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Autosomal Dominant Polycystic Kidney Disease (ADPKD) leads to end stage
kidney disease (ESKD) through the development and expansion of multiple
cysts throughout the kidney parenchyma. An increase in cyclic adenosine
monophosphate (cAMP) plays an important role in generating and maintaining
fluid-filled cysts because cAMP activates protein kinase A (PKA) and stimulates
epithelial chloride secretion through the cystic fibrosis transmembrane
conductance regulator (CFTR). A vasopressin V2 receptor antagonist,
Tolvaptan, was recently approved for the treatment of ADPKD patients at high
risk of progression. However additional treatments are urgently needed due to the
poor tolerability, the unfavorable safety profile, and the high cost of Tolvaptan. In
ADPKD kidneys, alterations of multiple metabolic pathways termed metabolic
reprogramming has been consistently reported to support the growth of rapidly
proliferating cystic cells. Published data suggest that upregulated mTOR and
c-Myc repress oxidative metabolism while enhancing glycolytic flux and lactic
acid production. mTOR and c-Myc are activated by PKA/MEK/ERK signaling so it is
possible that cAMPK/PKA signaling will be upstream regulators of metabolic
reprogramming. Novel therapeutics opportunities targeting metabolic
reprogramming may avoid or minimize the side effects that are dose limiting in
the clinic and improve on the efficacy observed in human ADPKD with Tolvaptan.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common
inherited cause of kidney disease with an estimated prevalence between 1:400 and 1:
1,000 (Torres et al., 2007; Chow and Ong, 2009; Harris and Torres, 2009). In ADPKD,
enlarging fluid-filled cysts develop in both kidneys, eventually leading to kidney failure.
Besides kidney cysts that can be very painful, ADPKD can present with extra-renal
manifestations such as development of cysts in the liver, pancreas, spleen and epididymis,
abnormal heart valves and brain aneurysm (Perrone et al., 2015). Common features of
ADPKD are flank and abdominal pain, urinary tract infections, hypertension, and kidney
stones (Gabow, 1990; Torres et al., 2007). ADPKD is predominantly caused by mutations
in either PKD1 or PKD2 genes encoding for two ciliary proteins, Polycystin 1 (PC1) and
Polycystin 2 (PC2) (Harris and Torres, 2009; Takiar and Caplan, 2011). These mutations
within epithelial cells of the kidney interfere with multiple pathways located within the
cilia and promote proliferation, de-differentiation and fluid secretion resulting in growth
of these cells into cysts. Due to the slow progression and the intrafamilial difference in
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disease severity, it has been suggested that defective clearance of
precipitated microcrystals may promote cyst formation and drive
kidney injury when Pkd1 or Pkd2 are mutated (Torres et al.,
2019a). An increase in cyclic adenosine monophosphate (cAMP)
and a simultaneous dysregulation in intracellular calcium in the
cystic epithelium seems to play a key role in generating and
maintaining fluid-filled cysts (Yamaguchi et al., 2003; Belibi
et al., 2004; Di Mise et al., 2018). cAMP activates protein kinase
A (PKA) and stimulates epithelial chloride secretion through the
cystic fibrosis transmembrane conductance regulator (CFTR)
(Sullivan et al., 1998). A vasopressin V2 receptor (V2R)
antagonist, tolvaptan, was recently approved to preserve kidney
function in ADPKD by lowering vasopressin-mediated cAMP
increase (Chebib and Torres 2021). However, considering the
potential drawbacks of Tolvaptan i.e., side effects, poor
tolerability, and high cost it is important to identify additional
pathways and novel therapeutic interventions. Recently,
alterations of metabolic pathways (metabolic reprogramming)
in ADPKD have shown that the abnormal cystic growth utilize
aerobic glycolysis, glutaminolysis and reducing oxidative
phosphorylation (OXPHOS) (Padovano et al., 2018; Podrini

et al., 2020). This review will review and discuss potential
therapeutic approaches targeting metabolism-based pathways in
ADPKD.

