 Keratinocytes
Although ECM matrix thickening in skin fibrosis occurs mainly

in the dermis, keratinocytes also play an important role in skin
fibrosis. During wound healing and regeneration, keratinocytes
migrate and proliferate at the wound edges at an early stage.
Keratinocytes are observed to regulate fibroblast activation and
ECM deposition by producing soluble inflammatory and growth
factors in wound healing, hypertrophic scar formation, and other
fibrotic processes (Shephard et al., 2004; Werner et al., 2007; Lee
et al., 2019). In SSc, keratinocytes are found to promote fibroblast
activation independent of TGF-β (McCoy et al., 2017).
Keratinocytes can also modify the mechanical properties through
the accumulation of collagen type I, increasing the expression of
MMPs and decreasing the expression of tissue inhibitors of TIMPs
(Russo et al., 2020).

Interestingly, keratinocyte proliferation, metabolism, and other
cell behaviors are regulated by fibroblasts, forming a feedback
loop. Fibroblasts inhibit keratinocyte apoptosis and promote
keratinocyte survival and differentiation (El Ghalbzouri and
Ponec, 2004; Peura et al., 2010; Fernandez et al., 2014).
Fibroblasts also promote keratinocyte adhesion, possibly due to
the secretion of soluble signaling molecules or transcription factors
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that freely diffuse to keratinocytes (Chowdhury et al., 2012; Quan
et al., 2015; Yang et al., 2018).

2.2.3 Epithelial-mesenchymal transition (EMT)
EMT is the process by which epithelial cells lose polarity and

acquire a mesenchymal phenotype. EMT can enhance cell
migration, invasion capabilities, ECM matrix secretion, and
antiapoptotic capabilities, making it an essential driver of tissue
fibrosis (Kalluri and Neilson, 2003; Kalluri and Weinberg, 2009).
EMT contributes to myofibroblast accumulation and increases
myofibroblast contraction, migration, and ECM secretion
ability. Integrin plays a significant role in fibrogenesis as a
transmembrane receptor in EMT mediation and participates in
the bidirectional signal transmission process between the external
environment and cells (Yeh et al., 2012). Furthermore, evidence for
microRNA-induced skin fibrosis via EMT is increasing. Some
recent studies have shown that miRNA-21 and miRNA-200
increase the expression of the TGF-β type II receptor and
contribute to EMT by interacting with the TGF-β pathway
(Babalola et al., 2013). TGF-β can activate mesenchymal genes
and inhibit epithelial gene expression through Smad or non-Smad
signaling pathways, thus promoting the transdifferentiation of
epithelial cells into mesenchymal cells (Derynck et al., 2014;

Lamouille et al., 2014). Our research shows that additional
stretching during skin regeneration can promote keratinocyte
activation and EMT, suggesting that biomechanical force (BioF)
can be a potential therapeutic target for skin fibrosis (Zhou et al.,
2015).

2.2.4 Immune cells and inflammatory responses
Immune cells are important regulators of ECM reconstruction.

Activated immune cells can produce multiple cytokines, including
TGF-β and nuclear factor kappa-B (NF-κB), which directly promote
the activation of fibroblasts (Mack, 2018). The immune cells
involved in this process are highly diverse, including
macrophages, neutrophils, T cells, B cells, and natural killer cells
(Huang et al., 2020). Different immune cells promote skin fibrosis by
diverse mechanisms, but the mammalian target of rapamycin
(mTOR) signaling pathway plays a central role in inflammation-
mediated skin fibrosis (Yoshizaki et al., 2010). In addition, changes
in the local immune microenvironment brought about by
inflammatory cell infiltration are often accompanied by increases
in the levels of various cytokines, such as IL-6 (interleukin-6), IL-17,
and IFNs (interferon) (Brown and O’Reilly, 2019), and are involved
in the pathogenesis of fibrosis by activating JAK-STAT signaling
pathway regulation (Huang et al., 2020).

FIGURE 3
The regulation in fibroblast activation. The fibroblasts derived from bonemarrow can differentiate into an intermediate stage called protomyoblasts
and then into myofibroblasts. Myoblasts can synthesize many kinds of molecules that contribute to mechanical changes in the ECM. In physiology,
fibroblasts are vital to tissue homeostasis, while their excessive activation can lead to fibrosis in pathology. The rate of transformation to protomyoblasts
and myofibroblasts is related to the mechanical changes in turn, which could lead to positive feedback. Mechanical changes can also activate the
secretion of TGF-β, which is a crucial factor during fibrosis.
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Among the immune cells involved in fibrosis, macrophages
have received the most extensive attention. Monocytes and
macrophages are involved in the early response to
inflammation (Guilliams et al., 2018). Macrophages can
secrete tumor necrosis factor-α (TNF-α), TGF-β, interleukins
(IL-1, IL-6, IL-8, IL-12), and various chemokines (Arango Duque
and Descoteaux, 2014). Furthermore, these inflammatory factors
can affect fibroblasts and promote ECM production (Yang and
Plotnikov, 2021). Both M1 and M2 macrophages are involved in
the development of fibrosis. M1 macrophages activate
myofibroblasts by producing proinflammatory factors and
chemokines (Braga et al., 2015). M2 macrophages mainly play
an anti-inflammatory role but can produce TGF-β and promote
ECM production (Mosser and Edwards, 2008; Sica and
Mantovani, 2012). M2 macrophages promote wound healing
and tissue regeneration after injury under physiological
conditions. However, under pathological conditions, the
stimuli that trigger the inflammatory response persist, and a
large number of profibrotic factors, such as TGF-β and Galactin-
3 secreted by M2 macrophages, play an important role in driving
tissue fibrosis (Cao et al., 2014).

In addition, immune cells have been observed to directly interact
with the ECM and actively participate in remodeling of the ECM.
For example, macrophages release a variety ofMMPs, such asMMP-
10, MMP-12 and MMP-21, to promote ECM degradation (Skoog

et al., 2006; Pellicoro et al., 2012; Feng et al., 2019). Th1 cells can
secrete MMP-2 andMMP-9, enhancing the MMP secretion capacity
of macrophages (Oviedo-Orta et al., 2008). Osteopontin (OPN),
which contains an RGD motif and can bind to integrins, widely
exists in the ECM (Oldberg et al., 1986). Macrophages, T cells, and
NK cells can all express OPN (Murry et al., 1994; O’Regan et al.,
1999) and further lead to skin fibrosis (Wu et al., 2012; Newe et al.,
2021). In SSc, the overexpression of versican, which can bind to
collagen type I and maintain the structural stability of ECM by
CD14+ cells, is important for the formation of ECM stiffness
(Masuda et al., 2013).

Mechanical forces and the immune system are dependent on
each other. For example, the immune response is stimulated by
increased ECM stiffness. Activated immune cells induce
biomolecular secretion and lead to ECM stiffness increase
directly or indirectly (Figure 4). Furthermore, mechanical stress
can prolong the inflammatory response through a T-cell-dependent
pathway, thereby promoting scarring (Wong et al., 2011). Prolonged
changes in the immune microenvironment combined with changes
in cellular mechanical stress lead to dysregulation of extracellular
microenvironment homeostasis, ultimately leading to skin fibrotic
lesions marked by excessive collagen deposition and ECM stiffness
in the dermal ECM (Pakshir and Hinz, 2018; Pfisterer et al., 2021). In
conclusion, during skin fibrosis, the positive feedback loop between
ECM stiffness upregulation and immune activation is required for

FIGURE 4
The positive feedback loop in skin fibrosis. ECM stiffness changes and inflammatory responses work together and lead to skin fibrosis. The
mechanical property upregulation leads to the activation of TGF-β and other inflammatory factors. Inflammatory responses and inflammatory cell
infiltration can promote the sedimentation of collagen and other ECM proteins. In general, a positive feedback loop in skin fibrosis is formed, and ECM
stiffness plays a central role in this process.
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fibrogenesis and maintains the indispensable stimuli for fibrosis
(Figure 4).

