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We present an improved application of a recently proposed computational
method designed to evaluate the change of free energy as a function of the
average value of a suitably chosen collective variable in proteins. The method is
based on a full atomistic description of the protein and its environment. The goal is
to understand how the protein melting temperature changes upon single-point
mutations, because the sign of the temperature variation will allow us to
discriminate stabilizing vs. destabilizing mutations in protein sequences. In this
refined application the method is based on altruistic well-tempered
metadynamics, a variant of multiple-walkers metadynamics. The resulting
metastatistics is then modulated by the maximal constrained entropy principle.
The latter turns out to be especially helpful in free-energy calculations as it is able
to alleviate the severe limitations of metadynamics in properly sampling folded
and unfolded configurations. In this work we apply the computational strategy
outlined above in the case of the bovine pancreatic trypsin inhibitor, a well-studied
small protein, which is a reference for computer simulations since decades. We
compute the variation of the melting temperature characterizing the folding-
unfolding process between the wild-type protein and two of its single-point
mutations that are seen to have opposite effect on the free energy changes. The
same approach is used for free energy difference calculations between a
truncated form of frataxin and a set of five of its variants. Simulation data are
compared to in vitro experiments. In all cases the sign of the change of melting
temperature is reproduced, under the further approximation of using an empirical
effective mean-field to average out protein-solvent interactions.
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1 Introduction

Many proteins are characterized by a given three-dimensional structure when they are
observed in a water soluble monomeric state Branden and Tooze (1999). In order to
understand the way the sequence determines the structure, the effect of single point
mutations has been studied since a long time Cunningham and Wells (1989). A simple
way to address the sequence-structure interplay is to measure some structural parameter as a
function of temperature. Circular dichroism (CD) and many other techniques are often used
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and in many cases the change of this structural parameter with
temperature can be taken as an indicator of the melting of the
protein structure Cantor and Schimmel (1980). The change of
melting temperature triggered by different single point mutations
is therefore a widely used measure of the change of protein stability
upon a localized change of the protein sequence and large archives of
such data have been collected Guerois et al. (2002); Alexov and
Sternberg (2013); Forbes et al. (2016). When this information is
available, it must be interpreted in terms of the reshaping of atomic
interactions.

The change of protein stability upon sequence mutations
has implications in many pathologies. One example is
Friedreich’s ataxia, an autosomal-recessive genetic condition
that causes ataxia, sensory loss and cardiomyopathy worsening
over time Pandolfo (2009); Klockgether (2011); Clark et al.
(2018). The cause of the disease is in mutations of the gene
encoding for the frataxin (FXN) protein. Depending on the
specific kind of mutation, a patient may end up with an
insufficient level of frataxin, a nonfunctional frataxin or
frataxin, that is, not correctly localized in the mitochondria
Delatycki et al. (2000); Galea et al. (2016). Frataxin variants
have also a role in cancer, as expected because of the
involvement of FXN and mitochondria in the control of
oxidative metabolism Schulz et al. (2006). Indeed, missense
variants are found in multiple human cancer tissues Petrosino
et al. (2019, 2021). The example of FXN shows that even single
point mutations can have significant impact in protein stability,
trafficking, plasticity, interactions with local environment and
mutual interactions with other macromolecules.

Many models have been proposed to relate measured changes in
protein stability with the chemical nature of the protein sequence.
High through-put approaches based on atomic models have been
recently developed Steinbrecher et al. (2017). Many of these
approaches are summarized in this Special Issue.

Themethod we would like to propose here aims at predicting the
change of thermal stability of a protein in a monomeric water-
soluble state, when its sequence is changed by a single aminoacid.
The method is based on a suitable modelling of interatomic forces,
i.e., it is atomistic, and includes an explicit model of the water
solution. The method was initially applied to FXN Botticelli et al.
(2022) and it is here refined and discussed in more detail, to achieve
better computational performance and higher accuracy in
prediction. In particular, we use here the well-tempered
metadynamics, one of the best performing method to enhance
sampling of phase space in atomistic models. A small reference
protein of 58 residues is first used to assess the methods and to
understand limitations and advantages.

Many initial configurations of the protein of interest are
generated, assuming the protein structure representing the
native state of the wild-type sequence, but with initial
conditions diversified as much as possible. This is achieved by
changing the protein environment, that is, in this case the water
solution of NaCl. A multiple walkers metadynamics simulation is
carried out Raiteri et al. (2006); Hošek et al. (2016); Hošek et al.
(2017), building an external biasing potential as a function of a
suitably chosen collective variable. In the range of values spanned
by the collective variable folded and unfolded protein structures
are sampled.

The external potential is built so as to initially unfold the protein
structure. All along the metadynamics simulation time, the external
biasing potential is systematically constructed and updated to
uniformly sample folded and unfolded configurations. This goal
is best achieved by combining multiple walkers histories into a
unique trajectory Hošek et al. (2017).

The standard analysis of multiple walkers metadynamics can
be performed, but limitations in predicting experimental
behaviours arise because of the huge number of configurations
required to achieve a good convergence and stability. We
therefore decided to exploit the features of the maximal
constrained entropy approach which allows to properly re-
modulate the collected set of sampled configurations by
imposing suitable conformational constraints. In this way we
can reliably monitor the change in free energy as a function of
average values of the chosen collective variables. The quantity of
interest to be calculated is therefore:

ΔΔG � ΔGX − ΔG0 � GX s( ) − GX s0( )[ ] − G0 s( ) − G0 s0( )[ ], (1)
where the subscript denotes a sequence (the pedix 0 indicates a
reference sequence, usually the wild-type), and the s state
variable indicates the degree of structural order, where s0
indicates the folded native state and s indicates the unfolded
state.

The approach is first applied to the study of a paradigmatic
protein displaying a well defined three-dimensional structure,
namely, to the bovine pancreatic trypsine inhibitor (BPTI), where
the effect of a set of mutations on melting temperature has been
carefully investigated Yu et al. (1995). BPTI has always been a
milestone for folding studies, being one of the smallest proteins
(58 aminoacids) characterized by a well defined structure. Then, the
same procedure is applied to frataxin, in a truncated form of
121 aminoacids, and 5 of its variants Petrosino et al. (2019).

2 Materials and methods

The computational methods used in this work are similar to
those used in Ref. (Botticelli et al., 2022). In the following we
emphasize the differences that characterize this work.

2.1 Metadynamics

Let ξ(q) be a collective variable (CV) function of atomic
positions, q. When ξ is an observable quantity, the values, s,
allowed for ξ can be used to label system macrostates. The set of
coordinates q labels the systemmicrostates, each set of q yielding one
of the possible values of s. If ergodicity holds, infinitely long
simulations of a trajectory q(t) in a given statistical ensemble
would correctly sample the statistical weight of ξ. However,
because of the huge number of ways in which certain values of s
of ξ are encountered, compared to others, actual numerical
simulations in practice only sample the maximally degenerate
values of ξ. This is precisely the case where ξ is the CV
associated to folding/unfolding events.

Standard statistical ensembles and more recently generalized
ensembles try to address this problem by biasing the trajectory to
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spend more time where ξ has a low degeneracy and less time where ξ
has a large degeneracy.