Current approved therapies for ADPKD
lowering cAMP

Tolvaptan

Tolvaptan is a vasopressin-2-receptor (V2R) antagonist
approved to slow kidney function decline in adult patients
with rapidly progressive ADPKD by reducing cAMP levels
(Chebib and Torres 2021, Figure 1). Tolvaptan reduces TKV
(Total kidney volume TKV, prognostic biomarker for risk
assessment in ADPKD, Fick-Brosnahan et al., 2002) and renal
function decline. However, its clinical use is limited by poor
tolerability due to aquaretic symptoms, potential liver failure
and high cost (Chebib and Torres 2021; Müller et al., 2022).
Recently Lixivaptan, a selective vasopressin V2 receptor
antagonist which was predicted to have a lower risk of

FIGURE 1
Metabolic Pathways in ADPKD. Increased cAMP due to vasopressin (Chebib et al., 2015) but likely also to decreased phosphodiesterases (PDEs)
(Pinto et al., 2016) play a key role in generating fluid-filled cysts. Defects in PC1 and PC2 mediated calcium ion influx in the primary cilia and/or in the
endoplasmic reticulum (ER) (Nauli et al., 2003; Padhy et al., 2022). Decreased intracellular calcium seems to convert the antiproliferative to proliferative
effect of cAMP (Yamaguchi et al., 2003) causing activation of MEK-ERK and increased cell proliferation. cAMP activates PKA and stimulates chloride
secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) (Sullivan et al., 1998). Tolvaptan, a vasopressin V2 receptor antagonist,
was approved to preserve kidney function by targeting cAMP (Chebib and Torres, 2021). Several somatostatin analogues (SST) are being investigated to
lower cAMP with Ocreotide-LAR being approved in ADPKD in Italy (Capuano et al., 2022a). Mammalian target of rapamycin (mTOR) and c-Myc are
upregulated in ADPKD and suppress oxidativemetabolismwhile enhancing glycolytic flux, lactate production and export (LDH-A andMCT4) (Rowe et al.,
2013; Podrini et al., 2020).
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hepatotoxicity compared to tolvaptan was discontinued (https://
investors.centessa.com/news-releases/news-release-details/centessa-
pharmaceuticals-makes-strategic-decision-discontinue). In the
kidney, the V2 receptor is mainly expressed in the distal
nephron potentially limiting the area of action of V2R
antagonists (Mutig et al., 2007; Sparapani et al., 2021).
Tolvaptan has been shown to exhibit a partial agonist activity
on β-arrestin recruitment whose expression is increased in
human ADPKD kidneys (Xu et al., 2018). These data suggest
that there is space for safer and tolerated best in class cAMP
lowering approaches in ADPKD either targeting additional
pathways regulating cAMP (PKA inhibition, PDE activation),
biased V2R antagonists or combination with targets that may
provide an additive or synergistic effect such as the calcium-
sensing receptor (Di Mise et al., 2021; Zhou and Torres, 2022).

Octreotide-LAR

Octreotide long-acting release (octreotide-LAR) is a
somatostatin analogue that lowers the annual slope of TKV
increase with no effect on renal function worsening. It was
approved in Italy for the treatment of adult ADPKD patients at
high risk of progression with eGFR ranging from 15 to 30 ml/min/
1.73 m2 based on less frequent doubling of serum creatinine or
ESKD compared to placebo. Side effects reported for somatostatin
analogues include cholelithiasis and risk of cholecystitis, alopecia
and increases in blood glucose (Perico et al., 2019; Griffiths et al.,
2020). Hepatic cyst infections were also reported in patients treated
with Lanreotide which required hospital admission and antibiotics.
It has been suggested that the small size of the trials involving
somatostatin analogues can explain the inconclusive renoprotective
effects (Meijer et al., 2018; Capuano et al., 2022b). While awaiting
publication of the results of Lanreotide in ADPKD (LIPS,
NCT02127437) a plausible explanation for the apparent different
effects across analogues is the affinity for the five somatostatin
receptors (SSTR1 to 5) (Suwabe et al., 2021; Bais et al., 2022;
Ruggenenti et al., 2022).