2.3 Important biomolecules in ECM and their
changes in fibrosis

The dermal matrix is a “fishnet-like” structure composed of a
complex series of proteins, mainly containing collagen types I and III
(Smith et al., 1982). Dermal ECM-specific proteins, including
collagen type IX, collagen type XII, fibril-associated collagens
with interrupted triple helices (FACIT) and small leucine-rich
proteoglycan (SLRP), remodel the mechanical properties of the
ECM by regulating protein crosslinking, participate in
communication between cells and the matrix, regulate cell
behavior and even determine cell fates (Chermnykh et al., 2018;
Dengjel et al., 2020; Potekaev et al., 2021).

2.3.1 Collagen and related regulatory proteins
Collagen is the most important component of skin ECM and

the primary determinant of mechanical properties (Zhang et al.,
1995; Ricard-Blum, 2011; Karayi et al., 2020). Collagen types I
and III are the most abundant in the skin, and their gene
transcription is significantly upregulated in fibrotic skin
(Heino et al., 2009). Collagen type IV is the main component
of BM (Ricard-Blum, 2011). Collagen types VI and VII help BM
connect to the matrix of the papillary layer of the dermis by
closely binding to collagen type I in the dermal matrix (Has et al.,

2015). Collagen types IX and XII are fibrillar-associated
collagens mediating collagen–collagen and collagen–other
biomolecule connections. Collagen type XVII is a
transmembrane collagen that regulates cell growth and
metabolism (Has et al., 2015). Collagens can form a reticular
structure that composes the main architecture of the ECM,
mediates the communication between the ECM and cells, and
participates in mechanosensitive signal transmission (Mak and
Mei, 2017; Pozzi et al., 2017). FACIT, SLRP, and matricellular
proteins can serve as molecular bridges that are important for
the organization and stability of extracellular matrices. These
molecules can effectively enhance the fibroblast response to
TGF-β and regulate ECM stiffness by regulating fibril
formation and collagen fiber cross-linking (Grässel and Bauer,
2013; Has et al., 2015; Chacón-Solano et al., 2022). In the
development of skin fibrosis, ECM components change
correspondingly. The expression levels of lumican and
collagen type V were increased, while collagen fibril assembly
was damaged (Zhou et al., 2021).

Lysyl oxidase (LOX), mainly produced by fibroblasts, can
mediate the cross-linking of lysine and hydroxylysine of different
collagen peptides to form a stable collagen network (Vallet and
Ricard-Blum, 2019; Vorstandlechner et al., 2020). Collagen is cross-
linked by the deamination of lysine residues with the catalysis of
LOX. The increased cross-linked form of collagen has higher
mechanical strength and stronger resistance to MMP degradation
(Clarke et al., 2013). Collagen matrices with increased
hydroxyallysine cross-link levels were less susceptible to MMP-1

FIGURE 5
(contiuned).
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degradation than the collagen matrices containing low
hydroxyallysine levels (van der Slot-Verhoeven et al., 2005).
Correspondingly, the use of LOXL2/LOXL3 inhibitor can reduce
collagen oxidation and collagen crosslinking, which represents an
innovative therapeutic approach for the treatment of fibrosis
(Schilter et al., 2019). Huang et al. (2019) found that TGF-β can
mediate ECM stiffness through LOXs using two in vitro models
containing fibroblasts from SSc patients. LOXs can also directly
induce the production of ECM at the transcriptional level by
changing the metabolism of fibroblasts, thus directly participating
in the process of fibrosis (Nguyen et al., 2021). The increase was
mediated by LOX-induced c-Fos expression, the nuclear localization
of c-Fos, and the overexpression of IL-6 in fibroblasts.

MMPs are calcium-dependent zinc-containing endopeptidases.
Dermal fibroblasts and leukocytes are the main sources of MMPs,
especially MMP-2, which is usually secreted in the form of
inactive proMMP (Wang, 2018). Many MMPs, such as MMP-
1,2,3,8,11,13, are able to hydrolyze ECM proteins and reduce the
stiffness of the ECM. TIMPs are natural inhibitors of MMP.
TIMP and MMP work together to form proMMP-2/TIMP-2/3/
4 and MMP-9/TIMP-1 that maintain the balance of ECM
synthesis and degradation under physiological conditions
(Vafadari et al., 2016; Cheng et al., 2017). In SSc, it was
observed that the decreases in MMP-1 and MMP-3 expression
and the increase in TIMP-1 expression resulted in the inhibition
of the structural protein hydrolysis of ECM (Leong et al., 2021).

FIGURE 5
(contiuned) Integrin, Hippo and TGF-β signaling pathways mediate mechanical stress signaling to the cell. (A) TGF-β is secreted out of cells in an
inactive form. Activated TGF-β can upregulate ECM stiffness through fibroblast activation. (B) Mechanical signals are involved in TGF-β activation.The
interaction of activated TGF-β and TGFBRmediated the transmembrane transduction of ECMmechanical signals, which is transduced via two pathways,
Smad and non-Smad, thereby regulating myofibroblast differentiation and the stiffness of the ECM. Integrins can signal through pathways such as
FAK, ILK and Hippo, and there is crosstalk with the TGF-β pathway.
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MMP-13 is produced by fibroblasts in adult gums and fetal skin
wounds and promotes rapid collagen remodeling and scar-free
healing (Ravanti et al., 2001; Toriseva et al., 2012).

2.3.2 Integrins
Integrins are a family of transmembrane proteins (cell

surface receptors) that mediate the interconnection between
cells and the ECM. They mechanically anchor cells on the
ECM and use their transmembrane structure to participate in
the bidirectional signal transmission process between the
external environment and cells (Henderson and Sheppard,
2013). Depending on their subtype, integrins have different
functions, including collagen, laminin, leukocyte, and
bilirubin receptors (Koivisto et al., 2018).

In addition to binding to the major structural proteins of the
ECM, integrins can also bind to non-structural proteins such as a
disintegrin and metalloproteinase (ADAM), thus directly
contributing to the structural remodeling of the ECM (Watt and
Fujiwara, 2011; Giebeler and Zigrino, 2016). Integrin can regulate
ECM stiffness indirectly by activating latent TGF-β (Figure 5). The
activated TGF-β induces the myofibroblastic differentiation. In
addition, integrin contributes to autocrine TGF-β signaling
(Asano et al., 2006a; Asano et al., 2006b). The integrin signaling
pathway will be discussed in Section 4.2.

2.3.3 Growth factors
Many studies have shown that growth factors are widely

involved in the initiation of fibroblasts and the maintenance of
a steady myofibroblast population during various fibrotic diseases.
TGF-β is a crucial regulatory signaling molecule in fibrosis. TGF-
β1 expression significantly increases in keloids, SSc, and skin
fibrosis caused by radiation factors (Verrecchia et al., 2006;
Verrecchia and Mauviel, 2007). Abnormally increased secretion
of TGF-β leads to excessive collagen deposition and ultimately scar
formation. TGF-β was also found to downregulate the expression
of MMP-1 and upregulate the expression of TIMP-3 to inhibit the
degradation of ECM (Edwards et al., 1987; Ihn, 2002; Leivonen
et al., 2013).

Platelet-derived growth factor (PDGF) and connective tissue
growth factor (CTGF) have also been found to play important
roles in the progression of fibrosis (Ihn, 2002). In gene-edited
mice overexpressing PDGF-α, excessive proliferation of
fibroblasts, ECM deposition, and a fibrotic phenotype were
observed in multiple organs and tissues. PDGF can be a
downstream regulator of TGF-β and work synergistically with
it in the process of fibrosis by binding with PDGFR (Olson and
Soriano, 2009). PDGFRs are receptor tyrosine kinases that
dimerize after ligand binding, activating the intracellular
tyrosine kinase domains. These activated domains
autophosphorylate several tyrosine residues, creating docking
sites for signaling proteins and adaptors that are responsible
for the signal transduction process attracting fibroblasts and
macrophages.

CTGF is induced by TGF-β and regulates fibroblast growth and
ECM synthesis. CTGF is considered an important mediator in the
pathogenesis of fibrosis and can strengthen the TGF-β/
Smad3 signaling pathways (Verrecchia and Mauviel, 2007).