The sampling of configurations obtained with the biased
inverse probability of ξ is called metastatistics. We will denote
by ~P(q) the probability of microstates encountered along the
simulated trajectory and by ~P(ξ) the probability of the
macrostates labeled by ξ. For simplicity with a little abuse of
notation we use the same name for the metastatistics probability
as function of the microscopic variables, q, and to the associated
metastatistics probability as function of the macroscopic
collective variable, ξ.

Many methods have been proposed to sample configurations
with the inverse of the estimated probability of ξ Mitsutake et al.
(2001). In this work and in the previous application of the method
Botticelli et al. (2022), we used the altruistic metadynamics proposed
in Refs. Hošek et al. (2016); Hošek et al. (2017). The desired
metastatistics is obtained from a swarm of trajectories provided
by metadynamics after building a suitable external bias, which is
then kept fixed when collecting configurations in the final step of the
NpT simulation (see Section 2.6). We performed simulations in the
statistical ensemble associated to constant temperature T and
pressure p (NpT ensemble) because macromolecules forced by an
external bias undergo large and fast conformational changes. When
these conditions occur, solute macromolecules exert strong
perturbations over the explicit solvent and ions representing their
environment. To cope with steep changes of kinetic energy of water
molecules and possible temporary voids around the macromolecule,
the NpT ensemble is recommended.

In the framework of metadynamics, the estimated probability of
the CV is expressed by means of a sum of Gaussian functions, VG

[ξ(q)], related to the inverse metastatistics probability by the formula

ln ~P ξ( ) � βVG ξ q( )[ ] + C, (2)
with β = 1/(kBT) where T is the temperature used in the simulation,
kB the Boltzmann constant, and C a normalization constant, that is,
of no relevance in the computation of thermal averages. Different
methods have been proposed to build an external biasVG [ξ(q)] such
that the probability distribution of ξ is flat and transitions between
folded and unfolded states of a biomolecule endowed with many
degrees of freedom, are equally well sampled.

In metadynamics the external potential VG (ξ, t) acting on the
system at time t is defined as:

VG ξ q( ), t( ) � w ∑
t′�τG,2τG,...

exp
− ξ q( ) − s t′( )( )2

2δ2
( ) (3)

where t′ < t, s(t) = ξ(q(t)) is the value taken by the CV at time t, w is
the Gaussian height, δ is the Gaussian width τG is the time interval
after which a new Gaussians is added.

After a sufficiently long time VG(s, t) provides an estimate of the
underlying free energy F according to the formula

VG s, t( ) � −F s( ) + C t( ) (4)
where C(t) depends on time but not on the collective variables s, VG

is the external biasing potential acting on the system at time t.
Equation above states that an equilibrium quantity, like free

energy, can be estimated by a non-equilibrium dynamics in which
the bias potential is changed in time, as new Gaussians are

successively added. In metadynamics, when all the wells in CV
distribution are filled with Gaussians, the dynamics in the CV space
becomes diffusive.

2.2 Well tempered metadynamics

Well temperedmetadynamics is an improved approach designed to
obtain a reliable estimator of the free energy Barducci et al. (2008). The
weight of each Gaussian function added to the bias VG depends on the
history of VG (VG(t′)). Equation 3 changes into:

VG ξ q( ), t( ) � w ∑
t′�τG,2τG,...

exp
−VG ξ q( ), t′( )

kBΔT
( )

× exp
− ξ q( ) − s t′( )( )2

2δ2
( ) ,

(5)

where kBΔT is approximately the energy change when a new value of
ξ is visited. An exact relation between VG(s, t) and F(s) can be
obtained if the rate at which the bias potential is modified is suitably
decreased as the simulation progresses. With well tempered
metadynamics, the biasing potential converges to

VG s, t( ) � − ΔT
T + ΔTF s( ) + C t( ). (6)

The quantity T + ΔT
T is called “biasing factor”.

For a finite T, the probability distribution is proportional to:

exp
−F s( )
kBT

( )exp ΔT
T + ΔT

F s( )
kBT

( ) � exp − F s( )
kB T + ΔT( )( ) (7)

which corresponds to effectively increasing the CV sampling
temperature. Thus, the effect of well tempered metadynamics is
similar to that of other non-equilibrium methods, like steered
molecular dynamics, but trajectories are obtained with a quasi-
equilibrium procedure Bussi et al. (2018).

In well tempered metadynamics, as the simulation proceeds the
width of the added Gaussian remains constant but its height decreases
(see Eq. 5). The bias, which increases monotonically, eventually
changes very slowly with time. At the beginning the space of CV
is flooded by Gaussians of height w. With the progress of flooding,
heights of newly added Gaussians decrease. This behaviour is very
important in highly complex biological systems, where the bias
potential should never reach any excessively large value.

In contrast with the “non tempered” metadynamics, in the well
tempered metadynamics a flat CV distibution is not expected to be
achieved when convergence is obtained. A simple interpretation of the
fact that the distribution of the CV at long times is not flat is the
following. Since the prefactor for the accumulated Gaussians depends
on the value of s, Gaussians of different heights are placed in different
regions of the CV space. In order to reach a stationary distribution, it
is thus necessary that the system spends more time in regions where
small Gaussians are added and less time in regions where large
Gaussians are added. This idea can be pushed further and used to
convert metadynamics in an algorithm, not designed to flatten
completely (as in non-tempered metadynamics) or partially (as in
well tempered metadynamics) the histogram of the CVs but rather to
enforce a predefined distribution Bussi et al. (2018).
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In this work we used a biasing factor of 20 (see Eq. 6),
corresponding to ΔT = 5700 K, in agreement with the biasing
factor used in literature for similar molecular systems Hošek
et al. (2017). The energy value RΔT is of the order of a typical
energy barrier of a single hydrogen bond.

2.3 The maximal constrained entropy
method

The maximal constrained entropy method (MEC method,
hereafter) allows, starting from ~P(ξ) of Eq. 2, to obtain a better
probability for thermal average calculations. This elaboration is used
to correct for limitations of ~P(ξ), whatever the method used for its
determination is. We remind that the method consists in post-
processing the biased statistics (that we indicate with metastatistics)
collected by whatever method. Since in actual simulations one works
with trajectories where configurations can be enumerated, we attach
the microstate index γ to the configuration {q} and we denote by ~Pγ

the probability

~Pγ � ~wγ∑γ ~wγ
, (8)

where ~wγ is the number of microstates with label γ collected in the
metastatistics and ~Z � ∑γ ~wγ is a normalization factor.

In an infinitely long (ergodic) simulation, it is unnecessary to
explicitly evaluate the weights ~wγ, as they are automatically
encoded in the degeneracy of the set of collected
configurations sampled along the simulated trajectory. This
means that in the following equations, where the sum over γ

is extended over that actually produced configurations, we should
not include the factor ~Pγ. However, we leave this redundant
factor to recall that we are dealing with a finite set of
configurations generated by metadynamics.