Metabolic reprogramming in ADPKD

Glutamine metabolism and aerobic
glycolysis

The idea of metabolic reprogramming first came from the
Warburg effect in cancer cells where OXPHOS is inhibited and
cells tend to utilize aerobic glycolysis to produce energy (Koppenol
et al., 2011). Metabolic reprogramming does not include only the
Warburg effect, but also other metabolic changes. Rowe first
suggested that mutations in Pkd1 result in a defective glucose
metabolism with decreased gluconeogenesis and increased aerobic
glycolysis to supply energy and promote proliferation (Rowe et al.,
2013, Figure 1). 2-deoxyglucose (2DG), which is transported into the
cells but cannot undergo glycolysis, inhibited the proliferation of
Pkd1−/− cells and prevented disease progression in ADKPD models
(Rowe et al., 2013; Chiaravalli et al., 2016; Riwanto et al., 2016; Lian
et al., 2019). Recently, Soomro provided evidence that alteration in

glutamine metabolism play a role in cyst growth (Soomro et al.,
2020). During glutaminolysis the enzyme glutaminase (GLS,
Figure 1) converts glutamine to glutamate then converted to a
TCA cycle intermediate, alpha-ketoglutarate to generate ATP for
cyst growth (Soomro et al., 2020). Podrini confirmed the defective
glucose metabolism and characterized other altered metabolic
pathways in mouse kidney without Pkd1 such as increased
pentose phosphate pathway (PPP), glutamine uptake and
decreased TCA cycle and fatty acid oxidation (FAO) (Podrini
et al., 2020). The authors also generated data supporting
targeting asparagine synthetase to interfere with glutaminolysis in
conjunction with glycolysis to slow PKD1−/− cell growth and survival
(Podrini et al., 2020). Decreased FAO also appears to contribute to
disease exacerbation as increased c-MYC upregulates miR-17 in
mouse cystic kidneys inhibiting PPARα and leading to FAO
inhibition to support proliferation of ADPKD cells. Anti-miR-
17 restored PPARα and improved FAO, ameliorating ADPKD
(Lee et al., 2019, Figure 1). Considering that a single miRNA
specie can regulate hundreds of targets, it is unclear if the
beneficial effect is mediated by PPARα (Mohr and Mott, 2015).
Nevertheless, the PPARα agonist fenofibrate showed increased FAO
and reduced cystic volume in preclinical ADPKD (Lakhia et al.,
2018). An anti-miR17 oligonucleotide is in Phase 1b in ADPKD
patients to de-repress multiple miR-17 mRNA targets including
Pkd1 and Pkd2 (Lakhia et al., 2022; https://www.prnewswire.com/
news-releases/regulus-therapeutics-announces-first-patient-dosed-
in-phase-1b-multiple-ascending-dose-mad-clinical-trial-of-rgls8429-
for-the-treatment-of-autosomal-dominant-polycystic-kidney-disease-
adpkd-301665896.html).

Mammalian target of rapamycin (mTOR)

The mechanisms that account for elevated mTOR activity in
ADPKD are not fully understood but it appears that cAMP/PKA/
ERK and AKT are upstream regulators (Distefano et al., 2009; Rowe
et al., 2013; Margaria et al., 2020). Animal studies demonstrate that
mTOR inhibition improves cystic disease and kidney function
(Pema et al., 2016; Su et al., 2022), however, metanalysis of
cIinical data with ADPKD patients receiving rapamycin,
sirolimus, or everolimus did not support a significant influence
on renal progression (Lin et al., 2019). In these trials, it is not clear if
mTOR inhibition was achieved in the kidney or whether
mTORC1 inhibition triggers a compensatory activation of
mTORC2 limiting the beneficial effects of mTORC1 (Canaud
et al., 2010). Recently Janssen announced the acquisition of
Anakuria Therapeutics and its first-in-class ADPKD candidate,
AT-20494, a small molecule inhibitor of mTORC1 (https://www.
fdanews.com/articles/206455-janssen-acquires-anakuria-therapeutics-
nets-early-phase-polycystic-kidney-disease-candidate).