3 ECM stiffness acts as the central cue
in skin fibrosis signaling network and
contributes to the positive feedback
loop in pathological conditions

With the reconstruction of ECM in fibrogenesis, the cells
embedded in the matrix are constantly exposed to abnormal
mechanical stress (Jansen et al., 2018; Potekaev et al., 2021). The
behavior of cells is tightly controlled by the mechanical
environment, which eventually leads to the activation of
fibroblasts, excessive ECM accumulation and ultimately fibrosis.
The initiation of fibrosis will start a positive feedback loop (Figure 4),
in which the constantly increasing tissue stiffness will lead to the
persistence and self-reinforcement of the fibrosis process. This
hypothesis explains the continuation of fibrotic diseases observed
clinically and the difficulty in reversing the trend of fibrosis.

3.1 Increased ECM stiffness modulates cell
fate and function

The positive feedback loop between fibroblasts, myofibroblasts
and mechanical stress was described in detail earlier in Section 2.2
and Figure 3. In addition, mechanical signals can transmit into cell
directly by membrane proteins such as integrin and piezo1. The
matrix stiffness increase can also indirectly activate parenchymal
cells in ECM by inducing TGF-β activation (Figure 5). During skin
fibrosis, immune cells are activated and can further modulate
fibroblasts or participate in the fibrotic process by directly
engaging in ECM alterations. This process is also a positive
feedback loop (Figure 4).

3.1.1 Immune cells
In the process of skin fibrosis, changes in ECM structure and

composition regulate the activation of immune cells and induce
immune cell infiltration (Lu et al., 2011; Hallmann et al., 2015;
Simon and Bromberg, 2017). The proteolytic products of ECM
proteins, including collagen, elastin, laminin, and hyaluronic acid,
can act as inflammatory mediators (Adair-Kirk and Senior, 2008).
Neutrophils bind to the 7S domain of collagen type IV through
surface receptors. It is suggested that neutrophils may have
chemotaxis to the collagen type IV hydrolyzed region in vivo
(Senior et al., 1989). In addition, the mechanical force can act
directly on immune cells and participate in the activation and
aggregation of immune cells in fibrosis (Figure 4).

T and B cells perceive the mechanical microenvironment
through mechanically sensitive T-cell receptor (TCR) and B-cell
receptor (BCR) or antigen-presenting cell (APC) interactions (Huse,
2017; Saitakis et al., 2017). In 2D cell culture, the enhancement of
culture surface rigidity can promote the activation, migration and
proliferation of T cells (O’Connor et al., 2012). The sensing of
mechanical signals may be related to CD3 (Judokusumo et al., 2012).
CD3 (ε chain) can be attached to polymers under costimulation by
CD28 (Riha and Rudd, 2010) and presented to primary T cells.
Many proteins involved in this process, including interleukin-2 (IL-
2) secretion and proliferation, interact directly or indirectly with the
actin cytoskeleton for signaling (Bashour et al., 2014).
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In addition, Majedi et al. found that in 3D cultured T cells, an
ECM environment with a high elasticity modulus induced the
expression of inflammatory factors such as IL-2, IFN-γ and TNF-
α (Majedi et al., 2020). The enrichment of inflammatory factors
can further induce tissue fibrosis. Yes-associated protein 1
(YAP), a well-established mechanosensitive protein, has also
been found to play an important role in mechanical signal
transduction between T cells and the ECM (Meng et al.,
2020). Regulation of T-cell metabolism is mainly attributable
to nuclear factor of activated T cells (NFAT)-driven
transcription. YAP is expressed in activated T cells and
negatively regulates T-cell proliferation and activation in
response to the mechanical microenvironment by directly
restricting NFAT1 translocation to the nucleus (Meng et al.,
2020). However, YAP does not affect the early activation of
T cells (Meng et al., 2020). We will discuss YAP-related
signaling processes in detail in 4.2.3. Zeng et al. (2015) have
shown that the rigidity of the substrate cultured in 2D can
regulate the proliferation of B cells. The increase in matrix
stiffness can promote or inhibit the proliferation of B cells,
which is different in response to different proliferation
stimuli. Macrophages have also been demonstrated to be
regulated by mechanical signals. Under low substrate stiffness,
the expression of CD86 on the cell surface of bone marrow-
derived macrophages (BMMs) increased and secreted more
proinflammatory factors, such as IL-1β and TNF-α. With
increasing ECM stiffness, the expression levels of CD206, IL-4
and TGF-β in BMMs increased accordingly, while the synthesis

of ROS decreased (Chen et al., 2020). In addition, the increase in
matrix stiffness increases its migration capability (Hind et al.,
2015), which is regulated by the PI3K-AKT1 and Rac signaling
pathways. YAP-mediated mechanical transduction is also
involved in macrophage-dependent inflammation (Meli et al.,
2020).

Similarly, the mechanical properties of the matrix can affect
neutrophil adhesion, diffusion and migration (Oakes et al., 2009).
The difference in ECM stiffness leads to the migration of neutrophils
to sites of injury. The magnitude of ECM stiffness determines the
neutrophil migration rate and the final diffusion area (Oakes et al.,
2009). Neutrophils migrate more slowly on harder substrates, but
neutrophils eventually move farther, considering the longer
migration duration (Oakes et al., 2009).

The increased matrix stiffness also enhanced the
proinflammatory function of dendritic cells (DCs), and the
glycolysis of DCs was enhanced to meet the energy requirements
of DC activation and the raw material requirements for biosynthesis
(Chakraborty et al., 2021). Zeng et al. (2015) also found that DCs
receive extracellular mechanical signals through multiple signaling
pathways. The Hippo signaling pathway is involved, as it has been
shown that the Hippo signaling molecule MST1/2 regulates DC
metabolism (Du et al., 2018). At the same time, DCs may mediate
the transcription of target genes in response to substrate stiffness by
upregulating the expression of the transcriptional coactivator with
PDZ-binding motif (TAZ) gene and its Hippo signaling partner
YAP and its translocation into the nucleus (Chakraborty et al.,
2021).

FIGURE 6
Interaction of the TGF-β signaling pathway through Smad and non-Smad pathways in fibrosis. Mature TGF-β binds to TGFBR and acts on
downstreammolecules through the Smad and non-Smad pathways, thereby regulating ECM production. The downstreammolecules of these pathways
can interact with the molecules of the Smad pathway to inhibit or promote ECM production.
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3.1.2 Stem cells
Matrix stiffness can be used as an effective regulator for stem

cells (Chermnykh et al., 2018). Studies by Engler et al. (2006) have
shown that different levels of ECM stiffness can guide mesenchymal
stem cells (MSCs) to differentiate into osteoblasts, myocytes, and
nerve cells. This may be related to the anchoring density and
anchoring force between stem cells and ECM (Park et al., 2011;
Trappmann et al., 2012). The directional differentiation of tissue-
resident MSCs is one of the important sources of myofibroblasts
(Kramann et al., 2015). Continuous culture of MSC renewal on
hydrogel with a rigid gradient of 1.0 ± 0.1 kPa/mm showed that
MSCs migrated to a more rigid matrix (Tse and Engler, 2011). In
addition, increased stiffness of the ECM induces EMT, indicating
that epithelial cells can transdifferentiate into myofibroblasts by high
mechanical stress (Leight et al., 2012).

3.2 Increased ECM stiffness activates
fibrosis-related signaling biomolecules

3.2.1 TGF-β is directly and indirectly modulated by
mechanical signals

We previously discussed the upregulation of ECM stiffness by
TGF-β in detail (Section 2.2.1; Figure 3). Mechanical stress also has
a regulatory effect on TGF-β, which forms a positive feedback
loop. The mechanical properties of the ECM have an important
impact on the activity and availability of TGF-β1. Mature TGF-β is
a covalent homodimer. Its precursor protein is processed
intracellularly after translation and cleaved to form latency-
associated peptide (LAP) and mature TGF-β. LAP forms a
complex with TGF-β in a non-covalently bound form and
masks the active site of TGF-β. TGF-β is activated by
dissociating LLC bound to LAP and/or ECM. This process can
occur through various mechanisms, including integrin-LAP
interaction-mediated TGF-β activation and mechanical tension-
induced TGF-β activation (Mu et al., 2002; Frangogiannis, 2020)
(Figure 5A). Pierre-JeanWipff et al. also found that myofibroblast
contraction can directly activate TGF-β1 stored in the ECM (Wipff
et al., 2007).