In case of the “non tempered” metadynamics, the maximal
constrained entropy was employed as a viable solution to
compute thermal averages as a function of the average values
taken by the chosen CV, in situations where metastatistics is not
fully ergodic and the CV distribution does not come out flat. As
mentioned, in the case of well tempered metadynamics the CV
distribution is not expected to be flat, but the maximal
constrained entropy method is a powerful method to
“correct” the free energy by adding ex post further
information about the system injecting extra information. In
our case we use the maximal constrained entropy to introduce in
the computation of the free energy the change of number of
hydrogen bonds in α-helices in folding↔unfolding processes. In
general the maximal constrained entropy method can be used
either to improve the estimate of the free energy for a non-
converging system (e.g., in a metadynamics simulation the CV
distribution is not flat) or to compute the free energy by
reintroducing ex post degrees of freedom related to the CV
(like the α-helices’ hydrogen bonds in the case of frataxin, see
Section 3). This second use of the maximal constrained entropy
method is really powerful because allows to have a reliable
estimate of the free energy while keeping efficient the
simulations by limiting the degrees of freedom of the system.

2.4 Estimating the free energy

The main goal of this work is to compare the change of free
energy as a function of the number of hydrogen bonds (s)
computed using well tempered metadynamics and maximal
constrained entropy, with the results obtained in protein
thermal denaturation experiments Yu et al. (1995); Petrosino
et al. (2019). Both BPTI and FXN are folded in a structure where
one or two α-helices lay over a small β-sheet. The experimental
measurement of the free energy difference between folded and
unfolded states was obtained by measuring the molar ellipticity at
222 nm, a wavelength where the contribution of α-helix to CD
spectra is dominant. Besides acting on the α-helices arrangement,
the protein ternary structure can also be perturbed by destroying
the intra-molecular hydrogen bonds that stabilize the β-sheet.
For a small protein like BPTI (58 residues), we decided to include
in the CV all the hydrogen bonds that are formed in the native
folded state Parkin et al. (1996). For FXN (121 residues) we took
instead as a CV the number of hydrogen bonds occurring in the
β-sheet formed by 4 anti-parallel β-strands, which are observed
both in 1EKG and 5KZ5 structures Botticelli et al. (2022). This
choice in the case of FXN was made to reduce the number of
degrees of freedom of the system thus substantially decreasing
the time required to sample its phase space. The use of such CV as
a way to monitor the structural transitions in the protein was
inspired by several previous applications of metadynamics
Barducci et al. (2006).

For both proteins and variants, the biasing potential, VG, was
obtained at the end of a systematic construction (well tempered
metadynamics) in which VG is progressively built by summing over
Gaussian functions of the CV. Gaussian functions (possibly scaled
by the biasing factor in the case of the well tempered metadynamics)
are deposited every 20 ps along the molecular dynamics (MD)
simulation time.

The accumulated final biasing potential, VG(ξ), smoothly
interpolated by a polynomial of fourth order, was used for the
direct computation of the change in the free energy for folded to
unfolded states and vice versa. The free energy change defined in well
tempered metadynamics is given by Eq. 6:

F s( ) − F s0( ) � − T + ΔT
ΔT VG s( ) − VG s0( )[ ]( ) (9)

with s0 a reference state corresponding to a given value of the CV
and VG the external biasing potential determined at the end of
construction. Equation 9 holds also in the NpT statistical ensemble,
when the construction of the bias VG is performed in such statistical
ensemble. In this case, the Helmoltz free energy F(s) is replaced by
the Gibbs free energy G(s). We call the latter function G free energy,
hereafter, for simplicity. The G free energy extracted from well
tempered metadynamics simulations (Eq. 9), was then compared
with the G free energy obtained with the maximal constrained
entropy method.

The accumulated statistics used in the successive maximal
constrained entropy application have been obtained by
collecting the system configurations along a trajectory where
the biasing potential was kept fixed (i.e., not anymore updated).
Within the maximal constrained entropy method, the definition
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of the G free energy (see La Penna et al., 2004) is given by the
formula

G s( ) � 〈H〉λ − T kB �Sc s( ), (10)
in whichG(s) is written as the combined sumof the enthalpy in theNpT
ensemble, and the (informational) entropy measured by the maximal
cross-entropy. In Eq. 10 H = U + pV is the enthalpy of the simulated
system, λ the parameter associated with the constraint, �Sc the maximal
cross-entropy change due to the introduction of such a constraint, kB
the Boltzmann constant, and T some effective temperature in the
stability range of the system under study. The same free energy
definition holds for the Helmoltz free energy F when the enthalpy
H is replaced by the energy U if one is working in a NVT ensemble.

The maximal cross-entropy in Eq. 10 is described in the
following. Given an estimate, ~Pγ, of the metastatistic probability,
say the one provided by metadynamics, the problem of finding the
least-biased expression of the probabilities Pγ, that is, nearer to ~Pγ

and satisfies the condition

s � 〈ξ〉 � ∑
γ

Pγξγ, (11)

is solved by determining the maximum of the cross-entropy
functional Attard (2000); La Penna (2003); La Penna et al. (2004).

Sc P, ~P[ ] � −∑
γ

Pγ ln
Pγ

~Pγ

. (12)

under the constraint (Eq. 11). The well-known solution of this
variational problem is given by the formulae:

Pγ �
~Pγ

Zλ
exp −λξγ( ) (13)

Zλ � ∑
γ

~Pγ exp −λξγ( ) (14)

with the parameter λ the solution of the (highly non-linear)
equation:

s � ∑
γ

Pγξγ � 1
Zλ

∑
γ

~Pγ exp −λξγ( )ξγ. (15)

The quantity exp (−λξγ)/Zλ is called the modulation factor of the
metastatistics. Owing to Eq. 15, λ is a function of s. Inserting the
solution for Pγ into Eq. 12 one gets for the cross entropy at its
maximum:

�Sc s( ) � lnZλ + λ s. (16)
The average of H (or simply of U in NVT simulations) is obtained
using equations like

bλ � 〈B〉λ � 1
Zλ

∑
γ

~Pγ exp −λξγ( ) B qγ( ), (17)

with B eitherH orU andZλ � ∑γ
~Pγ exp(−λξγ). The identification of

Sc and T in Eq. 10 with, respectively, thermodynamic state function
entropy S and state variable absolute temperature T, is empirical. It
must be noticed that changes in thermodynamic T S values are also
reflected in the changes of 〈H〉λ as a function of λ.

The details to compute the free energy within the maximal
constrained entropy method, the direct calculation of 〈H〉λ in Eq. 10

as well as the free energy error estimate is the same we used in our
previous work where the “non tempered” version of the
metadynamics Botticelli et al. (2022) was employed. In this work
we concentrate on collecting more accurate averge quantities (well-
tempered metadynamics and longer simulations) and on applying
the proposed method also to a simpler protein (BPTI). We must
note that the direct calculation of 〈H〉λ in Eq. 10 includes the effects
of the fluctuations of U and V due to the movement of all explicit
water molecules and ions included in the atomistic model of the
protein environment. The fluctuations of H are huge, while the
change of the average of H with s is small. This is a serious issue
when using the total enthalpy like in Eq. 10. As it is customary done
in these cases, we use an approximate evaluation of 〈H〉λ, whereH is
replaced by the effective mean-field free energy �U of the protein
solute. The advantage of this approximation is that the energy of the
system is thermally averaged over the many degrees of freedom of
water molecules and ions surrounding the much smaller solute
protein aggregate.