AMP-activated protein kinase (AMPK)

AMPK is activated under conditions of metabolic and other
cellular stresses (Steinberg and Hardie, 2022). AMPK activation
during low energy states leads to upregulation of energy generating
processes and inhibition of energy-intensive processes involved in
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cyst expansion such as indirect inactivation of mTORC1 (Inoki
et al., 2003; Gwinn et al., 2008) and inhibition of CFTR chloride
channel, thus suppressing epithelial fluid and electrolyte secretion
(Caplan, 2022).

Metformin

Metformin, a drug approved for T2D and polycystic ovary
syndrome, may serve as a therapy for ADPKD. Treatment of
kidney epithelial cells leads to stimulation of AMPK and
subsequent inhibition of both mTOR and CFTR (Takiar et al.,
2011). However, mixed results in animal models of PKD (Takiar
et al., 2011; Leonhard et al., 2019; Lian et al., 2019; Chang et al., 2022;
Pastor-Soler et al., 2022) and increased plasma lactate levels
observed in Pkd1 miRNA transgenic mice, call for a careful
examination of the risk benefit of metformin especially in
patients with later stage of ADPKD (Chang et al., 2022). The
Trial of administration of Metformin in PKD (TAME PKD,
NCT02656017; Seliger et al., 2020) in 97 non-diabetic ADPKD
adults with eGFR>50 ml/min per 1.73 m2 (Ong and Gansevoort,
2021; Perrone et al., 2021) suggests that metformin is safe in patients
in the early stages of ADPKD (although only 35% completed the
study at the maximal dose resulting in dose reductions). Results of
the exploratory secondary endpoints were, however, inconclusive,
with non-significant trends for eGFR slope and htTKV. A definitive
answer should come from the IMPEDE PKD trial where a slow-
release formulation of 2000 mg/d Metformin will be tested in
1164 patients with rapid progressive ADPKD over 2 years with
estimated completion in 2026 (NCT04939935).

Direct AMPK activation

While metformin inhibits renal cyst growth in mouse models, it
remains unclear whether its metabolic effects are related to its
capacity to activate AMPK (Takiar et al., 2011; Chang A. R.
et al., 2017), and it may have tolerability issues. Hence potent
selective AMPK activation may be required in ADPKD. Recently,
the AMPK activator PF-06409577 demonstrated inhibition of
mTOR pathway-mediated proliferation of cyst-lining epithelial
cells and reduced CFTR-regulated cystic fluid secretion (Su et al.,
2022). Given the potential for cardiac hypertrophy of AMPK
following chronic administration it will be important to define
the precise isoform selectivity required (Myers et al., 2017).
Recently the FDA granted Orphan Drug Designation to Poxel’s
AMPK activator PXL770 for the treatment of patients with ADPKD
(https://www.poxelpharma.com/en_us/news-media/press-releases/
detail/224/poxel-announces-pxl770-granted-orphan-drug-designation-
from).

Cholesterol reducing agents

Statins

Statins (HMG-CoA reductase inhibitors) are widely prescribed
to lower cholesterol in humans (Ginsberg and Tuck, 2001). Among

