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Rapid development of medical imaging, such as cellular tracking, has increased
the demand for “live” contrast agents. This study provides the first experimental
evidence demonstrating that transfection of the clMagR/clCry4 gene can impart
magnetic resonance imaging (MRI) T2-contrast properties to living prokaryotic
Escherichia coli (E. coli) in the presence of Fe3+ through the endogenous
formation of iron oxide nanoparticles. The transfected clMagR/clCry4 gene
markedly promoted uptake of exogenous iron by E. coli, achieving an
intracellular co-precipitation condition and formation of iron oxide
nanoparticles. This study will stimulate further exploration of the biological
applications of clMagR/clCry4 in imaging studies.
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Introduction

Contrast-enhanced magnetic resonance imaging (MRI) has become an indispensable
tool in medical imaging (Rogers et al., 2006; Park et al., 2017). Gadolinium (Gd)-based small
molecules and iron oxide nanoparticles have been mainly used as MRI-T1 and -T2 contrast
agents, respectively, to provide high contrast sensitivity against background signals and have
been approved by the U.S. Food and Drug Administration (FDA) and the European
Medicines Agency (EMEA) (Park et al., 2017; Wahsner et al., 2019). Nevertheless, there
are still some challenges facing these contrast agents in practical applications, especially for
long-term tracking in vivo. The main issue lies in their biosafety and the exocytosis of
inorganic substances over a long period (Wahsner et al., 2019). For example, Gd was recently
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reported to be somewhat toxic to the liver and kidney (Calvin et al.,
2010), and iron (Fe) overload has also been proposed to be involved
in degenerative diseases (Zecca et al., 2004; Stephenson et al., 2014).
Thus, it has inspired a new wave to develop new contrast agents,
where control of iron accumulation in cells could work as a means to
alter longitudinal or transverse relaxation times, generating contrast,
probably derived endogenously from the organism itself.

Recently, protein-based MRI contrast agents have attracted
increasing attention, such as transferrin and ferritin (Jutz et al.,
2015; Schilling et al., 2017). Transferrin and ferritin are critical
proteins that regulate iron metabolism in vivo, which are capable of
binding Fe to exhibit paramagnetic properties (Yang et al., 2016).
Although the two proteins, especially ferritin, have relatively large
magnetic moments and influence the transverse relaxation of the
proton, the effect appears to be too weak to be used directly as
contrast agents for MRI in vivo (Liu and Theil, 2005; Jutz et al.,
2015). Generally, ferritin is used as a natural reactor in vitro to
transform hydrated paramagnetic ferric oxide into
superparamagnetic iron oxide nanoparticles (Liu and Theil, 2005;
Turano et al., 2010). These transformed protein molecules have been
proposed as a new type of nanoparticle and partly improve the
biosafety of contrast agents; however, they are essentially an
exogenous substance.

Xie et al. discovered a novel magnetic protein biocompass in
Columba livia, which integrated both magnetoreceptor (MagR) and
type IV cryptochrome (clCry4) (Qin et al., 2016). MagR is the
homologue of the iron–sulfur cluster assembly protein (A-type ISC
protein, IscA). The IscA protein is an iron chaperon that can bind to
intracellular iron to form Fe–S clusters for electron transfer (Ding
and Clark, 2004; Holm and Lo, 2016). The Cry4 protein is
considered an electron donor excited by light that can form long-
lived radical pairs to activate downstream pathways (Maeda et al.,
2012; Zoltowski et al., 2019; Xu et al., 2021). Because clMagR/clCry4
protein is involved with the process of electron transfer, we
hypothesized it would be suitable for MRI contrast as a “live” agent.

We investigated the MRI contrast performance of clMagR/
clCry4 gene in a living organism. Unlike the strategy used for
ferritin, the clMagR/clCry4 gene was simply transfected into
prokaryotic E. coli, rather than administering clMagR/clCry4
protein molecules. The transfected E. coli showed significant T2

contrast on MRI when cultured in an iron-supplemented medium,
while the protein itself was unable to show this effect. The
transfection of the clMagR/clCry4 gene led to the formation of
iron oxide nanoparticles within E. coli, which could mediate the
alteration of the MRI transverse relaxation rate.