A widely used strategy for the evaluation of the effective mean-
field energy of the solute protein is the so-called molecular
mechanics/Poisson-Boltzmann solvent accessible approximation
(MM/PBSA) Simonson et al. (2002). In this approach the mean-
field energy for solute-solvent interactions is described as the sum of
polar (electrostatic) and non-polar (surface) contributions. For each
protein configuration Q one writes

�U Q( ) � Uintra Q( ) + Gsolv,np Q( ) + Gsolv,pol Q( ), (18)
whereUintra is the intra-molecular part of the potential energy in the
protein force-field, given by

Uintra Q( ) � Ustr Q( ) + Ubend Q( ) + Utors Q( ) + Uvdw Q( ) + Uel Q( ).
(19)

The various contributions are the stretching (Ustr), bending (Ubend),
and torsional (Utors) terms in the potential. Uvdw and Uel are the
Lennard–Jones and Coulomb interactions, respectively, computed
by summing over all the pairs of atoms of the protein.

The last two terms in Eq. 18 represent solute-solvent
contributions to free energy at fixed Q. Mean field energy is the
energy as a function of Q once the variables associated to solvent
positions and velocities are averaged for the given value of solute
positions Q. The averaging is performed at the given
thermodynamic state variables p and T used in the simulation of
the whole system.Within this mean-field assumption, the solute and
the solvent are made independent. This is a strong approximation,
since the chosen collective variable contains the number of hydrogen
bonds within protein groups and once a single intramolecular
hydrogen bond is broken there is a large chance for the
formation of hydrogen bonds with the water molecules in the
protein environment where the breaking event occurs. On the
other hand, this elementary change of free energy, that does not
imply a wide change in protein structure, can be calculated within
the MM/PBSA approximation as the sum of Gsolv,np and Gsolv,pol.
Therefore, under this approximation, the change of free energy G(s)
depends on the number of protein configurations for which a
unitary change of s is allowed independently of the configuration
of the protein environment. The calculation of Gsolv,np and Gsolv,pol is
described in the following.
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The term Gsolv,np is the contribution to the solute-solvent free
energy due to the formation of a cavity of zero charge density with
the shape of the solute protein and the creation of the solute-solvent
interface. Introducing a charge density in the space occupied by the
solute leads to the Gsolv,pol contribution. The charge density is given
in terms of the point charges qi of the atom i sitting at the point �ri,
where i runs over the Na atoms of the solute molecule.

The termGsolv,np is calculated as an empirical linear combination
of the solvent accessible surface area (SASA) for each group in the
solute molecule Ooi et al. (1987) according to the formula

Gsolv,np � ∑Na

i

σ iSASAi, (20)

where the coefficients σi are positive or negative for hydrophobic or
hydrophilic groups, respectively (see below for details). Finally the
electrostatic contribution to the solute-solvent free energy,Gsolv,pol, is
given by the electrostatic energy required to charge the low-dielectric
solute molecule of generic shape into a high-dielectric medium like a
salt-water solution. The magnitude of this contribution is obtained
by a numerical finite difference solution of the Poisson–Boltzmann
equation Rocchia et al. (2002).

2.5 Summary of the method

We summarize the complicated computational protocol of our
theoretical analysis as follows. One starts by performing MD
simulations at T = 300 K in the presence of the biasing potential
VG(ξ) built according to the well tempered metadynamics strategy.
The resulting statistics is what we call metastatistics. Using the set of
collected configurations, we determine the λ parameter that maximizes
the cross-entropy Sc in the maximal constrained entropy method, under
the constraint 〈ξ〉 = s. In the case of BPTI, ξ is the number of hydrogen
bonds holding together the protein α-helices and β-sheet secondary
motifs. In this case, the ξ of metadynamics and that of maximal
constrained entropy coincide. In the case of BPTI, differently from
FXN (see below), the ξ collective variable takes into account the whole of
the secondary structure as it is observed in the crystal folded structure.
Therefore, s takes integer values in the range between 0 and 16. In the
case of FXN, the variable ξ used in metadynamics is the number of
hydrogen bonds holding together the protein β-sheet (made of 4 anti-
parallel β strands). The values of s are in the range between 0 and 15. But
in themaximal constrained entropy approach we extended ξ adding to it
the number of hydrogen bonds in the two α-helices. For each value of s,
we get a value of λ that yields the modulating weight

w q t( )[ ] � 1
Zλ

exp −λξ q t( )[ ]{ }, (21)

with q the system configuration at time t, indexing the microstate γ,
along the collected metadynamics trajectory. For details see Ref.
(Botticelli et al., 2022).

2.6 Simulation parameters

Apart from the fact that differently than what was done in Ref.
(Botticelli et al., 2022), in this work the metastatistics is obtained as

altruistic multiple-walkers well-tempered metadynamics, most of the
technical details of the simulation procedure we followed to compute
the expectation values of the physical quantities of interest described in
Section 2 are identical to those reported for FXN in Ref. (Botticelli et al.,
2022). Below we only outline the few differences.

Table 1 provides the list of hydrogen bonds used to define the
CV for the BPTI. All the hydrogen bonds contribute to the BPTI CV
and are used both in well tempered metadynamics and maximal
constrained entropy. For FXN only the number of hydrogen bonds
in the β-sheet, β1−4, is used to generate the statistics of
metadynamics. However, the total number of hydrogen bonds
listed in Table 1 of Ref. (Botticelli et al., 2022), including the two

TABLE 1 Pairs of atoms used in Eqs 16–18 of Ref. (Botticelli et al., 2022) and
related label in parameter S. As for FXN, see Table 1 of the same publication.
Residues are those of BPTI WT sequence. Mutated residues are boldface.

β1−2 α1 α2

N (Tyr 35) O (Ile 18) N (Cys 5) O (Pro 2) N (Met 52) O (Ala 48)

N (Ile 18) O (Tyr 35) N (Leu 6) O (Asp 3) N (Arg 53) O (Glu 49)

N (Phe 33) O (Arg 20) N (Glu 7) O (Phe 4) N (Thr 54) O (Asp 50)

N (Arg 20) O (Phe 33) N (Thr 54) O (Ala 51)

N (Gln 31) O (Phe 22) N (Cys 55) O (Ala 51)

N (Phe 22) O (Gln 31)

N (Leu 29) O (Asn 24)

N (Asn 24) O (Leu 29)

TABLE 2 Short description of the atomistic models used in metadynamics
simulations. The composition of each system changes only in the protein
sequence for each protein (BPTI and FXN, respectively). The number of water
molecules and counterions (NaCl) is the same for all the 90 walkers
representing each system, and the same (= symbol) for different variants of the
same protein.

System Protein atoms Water molecules Na Cl

BPTI

BPTI [5-55]BPTI 892 11033 21 27

D3A 890 = = =

F4A 890 = = =

FXN

WT 1875 13926 34 26

D104G 1870 = = =

A107V 1881 = = =

F109L 1874 = = =

Y123S 1865 = = =

S161I 1883 = = =

W173C 1862 = = =

S181F 1884 = = =

S202F 1884 = = =
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α-helices added to the definition of CV in the successive maximal
constrained entropy step. We call this an extension of the CV ξ used
in metadynamics and we indicate it with ξ′. The corresponding
constrained average is indicated with s′.

Table 2 reports the number of atoms of the two systems (BPTI and
FXN) we have studied. In the case of BPTI, the structure of the unique
folded structure available [1BPI PDB entry Parkin et al. (1996)] has
been used. As for FXN, the initial configurations of the various walkers
are obtained using the available crystallographic information about the
native FXN protein sequence. We used two structures: the X-ray
structure of the mature human frataxin [PDB 1EKG, segment 88-
210 Dhe-Paganon et al. (2000)]; the structure of FXN in the
mitochondrial iron-sulfur cluster assembly machine as it was
determined by electron microscopy (PDB 5KZ5, chain A, segment
42-210 Gakh et al. (2016)).