the additional effects that make statins attractive for use in ADPKD
(Belibi and Edelstein, 2010) is activation of AMPK (Sun et al., 2006)
and cAMP lowering (Kou et al., 2012). Statins have been shown to
improve early-onset ADPKD (TKV improvement) in children and
young adults (Cadnapaphornchai et al., 2014). Recently, Baliga
conducted targeted metabolomics in plasma samples from a
phase III trial designed to test the efficacy of pravastatin on
ADPKD progression in children and young adults on the ACE
inhibitor (Baliga et al., 2021). The authors demonstrated changes in
metabolites involved in metabolic reprogramming however statin
treatment for 36 months had limited effect on disease progression
(Baliga et al., 2021). While these results are overall encouraging, a
larger randomized trial in young people with ADPKD is required. In
the absence of such data, no consensus was reached on the use of
statins in this population (Gimpel et al., 2019). An ongoing trial
evaluating 2 years treatment with pravastatin in 150 adults with early
stage ADPKD (NCT03273413) should also clarify the s inconclusive
results in adult ADPKD (van Dijk et al., 2001; Fassett et al., 2010;
Brosnahan et al., 2017; Xue et al., 2020).

Bempedoic acid

Bempedoic acid (BA) antagonizes the ATP citrate-lyase (ACLY)
enzyme upstream of HMGCoA reductase and is approved as an
adjunct to diet and statin therapy in familial hypercholesterolemic
patients who require additional lowering of LDL-C (Huynh, 2019;
Ruscica et al., 2022). In animal models BA also activates AMPK
(Pinkosky et al., 2016; Hallows et al., 2022) and reduces cystic
growth, TKW and BUN (Hallows et al., 2022). BA seems to have a
reduced risk of muscle-related side effects reported with statins
(Ruscica et al., 2022) although a recent meta-analysis concluded that
statins cause a small risk of muscle symptoms that are outweighed by
the known cardiovascular benefits of statins (Cholesterol Treatment
Trialists’ Collaboration, 2022). No major safety concerns were
identified for BA in a randomized controlled phase III trial
during the intervention period when added to statin therapy, but
the incidence of AEs leading to discontinuation was higher in the BA
group, as was the incidence of gout (Ray et al., 2019). Bempedoic
acid was generally well-tolerated following a single oral dose in
subjects with renal impairment (Amore et al., 2022). Because ACLY
has been reported to inhibit the AMPK-β1 subunit (Lee et al., 2015),
future studies should conclusively demonstrate that the beneficial
effects of BA in ADPKD are mediated by AMPK activation and
clarify the AMPK subunit involved.

Weight loss and insulin resistance

Similar to the general population, the prevalence of overweight
and obese ADPKD patients is increasing. In rodent models of
ADPKD, caloric restriction has shown to slow kidney growth
and improve kidney function (Kipp et al., 2016; Warner et al.,
2016). It has been suggested that these improvements involve mTOR
signaling inhibition, AMPK activation, and a reduction in IGF-I
supporting restoration of metabolic reprogramming. Accordingly, a
clinical trial evaluating the effect of weekly caloric reduction
achieved with either caloric restriction or intermittent fasting in
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29 overweight/obese individuals with ADPKD was recently
completed (Hopp et al., 2021; https://clinicaltrials.gov/ct2/show/
NCT03342742). The trial was designed as a weight loss
intervention based on the prior epidemiological observation that
ADPKD progression is faster with higher BMI (Nowak et al., 2018).
The investigators demonstrated the feasibility of 1-year daily caloric
restriction (DCR) and intermittent fasting (IMF) in a cohort of
overweight or obese patients with ADPKD. Weight loss occurred
with both DCR and IMF, however, weight loss was greater, and
adherence and tolerability were better with caloric restriction (Hopp
et al., 2021). The study was a pilot and feasibility study, so the sample
size was small, and a control group was not included but, according
to the investigators, similar annual kidney growth in both groups
was observed that was qualitatively low compared to historical
controls. Cessation of kidney growth was observed in participants
who achieved clinically meaningful weight loss (Nowak et al., 2018;
Nowak et al., 2021). A larger 2-year phase 2 trial with a direct
comparison of caloric restriction to a control group, powered for a
primary endpoint of change in htTKV (NCT04907799) is currently
recruiting with an expected completion in 2026 (https://
clinicaltrials.gov/ct2/show/NCT04907799).