3.2.2 Integrins mediate mechanical signal
transduction and TGF-β activation

Integrin plays a central role in the activation of TGF-β during
fibrosis (Henderson et al., 2013) (Figure 5B). Through the
structural analysis of integrin and TFG-β, Ruoslahti and
Pierschbacher et al. showed that TGF-β1 and TGFβ-3 bind to
integrin based on their linear sequences of arginine, glycine, and
aspartic acid (RGD sequence) (Ruoslahti and Pierschbacher, 1987)
(Figure 5B). Munger’s research in the SSc mouse model showed
that fibroblasts upregulated the expression of αvβ5 vitronectin
receptor and led to the activation of latent TGF-β (Munger et al.,
1999). Like many other ECM protein components, LAP contains
RGD motifs that can be specifically bound by integrins. In
addition, integrin αvβ8 activates by presenting the potential
TGF-β complex to MMPs, resulting in the release of free TGF-β
into the extracellular environment (Prieto et al., 1993). In mice,
knockout of integrin subunits (β6, αv and β8) can activate TGF-β1
(Huang et al., 1996; Bader et al., 1998; Zhu et al., 2002), and

mutations in the integrin binding sites in LAP produced the same
effects as TGF-β1 knockout (Shull et al., 1992; Yang et al., 2007;
Hinz, 2015).

4 ECM stiffness-mediated mechanical
signaling pathway

Various signaling molecules, including integrins and TGF-β, can
mediate mechanotransduction. Once the signal is transduced across
the membrane into the cytoplasm and nucleus, it will cause a series
of downstream changes (Figure 5). Figure 5B shows the complicated
relationship among several most important signaling pathways.

4.1 TGF-β signaling pathway

The secretion and activation of TGF-β are regulated by immune
cells and the extracellular mechanical microenvironment. Activated
TGF-β binds to transforming growth factor-β receptor (TGFBR) on
the surface of fibroblasts, upregulating α-SMA expression and
promoting collagen secretion and cell proliferation. In addition,
TGF-β acts as an inflammatory factor, inducing an inflammatory
response (Li and Flavell, 2008) and indirectly promoting local tissue
fibrosis. In skin fibrosis, the most classical signaling pathway is
achieved by activating Smad transcription factors by TGFBR
(Figure 6). TGF-β can also activate other proteins, such as Ras
and Rho protein-mediated signaling pathways, called non-Smad
signaling pathways (Figure 5).

TGFBR has serine/threonine kinase activity and is activated
upon binding to TGF-β, mediating different downstream signaling
pathways through the phosphorylation of different substrates within
its cells and ultimately resulting in phenotypic alterations, including
fibroblast activation and EMT (Lamouille et al., 2014). The
abundance of TGFBR in cell membrane species, including NIH-
3T3 fibroblasts, can be regulated by endocytosis (Vander Ark et al.,
2018). TGFBR is thought to be brought into the cell by endocytosis
along with the cell membrane to form endocytic vesicles. Liposomes
containing TGFBR can also bind to the cell membrane again and
rapidly increase the cellular sensitivity to TGF-β (Huang and Chen,
2012).

TGFBR, a specific receptor of the TGF-β family, is divided into
three types: TGFBR1, 2, and 3. TGFBR1 and TGFBR2 form stable
complex receptor tetramers in the presence of TGF-β. First, TGF-β
binds to TGFBR2 and activates its phosphokinase activity.
Subsequently, TGFBR2 phosphorylates TGFBR1 (Budi et al.,
2017; Yan et al., 2018) (Figure 6). TGFBR1 then phosphorylates
R-Smads, after which the signal is transmitted intracellularly
through the Smad signaling pathway and ultimately regulates the
transcription of specific genes. TGFBR3 has no kinase activity but
can present TGF-β to TGFBR2 and stabilize the complex between
TGFBR1 and TGFBR2 (López-Casillas et al., 1993; Bilandzic and
Stenvers, 2011). TGFBR3 is particularly important for TGF-β2
signaling (Kim et al., 2019; Kudipudi et al., 2019). However, the
formation of the complex between TGFBR1 and TGFBR2 is
inhibited when TGFBR3 alone binds to TGFBR1 or TGFBR2,
thereby suppressing TGF-β-mediated Smad signaling (Tazat
et al., 2015). In addition, the extracellular structural domain of
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TGFBR3 can be detached from the cell membrane, and further
binding to TGF-β can block signal transduction into the cell (López-
Casillas et al., 1994) (Figure 5B).

The Smad pathway regulates the production of the ECM matrix
together with the non-Smad pathway. Collectively, there is crosstalk
between the Smad and non-Smad pathways of TGF-β. For example,
R-Smads are phosphorylated at multiple sites by other kinases
(MAPKs, CDK2/4, and ROCK). The activity of R-Smads is finely
regulated and accomplishes the integration of different signaling
inputs (Wrighton et al., 2009; Liu and Feng, 2010). The proteins
mentioned above involved in regulating R-Smads are regulated by
the non-Smad pathway and act as substrates of the non-TGF-β
signaling pathway. In addition, TGF-β-mediated downstream
factors can act synergistically with signaling cascades such as
Wnt and Notch (Derynck and Zhang, 2003). Thus, the decision
to develop fibrotic disease results from a combination of different
signals, not from a specific pathway alone, which is consistent with
the fundamental laws of life.

In conjunction with the Smad and non-Smad pathways, TGF-β
promotes the secretion of collagen type I, collagen type II, and
fibronectin by fibroblasts in the human dermis (Varga et al., 1987).
Posttranslational transport and modification of collagen are also
extensively regulated by TGF-β, including proteins such as HSP47,
PLOD2, and P4HA3 (Ishida and Nagata, 2011; Bourhis et al., 2012;
Ishikawa and Bächinger, 2013). Extracellular meprin and LOX are
involved in collagen maturation assembly. These two proteins are
abundantly expressed at fibrotic sites and are induced by TGF-β
(Broder et al., 2013; Biasin et al., 2014; Laczko and Csiszar, 2020).
TGF-β also induces the expression of protease inhibitors, such as
TIMP, and inhibits ECM hydrolysis (Edwards et al., 1987).

4.1.1 Smad signaling pathway
Smads are a family of structurally similar proteins that are the

main carriers of intracellular signaling of the TGFBR (Itoh et al.,
2000; Attisano and Tuen Lee-Hoeflich, 2001) (Figure 6). Smads can
be classified into three subtypes based on their function, namely,
receptor-regulated Smads (R-Smads), cochaperone Smads (Co-
Smads), and inhibitory Smads (I-Smads) (Figure 5). Smads 1, 2,
3, and 5 and Smad8 are R-Smads located mainly in the cytoplasm
and can be activated by phosphorylation of TGFBR. R-Smads can
bind to specific DNA sequences or G/C-rich DNA regions (Shi and
Massagué, 2003). Cooperating transcription factors can help
stabilize Smad binding to DNA and enhance their specificity in
recognizing DNA sequences. Smad4 is the only known Co-Smad
expressed in humans and binds to activated R-Smads to cross the
nuclear membrane. The remaining two Smads, Smad6 and Smad7,
are mainly located in the nucleus andmove to the plasmamembrane
in response to TGF-β stimulation. Activated Smad7 can bind to
activated TGFBR to inhibit the phosphorylation of R-Smads (Shi
and Massagué, 2003). I-Smads can also block TGF-β downstream
signaling by preventing the nuclear translocation of R-Smads
(Verrecchia et al., 2006; Verrecchia and Mauviel, 2007). In
addition, Smad7 can act as an articulatory protein that promotes
the binding of TGFBR1 to E3 ligases, thereby mediating the
degradation of TGFBR1 via the ubiquitin pathway (Vander Ark
et al., 2018).

Smad3 appears to be a key component of the signal transduction
pathway involved in the fibrosis process. Smad3-deficient mice were

found to be protected from radiation-induced skin fibrosis
(Flanders, 2004). Using a combinatorial cDNA microarray
promoter transactivation approach, Franck Verrecchia et al.
identified Smad3/4 gene targets in cultured dermal fibroblasts:
COL1A1, COL3A1, COL5A2, COL6A1, COL6A3, and TIMP-1
(Verrecchia et al., 2001). Thus, the TGF-β/Smad signaling
pathway is essential for activating skin fibrillar collagen genes.