The values of α andw of Eq. 3 in Ref. (Hošek et al., 2017) and used in
the successive stages of the simulation are reported in Table 3. As for the
construction of the biasing potential, we remark that its construction in
the present work lasted 22 ns, while in our previous application it lasted
16 ns. The exchange of the bias among walkers takes place every 2 ns. At
the end of stage 15 (see Table 3), i.e., after simulating each walker for a
total of 30 ns using an altruistically updated bias, the external bias that will
be used in stage 16 and in the following steps is not updated any more.
From stage 16 to the end the final metastatistics is collected, storing
configurations along the simulated trajectory every ps. The time duration
of this last simulation step was 10 and 30 ns for BPTI and FXN,
respectively.

3 Results

3.1 Bovine pancreatic trypsin inhibitor (BPTI)

48 single point mutations have been studied in the case of BPTI
in the literature Yu et al. (1995) via alanine-scanning. This set of

mutations includes all residues, with the exception of 6 Ala and 4
Cys, mutated to Ala. The reference sequence used to study the
change in melting temperature is the native sequence where Cys 14,
30, 38, and 51 are mutated in Ala. This reference variant is indicated
as [5-55]BPTI, to underline the presence of the residual 5–55 disulfide
bridge. The sequence is used because the native sequence has
3 disulfide bridges in the folded structure and it does not unfold
at T < 100°C. The removal of 2 disulfide bridges allows the melting at
T < 50°C, while the protein keeps the same folded structure as the
native (WT) sequence, as summarized in Ref. (Yu et al., 1995).
Therefore, we could use the structure determined for the WT
sequence as the initial representation of the folded state (1BPI
Parkin et al. (1996) in PDB).

According to our conventions, a positive ΔΔG means a larger
reversible work required to unfold the given variant with respect
to the reference sequence. All the variants analyzed in
experiments have been already studied as part of large data-
sets in previous works dedicated to predictions of free energy
change Guerois et al. (2002); Steinbrecher et al. (2017). In our
work we are interested in predicting the sign of the free energy
change, which is also the sign of the change of the melting
temperature Tm, ΔTm. As paradigmatic cases we focused,
among the 48 variants, on the two displaying the largest
measurable change in the absolute value of ΔTm. The
mutations with the most positive and negative value of ΔTm

[see Table 1 in Ref. (Yu et al., 1995)] are D3A and F4A,
respectively.

Three representative structures of the [5-55]BPTI reference
sequence of BPTI. are displayed in Figure 1 to show how the
folded (left panel) and unfolded (right panel) states look like in
terms of atomic configurations. Native BPTI is folded into a ternary
structure with two short α-helices and a small β-sheet. The
construction of the external bias, VG(ξ), perturbs the ternary
structure by breaking the intramolecular hydrogen bonds.

This is why we decided to take as a collective variable ξ the sum
of the number of hydrogen bonds between the two α-helices (α) and
the β-sheet (β). The number of hydrogen bonds of α-helices and β-
sheets in the initially folded structure (PDB 1BPI) is 8 for both
secondary structures. Therefore, the values of ξ span the range
between 0 and 16. Figure 1 shows in the right panel that the unfolded
state is represented by a molten globule. This occurs because of the
short-range nature of the collective variable we have chosen. In the
specific case of BPTI the presence of the residual disulfide bridge 5-
55 that seals the N-terminus with the C-terminus also pushes the
protein towards this atomic arrangement.

The evolution in time of the collective variable ξ is notoriously
slow, even by using well tempered metadynamics. Therefore the
convergence of the external bias VG(ξ) is expected to occur after very
long simulation times. This issue is illustrated in Figure 2, where the
time evolution of ξ of 4 walkers among 90 is displayed. We remind
that every 2 ns the bias VG obtained by the whole set of 90 walkers is
exchanged among all of the walkers during bias construction in the
altruistic approach [Eq. 3 in Hošek et al. (2017)]. Furthermore,
before the bias construction the 90 walkers have been separately
equilibrated for 8 ns. The figure is divided in two parts. The time
evolution during the 22 ns of bias construction is displayed on the
lefthand side. The time evolution at constant bias, which constitutes
the metastatistics used to compute the biased equilibrium averages,

TABLE 3 Short description of the simulation stages used to build the external
bias VG(ξ) and to acquire the metastatistics at constant external bias. Where α
and w are not indicated, the external bias is not updated. The initial bias is
zero. Therefore, stages 1–3 (6 ns) are equilibration stages. The bias
construction is the same for all variants of BPTI and FXN. As for the constant
bias simulation stage 16–20 (10 ns) were collected for BPTI, while 16-30 (30 ns)
were collected for FXN. Values of α andw are used when applying the altruistic
combination of single-walker updating (2 ns) of VG using Eq. 3 of Ref. (Hošek
et al., 2017). The resulting global altruistic bias is used in the following 2-ns
stage (next line). The bias after stage 15 is approximately the same for all
walkers and, therefore, is made identical for all walkers by averaging over the
90 walkers.

Stage Time length α w

1–4 8 - -

5 2 0 1

6 2 1/4 1

7 2 1/2 1

8 2 3/4 1

9–15 14 1 1/2

16-end 10–30 - -
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during the last 10 ns is displayed in the righthand side. The figure
clearly shows that the unfolding of the protein often occurs during
bias construction, since ξ decreases from the value characterizing the
folded state to values of 3–4 in 3 cases over the 4 displayed. In certain
cases (red curve) the expected behaviour of a randomwalk of ξ in the
3–14 range is observed.

In principle metadynamics is capable of letting the system,
starting from the known folded configuration, to unfold and
refold. In practice this rarely occurs in affordable computational
time, unless the system is sufficiently small. To illustrate the time-
scale required for collecting such trajectory, the behaviour of ξ for
the longer FXN chain is displayed in Figure 2 (right panel) for a
single walker. In this trajectory a single-walker well-tempered
metadynamics is performed for 260 ns. While the first 100 ns of
the trajectory displays an ideal behaviour for metadynamics [see for
instance Figure 2 in Ref. (Barducci et al., 2006)], when the bias is no
more effectively updated by new Gaussian functions the system
becomes frozen in a fixed configuration. This effect is expected in
well-tempered metadynamics, since the height of the Gaussian
functions that are added to the bias is progressively decreased by
construction.

Anyway, the dynamics of ξ shows that in order to observe a
proper randomwalk of ξ for all walkers, simulation time should have
been at least 10–100 times larger. The dynamics of ξ becomes even
slower when the bias is kept constant compared to bias construction
(righthand side of both panels in Figure 2). This behaviour is due to
the effect of noise during bias construction, occurring when new
Gaussian contributions are added to VG every 10 ps. The dynamical
nature of VG during its construction acts as a stochastic
perturbation. This effect is not present when VG is kept constant
and when VG does not change because added Gaussian heights are
small.

Because of the slow dynamics of ξ, the metastatistics represents a
static disorder triggered by the bias construction process.