Ketogenic diet

Ketosis improves the phenotype of animal models of ADPKD
(Torres et al., 2019b). From a mechanism of action perspective, it
is possible that Ketone bodies may promote metabolic
reprogramming by decreasing glucose availability and
increasing fatty acids (Hall et al., 2016). Initial data from
clinical trials are becoming available. A self-enrolled survey of
ADPKD patients who have self-administered ketogenic diet for at
least 6 months reported weight loss and blood pressure lowering
together with improvement in PKD symptoms and eGFR in a
subgroup of patients. Caution should be applied to the
interpretation of this retrospective study since only half of the
patients were able to comply with the diet and the side effects
reported suggest potential long-term tolerability and safety issues
(kidney stones, increased cholesterol) (Strubl et al., 2021). In a
follow-up study, Oehm demonstrated the feasibility of a short-
term ketogenic intervention in 10 ADPKD patients (RESET-PKD
72h fast or 14 days of a KD) where TLV was decreased while no
changes in TKV were observed (Oehm et al., 2022a; Oehm et al.,
2022b). Despite the challenges identified, large-scale trials such as
the ongoing KETO-ADPKD (NCT04680780) study will address
the feasibility and the therapeutic potential of longer-term
ketogenesis interventions in ADPKD (Ong and Torra, 2022).
Adherence (ketone concentrations), feasibility and secondary
outcomes including TKV, and BMI will be evaluated. Based
on these findings, Bruen and collaborators have designed a
plant-focused ketogenic diet (Ren.Nu diet) for ADPKD based
on the theory that a diet high in carbohydrate and animal protein
might accelerate disease progression (Bruen et al., 2022). A
preliminary beta test was conducted for 12 weeks in
24 ADPKD patients and with the obvious limitations of the
study (no control, selection bias, self-reporting). Preliminary
data suggest reasonable adherence and feasibility (Bruen et al.,
2022).

Bariatric surgery

Bariatric surgery is an effective option to achieve sustained
weight loss and improving hypertension and diabetes. Gastric
bypass and sleeve gastrectomy result in 20%–30% weight loss
(Brajcich and Hungness, 2020) and is expected to impact
metabolic reprogramming. Therefore, it is important to
understand the benefits and risks of bariatric surgery in ADPKD
patients. While evidence suggests important trends for bariatric
surgery and overall kidney related outcomes in patients with CKD,
there exist several renal risks, including acute kidney injury, and
risks of nephrolithiasis, oxalate nephropathy that will need to be
considered in a comprehensive risk benefit assessment profile in
ADPKD patients (Chang M. Y. et al., 2017).

Glucagon-Like Peptide-1 (GLP-1) receptor
agonism

Several GLP-1 receptor agonists have been approved for the
treatment of T2D and obesity and are being considered for liver and
kidney complications (Müller et al., 2019; Brown et al., 2021;
Newsome et al., 2021). One attractive feature of new generation
GLP-1 analogues is the propound weight loss (>10%) achieved in
obese and diabetic patients (Frías et al., 2021). Importantly, GLP-1
exerts its effects by binding to GLP-1R and activating adenylate
cyclase, which leads to the generation of cAMP, so it will be
important to assess the expression of GLP-1R on the cystic
epithelium and the potential impact of GLP-1 agonism on cAMP
(Körner et al., 2007; Müller et al., 2019).

GLP-1R/glucagon receptors dual agonism
Dual agonism at the GLP-1 and glucagon receptors has shown

superior weight lowering effect to selective GLP-1 agonism (Pocai
et al., 2009; Day et al., 2012). Because glucagon lowers
mTORC1 and stimulates AMPK (Baum et al., 2009; Welles
et al., 2020) and ketogenesis (Pocai, 2012; Torres et al., 2019a),
the simultaneous agonism of GLP-1R and glucagon receptors
constitute a potential approach for ADPKD. A recent
observational study in ADPKD patients with higher endogenous
glucagon did not provide evidence for a protective role of glucagon
in ADPKD (Knol et al., 2021). Mechanistic studies are needed to
determine the relationship between glucagon and ADPKD and
evaluate the expression of the receptor in kidney cysts. Future
studies will clarify if the body weight lowering effect together with
the other reported desirable actions of GLP-1 agonists have
potential in ADPKD.