The Smad signaling pathway promotes the expression of
proteins such as JunB (Jonk et al., 1998), PDGF (Taylor and
Khachigian, 2000), and integrin, thus indirectly regulating the
process of tissue fibrosis (Figure 5). In addition, the TGF-β/Smad
signaling pathway inhibits the degradation of the ECM. The TGF-β/
Smad signaling pathway also inhibits the transcription of MMP-1
(Yuan and Varga, 2001) and activates the expression of human
plasminogen activator inhibitor-type 1 (PAI-1) (Dennler et al.,
1998).

4.1.2 Non-smad signaling pathways
4.1.2.1 Ras/Raf/MEK/ERK pathway

Ras is a small G protein that can hydrolyze GTP to GDP and
then rebind to GTP with the assistance of guanine nucleotide
exchange factor (GEF) and GTPase-activating protein (GAP).
The different binding substrates result in two distinct states of
Ras, which act as a switch in intracellular signal transmission.
When Ras binds to GTP, the signaling pathway is “on”. When
RAS hydrolyzes GTP to GDP, the signaling pathway is “off”. TGF-β1
increases mRNA levels and exogenous Ras promoter activity,
thereby stimulating Ras (Brabletz and Brabletz, 2010; Su et al.,
2020). Activated Ras activates Raf, which further activates
mitogen-activated protein kinase kinase (MEK or MAPKK) and
triggers a cascade reaction. Together, the proteins involved in this
process form the Ras/Raf/MEK/extracellular signal-regulated kinase
(ERK) signaling pathway (Figures 5, 6).

An essential feature of tissue fibrosis is the occurrence of EMT
(Lamouille et al., 2014). Activation of the ERK signaling pathway is
required for TGF-β-induced EMT (Xie et al., 2004). TGF-β can
activate the ERK pathway through upstream factors (e.g., Ras/Raf)
and through more downstream factors (e.g., MEK) (Xie et al., 2004).
The ERK signaling pathway can lead to overexpression of FOXM1 at
the protein and mRNA levels, which in turn leads to indirect
upregulation of EMT-related transcription factors (e.g., ZEB1 and
ZEB2) and induction of the EMT process by the downregulation of
microRNA-200b (Brabletz and Brabletz, 2010).

Ras affects TGF-β Smad signaling mainly by regulating the
activation level of Smad2/3 (Figure 6). Ras interacts with SPSB1,
a negative regulator of TGFBR2 on the cell membrane, to promote
the degradation of the SPSB1 protein. Decreased levels of
SPSB1 stabilize TGFBR2, thereby enhancing Smad2/
3 phosphorylation and signaling (Burch et al., 2010; Liu et al.,
2018). Activation of ERK can increase or decrease Smad
signaling (Adhikari et al., 2007; Lei et al., 2019). Ras can inhibit
BMP-induced nuclear accumulation of Smad1 at four sites in the
junctional structural domain (Kretzschmar et al., 1999). Through
PI3K, Pak2 activation can lead to cell type-dependent activation of
ERK (Hough et al., 2012) (Figure 5). This activated ERK
phosphorylates Smad2 primarily within its junctional region,
leading to Smad-mediated transcriptional activation. This
phosphorylation process occurs mainly in the nucleus by Smad2.
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4.1.2.2 TAK1-related pathway
TGF-β-activated kinase 1 (TAK1) is a member of the mitogen-

activated protein kinase kinase kinase (MAPKKK) family (Xu and
Lei, 2020). Activating TAK1 by TGF-β acts upstream of NF-κB and
mitogen-activated protein kinases (MAPKs), thereby regulating
ECM. Dynamic regulation of ubiquitination and deubiquitination
plays an important role in TAK1-mediated activation of NF-κB (Lei
et al., 2019). TRAF6 and TRAF4 are ubiquitin ligases (E3) (Figure 5).
Upon induction of TGFBR, TRAF6/TRAF4 undergoes
autoubiquitination and activates nuclear factor NF-κB via the
cytokine interleukin 1 (Xie et al., 2004; Brabletz and Brabletz,
2010). After the recruitment of the bridging protein TAB1,
TAK1 is autophosphorylated. It can affect the NF-κB pathway by
regulating the IkappaB kinase (IKK)-subunit NFκB essential
modulator and the NFκB-activating kinase IKKβ (Adhikari et al.,
2007; Lei et al., 2019) (Figure 6).

The MAPK pathway is activated by the phosphorylation of
TAK1 through a cascade reaction (Fang and Richardson, 2005)
(Figure 6). MAPKs are a large family of serine-threonine kinases
with three main subfamilies: ERKs, c-Jun N-terminal kinases (JNKs)
or stress-activated protein kinases (SAPKs) and p38 MAPKs. JNK
can also be regulated by the activation of TAK1 (Sorrentino et al.,
2008) (Figure 6). Activation of both JNK and p38 is not Smad
dependent (Yamashita et al., 2008). In fibroblasts, activation of JNK
inhibits TNF-induced apoptosis (Ventura et al., 2004). Knockdown
of focal adhesion kinase (FAK) in fibroblasts in mice and modeling
of hypertrophic scar models revealed significant reductions in
inflammatory responses and fibrosis in mice. In addition, JNK
can induce fibrosis by stimulating the inflammatory response.
This process involves the activation of AP-1 and NF-κB and the
transcriptional upregulation of inflammation-related genes (Ip and
Davis, 1998; Workman and Habelhah, 2013). Activation of
p38 MAPK plays an important role in the differentiation of
fibroblasts into myofibroblasts, and this process is regulated by
mechanical signaling. p38 MAPK promotes the expression of
collagen type I (Sato et al., 2002), and p38 inhibitors abrogated
the upregulated expression of collagen type I in fibroblasts with SSc
disease (Ihn et al., 2005; Matsushita et al., 2017).

Activation of p38 MAPK plays an important role in the
differentiation of fibroblasts into myofibroblasts, and this process is
regulated bymechanical signaling. Studies have shown that inhibition of
p38 can downregulate the expression of myofibroblast-related genes
(e.g., ED-A fibronectin) and genes encoding LOX, thereby inhibiting
collagen maturation and reducing ECM. In contrast, culturing
fibroblasts with p38 inhibitors inhibits their activation process
(Dolivo et al., 2019). In addition, p38 transduces mechanical
signaling via the transcription factor serum response factor (SRF)
and phosphatase to differentiate fibroblasts (Wang et al., 2022).
These effects can be replicated in several primary human dermal
fibroblast cell lines. Stem cells of adipose tissue origin can inhibit
hypertrophic scarring by downregulating p38 expression (Li et al.,
2016a). Overall, JNKs and p38MAPKs can exert antagonistic effects on
cell proliferation and survival, depending on the type of cell, the strength
of the signal, the duration of the signal, and the crosstalk between
different signals (Wagner and Nebreda, 2009). JNK and p38 MAPK
pathways regulate the activity and expression of key inflammatory
mediators, which allows them to be potent promoters of fibrosis
(Wagner and Nebreda, 2009).

A link between the p38/JNK and Smad pathways was established
through the interaction between TAK1 and I-Smads (Figure 6).
Smad6 inhibits TGF-β-induced activation of the TAK1-related
signaling pathway, which occurs by blocking the ubiquitination
of TRAF6 (Jung et al., 2013). Smad7 promotes TGF-β downstream
of JNK and p38 MAPK activation (Mazars et al., 2001; Edlund et al.,
2003). Specifically, Smad7 may direct TGF-β receptors to lipid rafts
where TRAF6 is located, promoting TAK1 and downstream p38/
JNK activation (Zhang, 2017). JNK and p38 signaling pathways have
a facilitative effect on the Smad signaling pathway. In activated
hepatic stellate cells, JNK in the TGF-β pathway can induce Smad2/
3 phosphorylation (Yoshida et al., 2005). Similarly, p38 in rat
myofibroblasts can phosphorylate Smad3 (Furukawa et al., 2003).