In Figure 3 we display the behaviour of VG(ξ) during the bias
construction for the BPTI reference sequence. The red arrow
indicates the direction in which the iteration index of the
altruistic method, occurring every 2 ns of metadynamics
simulation, increases. In the process of iteration the number of
Gaussian contributions to VG keeps increasing in the region of low ξ

values, while at high ξ it does not change anymore after the first
4 iterations. A full convergence of VG is not achieved, but we notice

FIGURE 1
Three representative structures of [5-55]BPTI reference sequence of BPTI. Left—ξ = 13 (folded state); middle—ξ = 4 (unfolded state); right—ξ = 4
(unfolded state). α-helices are in red; β-sheet is in yellow; the displayed ribbon interpolates the backbone atoms. The Pymol program is used for the
molecular drawing Schrödinger (2015).

FIGURE 2
Time evolution of the collective variable ξ during the bias construction (left part) and at constant bias (right part), with the vertical line dividing the bias
construction from the bias application. Left—The evolution is displayed in different colors for 4 representative walkers among 90 and for BPTI in the [5-
55]BPTI sequence. Right—The same evolution is displayed for a single walker in well-tempered metadynamics of FXN in the WT sequence.
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that the change of VG is very slow after about 10 iterations. This
happens because when the protein is unfolded, many atomic
configurations consistent with a low number of hydrogen bonds
are possible. Then, Gaussian contributions to VG are all added in the
region of low ξ values, while no further contributions are added to
the region of high ξ values.

Since the bias converges very slowly, it is worth checking the
effect of choosing different bias in the calculation of interest for us,
that is, ΔΔG as a function of the chosen collective variable for a
protein variant with respet to the wild-type sequence. In Figure 3 we
choose the red curve, as what we assumed as converged bias, and the
blue curve, the function built after 5 iterations in the altruistic
scheme (stage 9 in Table 3). The difference between results obtained
with these two different choices of final bias will be described later
for BPTI. We remark that the configurations used in the comparison
are the results of two different 10-ns trajectories for all of the
90 walkers: one performed with the “converged” bias (stage 15 in
Table 3) while the second performed with the bias of stage 9.

Times of the order of 100 ns are required to build a useful bias
for each walker even for a protein of 58 residues like BPTI. This issue

is illustrated by the behaviour of a single walker of the larger FXN
protein (see Figure 2, right panel, discussed above). In practice such
long simulation times can not be used to compare a native sequence
with the usually rather large number of its variants. The method
described in this article allows extracting differences in stability
under point variations with computational wall-times of the order of
1 month in a high-performance computing infrastructure.

In Figure 4, left panel, we display the free energy change ΔΔG
computed using Eq. 9, implicitly assuming that VG has properly
converged after 22 ns of multiple-walkers bias construction. In
Figure 5, we also display the free energy change using the
polynomial of order 4 interpolating the grid representation of the
bias VG (see Section 2.4). We remind that the polynomial
interpolation is performed on each approximately converged
VG(ξ) profile obtained by metadynamics. Therefore, the effect of
interpolation on the free energy change ΔΔG as a function of
sequence change can be slightly different when the difference
between interpolated curves is extracted. In Figure 6 we display
the comparison between the grid representation of ΔG = −VG + C
and its interpolation in all of the three sequences investigated for

FIGURE 3
The evolution of the bias (VG) acting on walker 1 during bias construction for BPTI, [5-55]BPTI sequence. Different curves are obtained combining the
bias of all walkers using Eq. 3 of Ref. (Hošek et al., 2017). The red arrow indicates the increasing iteration. The red curve is that used in the final collection,
while the blue curve was used to estimate the effect of a non-converged bias on the values of free energy obtained by the post-processing MECmethod.

FIGURE 4
Free energy change (ΔΔG) calculated with Eq. 9 and VG built with well tempered metadynamics. Left panel: BPTI; Right panel: FXN.
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BPTI. We notice that for the three variants the free energy increases
by decreasing the value of the collective variable, consistently with a
greater thermal stability of the protein configurations in the folded
state. But, because of the smoothing of VG exerted by the
interpolation, part of the changes are lost. However, even the
tiny difference between the curves ΔG = G(ξ)—G(ξ0) is still a
representation of the change in stability upon protein unfolding
once the sequence is changed. In the BPTI case, we find that,
consistently with experiments (see Table 4), the D3A mutation
induces an increase in the stability of the protein (left panel, red
curve). The opposite is true for the F4A mutation.

As discussed above, statistics severely limits the convergence of
VG(ξ), since the number of Gaussian contributions to VG giving an
almost flat ξ distribution is achieved when all unfolded
configurations are sampled, a condition, that is, hardly achieved
even with μs-long MD simulations. Employing multiple walkers
allows one to sample unfolded and folded configurations in non-
infinitely long simulation but each of the walkers is not able to walk

from a folded configuration towards an unfolded one and viceversa
with a frequency allowing a proper sampling.

In the left panel of Figure 7 we display the distribution of the
collective variable ξ along with the sampling at constant bias VG(ξ)
for all the BPTI variants. The distributions that we obtain are not flat
because of the technical limitations of the well tempered
metadynamics method (see Section 2.2) and the limited span of
sampled CV values as shown in Figure 2 and discussed above.
Despite the sampling being likely insufficient to have both a
converged bias and a converged distribution of ξ once a constant
bias is applied, we can estimate the reversible work necessary to
build a given average of ξ, s, from the biased metastatistics at our
disposal. This is done using the maximal constrained entropy
approach described in Ref. (Botticelli et al., 2022) and references
therein.

The free energy difference between each of the two variants of
BPTI D3A and F4A, and the reference sequence [5-55]BPTI is
displayed in the left panel of Figure 8 as a function of the

FIGURE 5
Same as for Figure 4 using the polynomial of order 4 interpolating the grid representation of the bias VG used in Figure 4. Left panel: BPTI; Right
panel: FXN.

FIGURE 6
Same as for Figures 4, 5 (left panels), but comparing ΔG(ξ) for the case of BPTI variants. Color scheme is black, red, and blue for WT, D3A, and F4A
variants, respectively. Thick line is the grid representation of VG; thin line is the 4-th order polynomial interpolation of each grid (same color) in the range
between 0.5 and 15.5. Out of this range the interpolation is linear, with continuous derivative at the extreme points.
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average value s of the collective variable ξ (see Section 2). The MEC
modulation is employed here and Eq. 1 is used, with X sequences
identified by different colors. Since the distribution of ξ in the
metastatistics displays a sharp peak in the folded state (ξ = 14)
and a broad peak in the unfolded one (at about ξ ~ 4) we report in
Table 4 the free energy change going from the state of average s = 14
(that is, the state s0 in Eq. 1) to the state with average s = 4.

The direct metadynamics calculation and the maximal
constrained entropy method give consistent results for the sign of
ΔΔG in the case of BPTI. In fact, we find a slightly negative value
equal to −2.5 kJ/mol for D3A at s = 4 (see Table 4; Figure 8, left
panel). Moreover, in both cases our results are consistent with

experiments. It is important to recall that among the 48 single-
point mutations of [5-55]BPTI, only 3 produces a stabilization of the
protein Yu et al. (1995).