Materials and methods

MRI analysis

The MRI study was performed using the 7T BioSpec 70/20 USR
system (Bruker Biospin; Ettlingen) with ParaVision 6.0.1. software.
The MRI-T1 images were acquired using a rapid acquisition
sequence with relaxation enhancement (RARE) using the
following parameters: matrix = 256 × 256, flip angle (FA) = 90°,
field of view (FOV) = 8.0 × 6.03 cm, slice thickness = 2 mm, echo
time (TE) = 8.87 ms, and repetition time (TR) = 400 ms. The MRI-

T2 images were acquired using the TurboRARE sequence using the
following parameters: matrix = 256 × 256, FA = 90°, FOV = 8.0 ×
6.03 cm, slice thickness = 2 mm, TE = 80 ms, and TR = 2,200 ms. For
MRI-T1 relaxation time map imaging (T1 mapping), we used the
RARE sequence with variable TR with the following parameters:
matrix = 256 × 256, FA = 90°, FOV = 8.0 × 6.03 cm, slice thickness =
2 mm, TE = 7.17 ms, echo spacing = 7.17 ms, averages = 2,
repetition = 1, and TR = 190, 200, 300, and 400 ms. For MRI-T2

relaxation time map imaging (T2 mapping), we used a multislice
multiecho (MSME) sequence with variable TE with the following
parameters: matrix = 256 × 256, FA = 90°, FOV = 8.0 × 6.03 cm, slice
thickness = 2 mm, TE = 9–225 ms with an increment of 9 ms, echo
spacing = 9.0 ms, echo times = 25, averages = 1, repetition = 1, and
TR = 3,000 ms. The regions of interest (ROIs) were drawn in the
same plane of each sample after scanning, the T1 and T2 relaxation
times were calculated using ParaVision software, and the rates at
which the signal decayed were defined as R1 and R2.

The Python language (Python Software Foundation, Version
3.8.0) was used to batch calculate the mean gray values and to
quantify the signal density of the MRI images (Sindhulakshmi et al.,
2014; Gadi et al., 2020). In detail, original DICOM images were
processed with a Gaussian filter. On the basis of the maximum
between-class variance method (OTSU), the image data were
classified into targets and backgrounds. The OpenCV
(OpenSource Computer Vision Library, Version 4.4.0) contour
search algorithm was adopted to extract the true coordinate
parameters of each target area and to discard false values.
Furthermore, the aforementioned coordinates were processed to
obtain the mean gray value of each target area pixel group on the
original image, all pixels were sorted according to their mean gray
values, and the average value and the quartile value were recorded.
The heat map of the original gray value was drawn using Numerical
Python (NumPy), Pandas, Matplotlib, andOpenCV. In this study, to
facilitate the statistics of MRI dark contrast, the mean gray values
mentioned included 255 (the maximum gray value of the 8-bit gray
image) minus the original gray values.

The bacteria were collected by centrifugation (2,000 rpm, 5 min,
4°C), the pellets were washed three times, and resuspended in
phosphate buffer solution (PBS, pH 7.4). The density of bacteria
cells was evaluated by optical density (OD) measurement at 600 nm
(A600 units/mL). Protein concentrations were determined using the
bicinchoninic acid (BCA) assay with each sample in triplicate, using
the microplate method according to the protocol recommended by
the manufacturer using commercially available BSA as the
calibration solution. Data were plotted in the graph form, and a
linear trendline was fit to obtain a standard BSA protein curve. Data
were acquired and analyzed using the SpectraMax Plus microplate
reader and SoftMax Pro software (Molecular Devices). The MRI
samples were collected into polyethylene centrifugation tubes for
scanning.

Intracellular iron quantification

The bacteria were collected after MRI scanning, lysed in nitric
acid, and then analyzed by inductive-coupled plasma mass
spectrometry (ICP-MS, PerkinElmer NexION 2000). For
calibration, the reference solutions containing different
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concentrations of iron (i.e., 0, 20, 50, 100, 200, and 500 μg/L in Milli-
Q water, 18.2 MΩ cm) as internal standards were prepared. A
reference solution was used at the beginning, middle, and end of
the measurements as a quality control. Acidity of experimental
samples and reference solutions were controlled at 5%.
Experimental samples were filtered through a 0.22-μm
hydrophilic syringe filter (Sartorius Stedim Biotech, Germany) to
remove solid impurities. Data corresponding to iron content were
determined by ICP-MS. The iron standard curve, determined from
calibration solutions with known concentrations (μg/L), was used to
calculate the iron content in bacteria.