4.1.2.3 PI3K-AKT pathway
TGF-β has also been shown to activate AKT via PI3K and lead to

EMT and cell migration. This process is not dependent on Smads
(Bakin et al., 2000) (Figures 5, 6). In addition to TGFBR, AKT can
also be activated by ubiquitinated TRAF6 (Yang et al., 2009). This
suggests that TRAF6 can indirectly activate AKT through TGFBR
activation.

The mTOR can be activated specifically by AKT. It can promote
EMT and increase cell size and protein content, migration, and
invasion (Lamouille and Derynck, 2007). In cancer cells, the TGF-β/
PI3K/AKT pathway can activate mTOR complex 1 (mTORC1),
mTOR complex 2 (mTORC2), and S6 kinase, thus promoting EMT
(Lamouille et al., 2012). Considering that mTORC2 contributes to
enhancing Akt activation, there is positive feedback in PI3K-AKT
pathway (Lamouille et al., 2012) (Figure 6). The TGF-β/PI3K/AKT
signaling pathway induces fibroblast proliferation and conversion to
myofibroblasts (Wilkes et al., 2005). A complex regulatory
relationship exists between AKT and Smads (Zhang, 2017).

4.1.2.4 GTPases downstream of TGF-β
TGF-β can activate Rho-like GTPases in a cell type-dependent

manner, leading to key events in EMT, such as cell adhesion and cell
migration (Mu et al., 2012). The Rho GTPase family, which includes
RhoA, RhoB, Rac and Cdc42, is involved in many actin-related
cellular processes to complete nuclear signaling (Phuyal and Farhan,
2019). TGF-β triggers the degradation of Rho through ligand-
triggered TGFBR2 action, causing degradation of Rho, leading to
direct phosphorylation of Par6 and promoting the recruitment of
the ubiquitin ligase Smurf1, which targets RhoA for degradation
(Zhang et al., 2004; Sutariya et al., 2016). The tumor
microenvironment plays a crucial role in promoting EMT by
controlling the subcellular localization and downstream signaling
of Rac1/Cdc42 and Rac1b (Kalli et al., 2022). At the same time, TGF-
β can activate RhoA independently of Smad2/3, leading to the
activation of Rho-associated coiled-coil-containing protein kinase
(ROCK) and EMT (Bhowmick et al., 2001) (Figure 6). ROCK
phosphorylates myosin phosphatase, thereby inhibiting its
phosphatase activity, leading to increased levels of
phosphorylated myosin and induction of actomyosin-based
contraction (Harvey et al., 2004).

In addition, there may have an interaction between Cdc42 and
the TGF-β receptor complex (Barrios-Rodiles et al., 2005) (Figure 6).
TGFBR3 is often considered to be a coreceptor that activates
Cdc42 through interaction with the scaffolding protein β-
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arrestin2 and is presented to its signaling receptor (Mythreye and
Blobe, 2009). Cdc42 can bind to p21-activated kinase 2 (PAK2) and
induce PAK2 conformational changes, which lead to
PAK2 activation. Furthermore, PAK2 blocks Smad2 and
Smad3 activation in a kinase activity-dependent manner
(Figure 6). Phosphorylation of Ser-417 on Smad2 by
PAK2 inhibits the interaction of Smad2 with TGFBR1 (Yan
et al., 2012).

4.2 Integrin signaling pathway

Integrin β1 (ITGB1), also known as CD29, binds to integrins
α1 and α2 to form integrin complexes, which are transmembrane
collagen receptors. Within the cytoplasm, integrins bind to the actin
cytoskeleton. Thus, integrins firmly attach the cytoskeleton to the
ECM and promote cell adhesion.

Integrins can bind to many substrates in ECM. ITGB1 forms a
heterodimer with integrin α3, which acts as a receptor for netrin-1
and reelin in the ECM. Kim and others showed that integrin
α3β1 forms a complex at the apical junction with the
TGFBR1 receptor and E-calmodulin. Upon TGF-β stimulation,
integrin α3β1 triggers the formation of the pY654-β-catenin/
pSmad2 complex and then upregulates EMT-related downstream
gene expression (Kim et al., 2006; Kim et al., 2009a; Kim et al.,
2009b). Numerous studies have shown that integrins αvβ3, αvβ5,
αvβ6, and αvβ8 can bind to RGD sequences in LAP, thereby
promoting the activation of latent TGF-β (Munger et al., 1999;
Mu et al., 2002; Asano et al., 2006c; Henderson and Sheppard, 2013)
(Figure 5B).

Integrins can directly participate in the downstream transduction of
mechanical signals, ultimately regulating matrix remodeling, cell
migration, and angiogenesis (Harburger and Calderwood, 2009). It is
generally accepted that integrin α subunits are involved in extracellular to
intracellular signaling, whereas β subunits are involved in intracellular to
extracellular signaling (Hynes, 2002). Specifically, the process of β-subunit
regulation is one inwhich intracellular signalsmodulate integrins to cause
conformational changes in their extracellular structure, thereby increasing
their affinity for extracellular ligands (Zhao et al., 2016). The cellular state
receives regulation that can alter the affinity to the ECMand thus regulate
the mechanical state (Figure 5B).

Talin, a cytoskeletal protein, is essential in integrin activation
(Calderwood, 2004). Talin is concentrated in areas of cell-matrix
intercontact, such as adhesive patches, and connects integrins to the
actin cytoskeleton (Figure 5B). Each subunit consists of an amino-
terminal head and a carboxy-terminal rod-like tail. The heads of
these subunits can bind to integrins, while the tail contains an actin-
binding site that binds directly to actin. Talin can be joined head to
tail, creating a state of self-activated inhibition. Interestingly,
integrin α and β subunits are close to each other in the quiescent
state, forming a low ligand affinity conformation. Talin
conformational changes are induced by PIP2 via charge action,
leading to the direct binding of talin to the integrin β subunit (Wang,
2012). In the case of indirect binding, talin binds and activates
PIPKIγ, which regulates the activity of vinculin and talin and
ultimately leads to integrin activation, adhesive patch formation,
enhanced cytoskeletal junctions, and mechanical signaling
(Calderwood, 2004).

Recent studies have shown that the presence of kindlin promotes
integrin activation by talin. Kindlin has a PTB structure similar to
that of talin and can bind simultaneously with talin in different
motifs of integrin β (Figure 5B). Inhibition of kindlin binding to
integrin inhibits integrin activation, and conversely, coexpression of
kindlin and talin promotes integrin activation. Specifically, all
kindlin isoforms bind to the membrane distal NxxY motif in the
cytoplasmic tail of the integrin β subunit via the F3 substructural
domain at the PTB site, leading to conformational changes and
activation of the integrin receptor (Chen et al., 2019).

Piezo1 also plays an important role in mechanical signaling. Our
study showed that mechanical stretching (CMS) increased
Piezo1 expression and activation in human dermal fibroblasts
(HDFs) (He et al., 2021). In erythropoiesis, activation of
Piezo1 leads to Ca2+ inward flow. Ca2+-dependent protein kinase
C (PKC) is activated and subsequently activates the small GTPase
Rap1. Rap1 is activated through the interaction of the Rap1-
interacting adapter molecule (RIAM) and talin, ultimately leading
to integrin activation (Aglialoro et al., 2020) (Figure 5B).

4.2.1 FAK-mediated signal transduction
FAK, a tyrosine kinase with a binding domain with talin, can be

recruited by paxillin to adhesion plaques and promote their
homodimer formation (Mitra et al., 2005). The FAK Tyr397 site
in the homodimer is autophosphorylated, which enhances binding
to Src and a conformational change (Brami-Cherrier et al., 2014).
In this FAK-Src complex, Src can transphosphorylate specific sites
of FAK. Further phosphorylation of FAK exposes binding sites for
Src homology 2 (SH2) domains and can further recruit Grb2 and
PI3K (Mitra and Schlaepfer, 2006). Grb2 can further recruit SOS
and activate the Ras/Raf/MEK/ERK signaling pathway (Figure 5B).
PI3K binding to Src can activate the PI3K/AKT signaling pathway
(Bolós et al., 2010) (Figure 5B). In addition, FAK regulates Rho
GTPase activity, which leads to cytoskeletal remodeling and
mediates directional cell movement (Tomar and Schlaepfer,
2009). FAK increases the expression of cellular myogenic
markers and epithelial cell migration through the small G
protein Cdc42 (Han et al., 2011; Wen et al., 2022). These
signaling pathways are also present in TGF-β signaling
(Figure 6). G proteins and small G proteins regulate FAK
activity. Protein-activated receptor 1 (PAR1) and sphingosine-1-
phosphate receptor 1 (S1P1) can upregulate FAK via downstream
G protein activity (Thennes and Mehta, 2012).