Before entering into structural details providing explanation
of ΔΔG values, we assess what we expect to be the major source of
error propagation in the MEC method. The most efficient handle
to expand the sampling of atomic protein configurations is the
external bias VG, as computed by well-tempered altruistic
multiple-walkers metadynamics. Therefore, we calculated
ΔG(s) profiles for BPTI, which is protein small enough to
easily repeat 900 ns of MD simulations, using two different
choices of VG(ξ), respectively the red and blue curves in
Figure 3. The profiles of ΔG(s) computed with the different
choices are displayed in Figure 9, left and right panels,
respectively, for red and blue curves of VG(ξ). We notice that
there are a few values that are affected by the limited number of
points in the statistics: s = 2 (left panel) and s = 4 (right panel). By
using the bias obtained by a shorter cumulative history (the blue
curve), low values of ξ (contributing to low values of average s)
are rarely sampled. Apart from these limitations due to the range
of sampled ξ values, the similarity in the behaviour of G(s) is
remarkable. In particular, we notice that the sign of ΔΔG (the
difference between curves in each of the plots) is robust. This
depends on the fact that the contribution to the calculation of
ΔGs with the help of Eq. 10 depends on the energy of the
populated states (with a certain value of the collective variable
ξ) rather then to the number of ways the state is reached by the
simulation.

Due to the collection of atomic configurations at hand and to
the possibility of computing the different terms contributing to
ΔΔG, we can interpret the unusual stabilization of the D3A
variant observed in experiments. The increase in unfolding
free energy upon D3A mutation is partially due to the
removal of the salt-bridges formed by Asp 3 that occur in the
WT sequence. On the other hand, the F4A mutation reduces the
steric hindrance of Phe 4 thus enhancing the chance of salt-
bridges formation between the N-terminus and other protein
regions. The competition between electrostatic long-range
contributions and short-range interactions characterizing the
hydrophobic patches can be analyzed studying the changes in
the terms contributing to U.

In Table 5 the change in four terms contributing to U (see Eqs
18, 19) are reported, together with the whole change of U (last

TABLE 4 Experimental (ΔTm, °C), experimental ΔΔG Petrosino et al. (2019), and
computed values of ΔΔG (kJ/mol) for the selected BPTI and FXN variants.
Column 4: the values obtained with metadynamics. Columns 5-7: the maximal
constrained entropy method is used with the effective energy for solute-
solvent interactions (Eqs 18, 19). Column 5—Data published in previous article
Botticelli et al. (2022); column 6—Simulation used in previous article, using the
extended ξ9 variable in the maximal constrained entropy method; column
7—Well tempered metadynamics, using the extended ξ9 variable in the
maximal constrained entropy method. Rows are reported in descending order
of ΔTm for each protein. While for BPTI the collective variable ξ = α + β is used
both in metadynamics and maximal constrained entropy methods, for FXN ξ =
β is used in metadynamics and the extended variable ξ9 = ξ + α = β + α is used in
the maximal constrained entropy method. β is the number of hydrogen bonds
in the β-sheet; α is the number of hydrogen bonds in the α-helices (see
Methods for details). BPTI: Unfolded state is s = 4; Folded state is s = 14 (highest
peak in the distribution obtained with the meta-statistics, see Figure 7). FXN:
Unfolded state is s9 =21 [23 for simulation of Ref. (Botticelli et al., 2022)];
Folded state is s9 =37.

Variant ΔTm ΔΔG (exp.) ΔΔG (calc.)

BPTI [5-55]BPTI

D3A 1.4 0.84 12.5 - - −2.5

F4A −21.2 −12.55 −26.0 - - −56.2

FXN

D104G 3.0 0.88 2.5 20.1 16.1 58.4

S202F −0.3 −0.67 −1.0 −7.3 14.6 2.3

A107V −3.0 3.35 14.1 −114.2 −89.5 −11.9

F109L −11.4 −8.74 14.1 −21.3 −32.5 −89.9

Y123S −14.4 −20.59 4.3 −25.2 29.2 −56.4

FIGURE 7
Distribution P as a function of the collective variable ξ. Left panel—BPTI, where ξ = β + α, where β and α are the number of hydrogen bonds in,
respectively, the β-sheet and α-helices present in the folded structure. Right panel—FXN, where ξ= βwas used to build the external bias, but the extended
variable ξ′ = β + α is used to represent the distribution. P is normalized as to have ∑iPi = 1, where Pi is each of the displayed values.
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column). The latter dominates the change of G, since the
contribution of the maximized cross-entropy is small compared
to ΔU in Eq. 10. The significant changes in each component almost
cancel each other in the sum. The smaller change in Uvdw in the F4A
case indicates the cancellation of hydrophobic contacts between Phe
4 and the residues in the major hydrophobic core of folded BPTI
when Phe 4 is replaced by Ala. The negative change of Usolv,np for all
variants indicates the release of hydrophilic sidechains into the
solvent upon unfolding. This contribution tends to cancel the
release of dispersive solute-solute interactions. However, the two
electrostatic contributions (ΔUel and ΔGsolv,pol) span the largest
range of values among the variants. Therefore, we argue that
changes in the electrostatic networks become critical with respect
to an almost uniform background of interactions that change upon
the demolition of the hydrophobic core occurring during unfolding.

Most of the long-range salt-bridges lock the native structure into
a less hydrophilic globular form, because the small size of the globule
allows efficient electrostatic sealing, not allowed when the size of the
globule increases. Breaking of the salt-bridges in the native form
allows exposing hydrophylic groups to the solvent while the
formation of the salt-bridges hides hydrophobic groups inside the
globule core. Once salt-bridges are broken, that is, when the
hydrogen bonds keeping the native scaffold are broken, the
globular protein is allowed to expose a larger surface to the
solvent, including its hydrophobic core.

In conclusion, the D3A stabilization against protein unfolding is
due to the stabilization of non-native salt-bridges when the native
Asp 3 is removed.

Our analysis has shown that for the small BPTI protein
(58 residues) the number of configurations at constant bias we
have been able to collect provides consistency between well
tempered metadynamics and the maximal constrained entropy
method. On the other hand, the improvement of statistics we
achieve in this work, compared to our previous investigation of
the FXN case, as explained in the next section, is not yet sufficient to
get full consistency and robust predictions in the case of bigger
proteins.

3.2 Frataxin (FXN)

The effects of single-point mutations on the unfolding process of
the truncated form of FXN (residues 90-210) have been discussed in
detail in Ref. (Botticelli et al., 2022). Differences of the present work
compared to what was done in the previous paper are the following:

1. The well temperedmetadynamics method is employed in place of
a plain (constant T) metadynamics;

2. The construction of the biasing potential is made with a larger
number of iterations and is, therefore, more accurate;

FIGURE 8
Changes of free energy variation (ΔΔG) upon unfolding, that is, the decrease of the average number of hydrogen bonds in α helices and β-sheets, α
and β, respectively. The average is s= 〈(α+ β)〉. As for FXN (right panel) the number of hydrogen bonds is calculated after usingmetadynamics based on ξ=
β and ξ′ = α + β in the maximal constrained entropy method. Color scheme is the same as for Figure 7.

FIGURE 9
BPTI: change of free energy (ΔG) upon unfolding, that is, the decrease of the average number of hydrogen bonds in α helices and β-sheets, α and β,
respectively. The average is s= 〈(α+ β)〉. Left panel is obtainedwith Eqs 10, 18, using the configurations collected for 10 nswith the final bias obtained (red
curve in Figure 3); Right panel is obtained using the configurations collected for 10 nswith an intermediate bias, blue curve in Figure 3. Color scheme is the
same as for Figure 7.
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3. The maximal constrained entropy method is applied here using
an extended collective variable including the number of hydrogen
bonds present in the folded α-helical regions;

4. The trajectory produced at constant bias, which is used in the
maximal constrained entropy method, is three times longer than
in Ref. (Botticelli et al., 2022).