Thiazolidinediones (TZD)

TZD are Peroxisome Proliferator Activator Receptor gamma
(PPARγ) agonists approved for T2D. Preclinical studies have tested
TZD and found reduced progression of cystic disease (Blazer-Yost
et al., 2010; Flaig et al., 2016). A small phase 1b clinical trial was
designed to investigate safety and tolerability of low-dose (15 mg)
pioglitazone (Blazer-Yost et al., 2021). Concerns about fluid
retention, bone loss and weight gain have reduced their use in
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the clinic and need to be considered in an appropriate risk/benefit
assessment in ADPKD patients (Lebovitz, 2019).

Sodium–glucose cotransporter (SGLT2)
inhibition

SGLT2 inhibitors (SGLT2i) prevent the reabsorption of filtered
glucose from the tubular lumen resulting in glucose lowering and
additional benefits of weight loss and blood pressure reduction
(DeFronzo et al., 2021). While the mechanisms contributing to
these beneficial effects are unknown, SGLT2i switch metabolism to a
ketotic state and increase plasma glucagon potentially regulating
PKA and mTOR pathways (Saponaro et al., 2018). ADPKD patients
are more prone to urinary tract infections and were excluded from
renal studies as genitourinary infection is a potential risk of SGLT2i
(Afsar et al., 2022). In two PKD animal models, SGLT2 inhibition
did not reduce cyst growth (Kapoor et al., 2015; Rodriguez et al.,
2015). However, because of the beneficial effects of
SGLT2 inhibition on kidney function, vascular function, and
mortality (DeFronzo et al., 2021), a clinical trial is ongoing in
ADPKD patients (NCT05510115).

Discussion

ADPKD is the leading genetic cause of ESKD. Recent advances in
understanding the mechanisms leading to cyst formation and
progression has led to the approval of tolvaptan (Torres et al.,
2017). Treatment of ADPKD still represents a challenge due to the
poor tolerability and the unfavorable safety profile of Tolvaptan.
Thanks to new scientific discovery and preclinical models, new
targets are being investigated. Metabolic defect in ADPKD support
cell proliferation of rapid growing tissues leads to cystic epithelial
proliferation and growth. UpregulatedmTOR and c-Myc play amajor
role in repressing oxidative metabolism and FAO while enhancing
glycolytic flux, lactic acid production, PPP and glutaminolysis
downstream of cAMP/PKA (Rowe et al., 2013; Podrini et al.,
2020). It will be important to expand upon the role of
dysregulated metabolism as metabolic defects in cells within the
kidney microenvironment may also contribute to ADPKD
progression. A better understanding of the human pathways

regulated by approved therapies (Tolvaptan and Octreotide-LAR)
and initial results from ongoing trials with metabolic drugs should
provide valuable human data and help expedite the development of
new ADPKD therapeutics. Recently, the trial in ADPKD with
Venglustat (Glucosylceramide synthase inhibitor; Natoli et al.,
2010) was discontinued as it did not reduce TKV growth rate
(https://www.sanofi.com/en/media-room/press-releases/2021/2021-
06-01-05-00-00-2239122). Trial testing metformin in ADPKD should
be completed by 2026 and provide valuable information (Testa and
Magistroni, 2020). Weight loss targeting metabolic alterations has the
potential to be a disease modifying intervention in ADPKD, but
behavioral dietary interventions are limited by long-term adherence
(Quiroga and Torra, 2022) so it will be important to explore the
potential of bariatric surgery and pharmacological approaches.
Therefore, it is tempting to speculate that interventions targeting
downstream events such as metabolic reprogrammingmay retain and
improve on the tolerability and efficacy reported with Tolvaptan
offering potential new therapeutic opportunities. Ongoing trials may
help in answering some of these questions.
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