FAK inhibitors reduce bleomycin-induced pulmonary fibrosis in
mice (Zhao et al., 2016). Gurtner’s team showed that physical forces
regulate fibrosis through the inflammatory FAK/ERK/MCP-
1 pathway and that targeted inhibition of FAK inhibits
mechanical force-induced hypertrophic scar formation (Wong
et al., 2012).

4.2.2 ILK-mediated signal transduction
Integrin-linked kinase (ILK) is another key node in integrin

signaling (Legate et al., 2006). ILK, which is believed to be a
pseudokinase, cannot phosphorylate any substrate directly (Boudeau
et al., 2006; Byrne et al., 2017). ILK, PINCH, and parvin form a
heterotrimeric complex, ILK-PINCH-PARVA (IPP). IPP is recruited
to the adherent patch and acts as a hub for the integrin signaling network
(Figure 5B). The complex connects the ECM to the actin cytoskeleton
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and protects ILK fromproteasomal degradation (Legate et al., 2006). The
ILK pathway is extensively involved in regulatory processes such as cell
adhesion, apoptosis, proliferation, and migration (Martucci et al., 2021).
In cancer, ILK promotes EMT and enhances the migration and invasion
of cancer cells (McDonald andDedhar, 2022). These cellularmetabolism
and behavior changes are facilitated by the activation of downstream
signaling pathways such as AKT, Hippo, Wnt, and GSK-3β (Martucci
et al., 2021). ILK can promote the transition from fibroblasts to
myofibroblasts in the dermis with the transcription factor Snail1/Slug
(Zoppi et al., 2018). The ILK-PI3K/AKT pathway regulates fibroblast
migration (Li et al., 2016b).

4.2.3 Hippo signaling pathway
The Hippo pathway is an evolutionarily highly conserved

signaling pathway that plays key roles in organ development,
epithelial homeostasis, tissue regeneration, wound healing, and
immune regulation (Dey et al., 2020). Many of these actions are
mediated by the transcriptional effectors YAP and TAZ. The NDR
(nuclear Dbf2-related) kinase family members LATS1 (large tumour
suppressor 1) and LATS2 (large tumour suppressor 2) are major
regulators of YAP/TAZ. Many upstream proteins are involved in the
regulation of LATS activity. These include the integrins mentioned
earlier and TGFβ-related signaling proteins such as ILK, FAK-Src,
and Rho (Piersma et al., 2015; Dey et al., 2020) (Figure 5B). In
addition, YAP/TAZ can directly transduce mechanical signals of the
ECM independently of the Hippo/LATS cascade (Figure 5B). This
process requires the involvement of Rho GTPase and the tension of
the actin cytoskeleton (Dupont et al., 2011). Notably, increased ECM
stiffness can reduce DNA methylation in the promoter region of
YAP, suggesting an epigenetic role of mechanical signaling in
cellular alterations (Jang et al., 2021). YAP/TAZ can regulate the
expression of profibrotic genes through TEAD transcription factors,
specifically CTGF, PAI-1, and LOX (Dey et al., 2020). A clear and
complete description of the Hippo/YAP signaling network was
previously reviewed by Rognoni and Walko (Rognoni and
Walko, 2019).

5 Current therapeutic strategies and
future perspectives

Skin fibrosis and scar formation are common outcomes of
surgery, pathological injury and some diseases. They are
characterized by myofibroblast proliferation and ECM deposition
that result in mechanical stiffness modulation. Basic and clinical
research has shown that a variety of treatments are available for
patients with skin fibrosis and scar formation, including surgical,
drug and combination treatments. Although some existing drugs
have been preliminary proved the efficiency in skin fibrosis, there is
still a long way to develop a satisfied therapy (Kothari et al., 2019).
Targeted therapies can significantly reduce side effects and improve
the efficacy of treatment. With the in-depth study of the molecular
mechanisms of skin fibrosis, molecular targeted therapy will become
the key direction of skin fibrosis. The inhibition of TGF-β and
integrin pathways are important in targeted therapies. Upregulation
of MMP expression or activity is also a valuable direction. In
addition, new therapeutic approaches, such as RNA and stem cell
transplantation, have emerged.

5.1 Targeted inhibition of TGF-β signaling
pathway

As previously mentioned, TGF-β, a profibrotic factor controlled by
mechanical stress and inflammatory factors, plays an important role in
the physiopathological events of skin fibrosis and has become a central
target for pharmacological intervention (Batlle and Massagué, 2019).
TGF-β1 overexpression in keratin-forming cells induces skin
inflammation, and significant epidermal hyperplasia occurs. The TGF-
β1/Smad3 signaling pathway is activated during skin photoaging and
induces the production ofMMPs, leading to increased collagen type I and
ECM deposition (Fisher et al., 2016). Recessive dystrophic epidermolysis
bullosa (RDEB) is an inherited skin disease characterized by increased
mechanical fragility of the skin. A comprehensive gene expression study
by Knaup showed that untransformed RDEB keratinocytes also display
elevated levels of TGF-β1, which affects the expression levels of collagen
type VII (Knaup et al., 2011). Patients with SSc have extensive skin
fibrosis and visceral organ involvement, for which the TGF-β signaling
pathway is often thought to be the main mechanism (Verrecchia et al.,
2006; Sargent et al., 2010). In SSc patients, TGF-βpromotesmyofibroblast
differentiation by stimulating the expansion of KLRG1-ILC2s (natural
ILC2s) and reducing IL10 production. Thus, TGF-β signaling pathway is
an important therapeutic target in skin fibrosis.

Targeted ablation of TGFBR2 in mice induces the overproliferation
of keratin-forming cells induced by external factors (Guasch et al., 2007).
Han’s study demonstrated that the degree of skin inflammation was
associated with TGF-β1 expression, and Enbrel and Rosiglitazone, an
effective treatment for human psoriasis, can effectively alleviate skin
inflammation (Han et al., 2010). The application of pirfenidone and
IL10 combination therapy significantly reduced skin fibrosis in the SSc
mouse model (Laurent et al., 2021). Rituximab (RTX) may improve skin
and lung fibrosis in SSc patients via the TGF-β-Dkk-1 axis (Daoussis
et al., 2016). Additionally, overexpression of TGF-β at different sites may
have different effects. Acute induction of TGF-β1 overexpression in the
suprabasal layer of the epidermis reduced epidermal overproliferation in
the skin, whereas sustained induction of TGF-β1 overexpression in the
basal layer did not cause significant changes in the epidermis (Wang et al.,
1999). TGF-β can stimulate cancer-associated fibroblasts (CAFs) to play
an important role in regulating the tumor ECM (Chen and Song, 2019).
In addition, the treatment of fibrosis in other tissues may also inform the
treatment of skin fibrosis. The small-molecule inhibitor pirfenidone has
been approved for the treatment of pulmonaryfibrotic disease (Behr et al.,
2021). In lung fibroblasts, pirfenidone can significantly inhibit TGF-β1-
stimulated fibroblast-mediated collagen gel contraction, migration, and
collagen triple helix repeat containing protein 1(CTHRC1) release.
CTHRC1 is able to activate fibroblasts and recruit M2 macrophages
(Jin et al., 2019). Buserelin and oleuropein have been shown to reduce
fibrosis in the lung and kidney in mouse models (Akhurst and Hata,
2012). However, their use in cutaneous fibrosis is still being explored.