The change of G computed using the bias VG(ξ) as obtained out
of 22 ns of bias construction is displayed in the right panels of
Figures 4, 5. Again, the free energy increases upon unfolding
(decrease of ξ), in agreement with what happens in similarly
folded state as observed in experiments Petrosino et al. (2019)
(data not shown here). However, the relative order of unfolding

free energy is not well captured. Indeed, most of the variants are
found to be more stable than the WT reference sequence. On the
other hand, in experiments only the D104G variant among the
8 analyzed shows an increased stability of the folded state with
respect to the native sequence and, therefore, a larger unfolding free
energy.

An explanation of the difference between the trend showed by
experiments and that predicted by direct metadynamics is in the
choice of the collective variable we made to study FXN unfolding.
The thermal unfolding was measured by CD at 222 nm wave-length:
this means that the CD signal was mainly composed by variations in
the content of α-helices. The choice of ξ = β in metadynamics was
based on the expectation that the demolition of the β-sheet would be
sufficient to destabilize all the secondary motifs in the protein,
including the two α-helices. This was only partially true. In
Figure 10 we show the distribution of α, the number of hydrogen
bonds in α-helices, in correspondence low and high values of β,
4 and 15, respectively. The distributions were computed making
reference to the 30-ns long simulation at constant bias collected for
the whole set of 90 walkers. The curve with β = 4 shows that α-helices
are partially broken in those configurations where the β-sheet is
broken. This effect is due mainly to the shortening of helix α1 (data
not shown here), which is softer than α2 particularly in its
N-terminus. Therefore, only an a posteriori analysis of the effect
of a chosen collective variable can point to a more valid collective
variable to be used in metadynamics.

The set of configurations, obtained by including all the
90 walkers simulated at constant bias, is used in the maximal
constrained entropy method to overcome the above shortcoming.
Results for FXN are displayed in the right panels of Figures 7, 8. In
Figure 7 (right panel) we notice that the two peaks at s′ = 21 and
37 are not due just to the choice of initial configurations (i.e. the two
PDB structures used to differentiate the walkers, see Section 2). The
distance in s′ between the two peaks displayed in Figure 7 (right
panel) is larger than the difference in α-helical values between the
two PDB structures used to build the set of initial configurations,

FIGURE 10
The distribution of α obtained in the 30-ns trajectories collected for the whole set of 90 walkers at constant bias Vg(β) for FXN, WT sequence. Black
curve—Distribution obtained for configurations with β = 15; red curve—Same distribution with β = 4.

TABLE 5 Energy changes (kJ/mol) starting from folded reference state, ending
to unfolded state for native (WT) sequence and studied variants. Folded and
unfolded states are defined as in Table 4. The energy components are those
indicated in Eqs 18, 19.

Variant ΔUel ΔUvdw ΔGsolv,pol ΔGsolv,np ΔU

BPTI [5-55]BPTI

WT 749.8 198.3 −264.1 −47.8 608.0

D3A 802.7 196.2 −294.4 −58.4 605.1

F4A 660.2 159.5 −170.0 −58.7 552.4

FXN

WT 910.8 542.7 −56.0 −127.9 1218.0

D104G 1295.0 544.9 −394.6 −133.2 1275.8

A107V 986.7 553.0 −125.1 −146.6 1206.3

F109L 788.9 583.8 −33.9 −134.3 1127.7

Y123S 754.4 563.2 37.0 −138.4 1161.3

S202F 911.1 577.0 −65.4 −135.9 1219.9
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namely 37-21 compared to 23-19. Consistently with the data
displayed in Figure 10, this means that the metastatistics contains
configurations with a significant decrease in the number of α-helical
hydrogen bonds despite the external bias forcing the unfolding being
a function of the number of hydrogen bonds in the β-sheet only.

In the right panel of Figure 8 the profiles of ΔΔG of the
5 different variants studied with maximal constrained entropy
method are compared. It is interesting to notice that the relative
order of the experimental values of ΔTm (see also Table 4) is better
reproduced with the use of the augmented and updated statistics
collected in this work.

The different contributions to ΔΔG are reported in Table 5.
Again, the tendency of different contributions to compensate each
other when summed is apparent. It can be noticed that, similarly to
BPTI, the electrostatic contributions display a larger span among
variants. In the case of D104G the value of ΔUel is clearly dominant,
while the opposite sign contribution of the polar solvation term is
unable to compensate the effect of changes in direct electrostatic
contacts. Strikingly, despite the longer accumulation of statistics and
the more accurate bias construction, the reasons of the D104G
stabilization can be explaind in terms of the same effects described in
the previous investigation Botticelli et al. (2022). It is the removal of
Asp 104 that changes the structure of the α1 helix and the possibility
of the charged residues lying in that region to form alternative salt-
bridges. When α1 helix is allowed to rotate, like in the unfolded
molten globule, these interactions are not possible. However, the
effect of the point mutation on the S202F variant is different as the
change of dispersive interactions become significant, consistently
with the introduction of a hydrophobic sidechain (Phe) in place of
the small hydrophilic Ser residue. In this situation, it is possible to
infer that the native-like hydrophobic core is stabilized and more
work is required to destroy it and the significant change in
electrostatic interactions (ΔUel) is seen to positively combine with
hydrophobic contributions.

Though the interactions among protein atoms and between the
protein and its environment (a NaCl solution) are crudely
approximated, the method is able to capture the little changes
surviving when the total potential energy is computed.

4 Conclusion

In this work we refined the combination of several
computational methods to predict, on the basis of fully atomistic
protein models, the changes of thermal stability of proteins under
single-point mutations. The method has been applied to a well-
studied small protein, the bovine pancreatic trypsin inhibitor
(58 residues), and to a truncated form of frataxin (121 residues).
In both cases experiments were compared to computational results.
The unusual effect of protein stabilization exerted by some point
mutations was the special focus of this study.

We found a good agreement in the sign of representative values
of ΔΔG upon unfolding and the sign of the shift in the melting
temperature compared to experimental results. The competition
between the changes in the demolition of hydrophobic cores and the
changes in networks of electrostatic interactions is captured by the
method. This effect was not fully analyzed in the interpretation of
the unusual D3A stability in BPTI, so far.

Despite its potential, the method is computationally quite
demanding, requiring extended statistical methods and, as for the
collection of reliable configurations, a detailed model for atomic
interactions, including explicit solvent and counterions. As
discussed in the case of FXN, the direct calculation of free
energy variation from the constructed bias potential is
strongly affected by the choice of the collective variable in
metadynamics. It was found that the maximal constrained
entropy is a possible work-around to the statistical limitations
of even challenging and promising methods like those based on
multiple-walkers well tempered metadynamics. Numerical
limitations still prevent the application to many interesting
variants where the native structure becomes unstable: F33A,
F22A, Y35A for BPTI; W173C for FXN. The ability of
predicting the sign of the free energy change is in any case of
extreme importance when the protein can adopt structures
alternative to the native one.
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