Oxidative stress is influenced by TGF-β, which has shown a large
role in the pathogenesis and treatment of dermal fibrosis. TGF-β
activates several oxidative stress-related genes involved in the
profibrotic pathway, acting through Smad and non-Smad pathways
to enhance fibroblast recruitment and differentiation, leading to ECM
deposition (Akhurst, 2012; Liu et al., 2012). A study of dermal fibroblasts
from patients with scleroderma showed that following the application of
antioxidants with oxidative stress inhibition, ERK1-2 andNF-kB activity
reduced ECM deposition (Shroff et al., 2014). Similarly, simvastatin,
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arsenic trioxide and (PHTE) (Do and Eming, 2016)NQ have been
shown in preliminary experiments to prevent skin fibrosis (Kavian et al.,
2012; Bagnato et al., 2013). MMP exposure can also increase oxidative
stress and stimulate fibroblast differentiation (Radisky et al., 2007). In
summary, Oxidative stress is a potential target in skin fibrosis treatment.

Targeting the expression of genes downstream of the TGF-β1
signaling pathway, such as p53 and Smad3 and TGF-β1 oxidative
stress-dependent genes, has also emerged as a therapeutic option for
skin fibrosis (Samarakoon et al., 2013). Ebselenolide and
enthesopine have been shown to reduce fibrosis in the lung and
kidney in a mouse model (Shroff et al., 2014). In irradiated mice,
exogenous interleukin 1β (IL1B) induces IL1B mRNA expression
and rapidly increases MMPs but fails to reduce IL1-associated
collagen accumulation (Liu et al., 2006).

5.2 Targeted degradation of ECM via MMP

MMP acts directly on the ECM and is regulated by mechanical
stress and inflammatory factors involved in the proliferation of the
ECM. Therapeutic studies targeting MMP have demonstrated its
effectiveness to some extent. It has been shown that expression of
MMP activity during wound healing can inhibit scar formation and
may reduce fibrosis during healing. In most cases, MMP shows
profibrotic activity, and MMP inhibitors may potentially treat
fibrosis (Radisky et al., 2007). Core proteoglycans can treat
pathological skin fibrosis by upregulating the expression of MMP-
1 andMMP-3 mRNAs and decreasing the expression of collagen type
I and type III mRNAs (Lee et al., 2015). After treatment with bone
marrow mesenchymal stem cell (BM-MSC) transplantation, lesioned
skin showed decreases in TGF-β1 and α-smoothmuscle actin-positive
cells, increased MMP expression, attenuated myofibroblast
proliferation and ECM deposition, and collagen alignment similar
to that of normal skin (Gourdie et al., 2006; Wu et al., 2014). MMP
activation reduces excessive collagen deposition and subsequent scar
formation to treat skin fibrotic disease (El Ayadi et al., 2020).

However, excessive activation of MMPs can lead to excessive
hydrolysis of collagen, which can lead to safety risks such as
bleeding, organ perforation or rupture. This requires special
attention in the antifibrotic treatment of organs such as the lungs,
liver, kidneys and intestines. In contrast, the skin, the largest organ in
the body, has high regenerative and compensatory capacities, providing
a wider margin of safety for the use of MMPs to degrade the
overproduced ECM in fibrosis areas. Even when extreme cases are
considered, the excessive degradation of the ECM in areas of skin
fibrosis could not pose a risk to the patient’s life.

5.3 New insights in skin fibrosis treatment by
non-coding RNA

There is now a new understanding of the role of RNA in skin
fibrosis.miRNAs are a group of small non-coding RNAs involved in skin
fibrosis, including transforming growth factor-β signaling, ECM
deposition, fibroblast proliferation and differentiation. There are both
pro- and antifibrotic miRNAs. Antifibrotic miRNAs can be upregulated
in treating skin fibrosis using mimetics and viral vectors. Conversely,
profibrotic miRNAs can be downregulated using anti-miRNAs

(Babalola et al., 2013). Since miR-486-3p mediates the overexpression
of K17 protein under the regulation of the TGF-β/Smad pathway,
thereby inducing glial cell proliferation, activating miR-486-3p may
be a potential therapeutic approach for psoriasis (Jiang et al., 2017).

6 Conclusion

Although the molecular mechanisms of skin fibrosis have been
extensively studied, the in vivo situation is complicated by the
interplay of signaling networks, genetic-environmental interactions
and variations in individual susceptibility. This makes it challenging to
obtain similar results in clinical trials, and ultimately, only a small
proportion can be successfully translated into therapeutic approaches.
Interactions between different systemic signals have received increasing
attention in the pathogenesis and progression of the disease.New research
areas have been proposed to study mechano-immune and neuro-
mechanical signaling networks. Exploring signaling cross-talk from the
perspective of these areas may lead to discoveries in the pathogenesis of
cutaneous fibrosis. To better mimic the in vivomicroenvironment, three-
dimensional cell cultures are now often used for in vitro studies of
biomechanical mechanisms. However, the matrix materials currently
available for cell culturemay be cytotoxic and have limitations in terms of
their mechanical properties. Material improvements for three-
dimensional cell culture or the development of novel matrix materials
may contribute to breakthroughs in biomechanical studies of fibrosis.

ECM stiffness, a central cue in the skin fibrosis process, may be
an important factor to focus on in targeted therapies for the
treatment of skin fibrosis. Compared to other organs, multiple
delivery methods such as local injection and gel application can
be easier to use in skin tissue and have a wider safety margin. Studies
have demonstrated that reducing ECM stiffness by inhibiting the
cross-linking of ECM structural proteins or causing appropriate
hydrolysis of ECM can improve skin scarring. Targeted inhibition of
the signaling pathways of TGF-β is also a valuable treatment
therapy. Recently, a broader view of biological events, such as
epigenetic and post-transcriptional regulation, may contribute to
a deeper understanding of the mechanisms of skin fibrosis.
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Glossary

ADAM a disintegrin and metalloproteinase

APC antigen-presenting cell

BCR B cell receptor

BioF biomechanical force

BM basement membrane

BMM bone marrow-derived macrophage

BM-MSC bone marrow mesenchymal stem cell

CAF cancer-associated fibroblasts

CMS mechanical stretch

Co-Smad co-chaperone Smad

CTGF/CNN2 connective tissue growth factor

DC dendritic cell

ECM extracellular matrix

EMT epithelial-mesenchymal transition

ERK extracellular signal-regulated kinase

FACIT fibril-associated collagens with interrupted triple helices

FAK focal adhesion kinase

GAG glycosaminoglycan

GAP GTPase-activating protein

GEF guanine nucleotide exchange factor

HDF human dermal fibroblast

HFUS high-frequency ultrasound

IFN interferon

IL interleukin

IL1B interleukin 1β
ILK integrin-linked kinase

IPP ILK-PINCH-PARVA

I-Smad inhibitory Smad

ITGB1 integrin β1
JNK c-Jun-N-terminal kinase

LAP latency-associated peptide

LOX lysyl oxidase

MAPK mitogen-activated protein kinase

MAPKK/MEK mitogen-activated protein kinase kinase

MAPKKK mitogen-activated protein kinase kinase

MMP matrix metalloproteinase

MSC mesenchymal stem cell

mTOR mammalian target of rapamycin

mTORC mTOR complex

NDR kinase nuclear Dbf2-related kinase

NFAT nuclear factor of activated T cells

LATS large tumour suppressor kinase

NF-κB Nuclear factor kappa-B

OCT optical coherence tomography

OPN osteopontin

PAR1 protein-activated receptor 1

PAK2 p21-activated kinase 2

PD papillary dermis

PDGF platelet-derived growth factor

PKC protein kinase C

RD reticular dermis

RDEB recessive dystrophic epidermolysis bullosa

RGD sequence Arg-Gly-Asp

RIAM Rap1-interacting adapter molecule

ROCK Rho-associated coiled-coil-containing protein kinase

R-Smad receptor-regulated Smad

RTX rituximab

RXFP1 relaxin family peptide receptor-1

S2P2 sphingosine-1-phosphate receptor 1

SH2 Src homology 2

SLRP small leucine-rich proteoglycan

SSc systemic sclerosis

TAK1 transforming growth factor-β-activated kinase 1

TAZ transcriptional coactivator with PDZ-binding motif

TCR T cell receptor

TGF-β transforming growth factor-β
TGFBR transforming growth factor-β receptor

TIMP tissue inhibitors of metalloproteinase

TNF-α tumor necrosis factor-α
YAP yes-associated protein 1
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