Detection of intracellular pH

Intracellular pH was measured using the fluorescent
pH indicator 2,7-bicarboxyethyl-5,6-carboxyfluorescein-acet-
oxymethylester (BCECF-AM) according to the manufacturer’s
protocol (Burgess and Han, 2010; Chakraborty et al., 2017).
Bacterial suspensions (OD 2.0) were incubated with 20 μM
BCECF-AM at 37 °C for 60 min. After loading, the cells were
washed three times with PBS buffer and remained in the same
solution. A pH calibration curve was constructed using BCECF-AM
with a pH calibration buffer kit containing a pH range of 4.5, 5.5, 6.5,
and 7.5, and valinomycin (10 μM) and nigericin (10 μM), which
equilibrated the intracellular and extracellular pH of bacteria.
Intracellular pH was recorded by determining the fluorescence
ratio (F490 nm/F440 nm) of the emission wavelength at 535 nm
for excitation wavelengths of 490 and 440 nm using a multimode
microplate reader (Tecan Infinite M200). Bacterial photographs
were detected using inverted fluorescence microscopy (Nikon
Microsystems).

Ultrastructural observation

The bacteria were collected by centrifugation, pellets washed
with PBS and then fixed with 2.5% glutaraldehyde overnight at 4°C.
The samples were fixed with 1% osmium tetroxide for 1 h,
dehydrated with a series of ethanol concentrations in Milli-Q
water (i.e., 35, 50, 60, 70, 80, 90, 95, and 100% ethanol for
10 min in each step) and then embedded in epoxy resin and
polymerized at 60°C overnight. Ultrathin (about 90 nm) sections
were cut with a diamond knife in an ultramicrotome (Leica, EM
UC7) and collected onto carbon-coated copper grids, stained with
uranyl acetate and lead citrate, and then examined by transmission
electron microscopy (TEM) (Hitachi H-600-4) at an operating
voltage of 120 KV.

Biomaterial extraction and electronic
microscope analysis

To extract electron-dense granules, clMagR/clCry4-transfected
bacteria (under exogenous iron supply condition) were harvested,
washed, and resuspended in PBS and then fragmented using an
ultrasonic cell disruptor (Scientz-II D, amplitude 15%, pulse 5 s on
and 2 s off). Subsequently, electron-dense granules were separated

from cell debris using gradient centrifugation, washed and
resuspended in Milli-Q water to remove residual PBS. The
biosynthesis of materials was isolated from the suspension using
the MACS LD separation column, the QuadroMACS Separator, and
the MACS MultiStand (Miltenyi Biotec Inc) according to the
manufacturer’s instructions. The resulting materials were placed
on carbon-coated copper grids and dried. Bright-field scanning
transmission electron microscopy (BF-STEM), dark-field STEM
(DF-STEM), high-angle annular dark-field STEM (HAADF-
STEM), energy-dispersive X-ray spectroscopy (XEDS) element
mapping, selected area electron diffraction (SAED), and high-
resolution TEM (HRTEM) were carried out on FEI Talos F200X
TEM at an operating voltage of 200 KV. All micrographs were
analyzed using DigitalMicrograph software (Gatan Microscopy
Suite, Version 3.42.3048.0) and ICDD PDF-4 + 2009 software
(The International Centre for Diffraction Data, ICDD; Powder
Diffraction File, PDF). The fast Fourier transform (FFT) was
performed using ImageJ, v1.53a software.

Statistical analysis

GraphPad Prism software (v8.3.1 (332), La Jolla, CA,
United States) was used for graph preparation. Data were
presented as mean ± standard deviation (SD). Statistical
differences were analyzed using the unpaired Student’s t-test. For
mean gray values, statistical differences were conducted using IBM
SPSS Statistics 25 software packages and analyzed using two-way
analysis of variance (ANOVA) followed by the Bonferroni and
Tukey’s honest significant differences (HSD) post-hoc test. The
differences were considered statistically significant when the p-
value was less than 0.05. *p < 0.05, **p < 0.01, ***p < 0.001; no
significance (ns), p > 0.05.

Results and discussion

Transfection of the clMagR/clCry4 gene into E. coli is shown
schematically in Figure 1A. Similar to that of our previous report
(Xue et al., 2020), transfection was shown to be successful based on
the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) pattern of the expressed clMagR/clCry4 protein (Figure 1B).
Because the d electrons in Fe atom have been demonstrated to
contribute to the net spins of the Fe-loaded IscA monomer (Beinert
et al., 1997; Xiao et al., 2020), the characteristic signal at g’ ≈ 4.3
(g-factor) in the electronic spin resonance (ESR) spectrum proved
the presence of the protein–Fe(III) complex (Figure 1C) (Sun and
Chasteen, 1994; Wajnberg et al., 2018). Furthermore, the broad peak
of the ESR also indicated the heterogeneity of the protein clMagR/
clCry4 protein expressed inside E. coli. The bacteria were
resuspended in PBS buffer solution for cell suspensions
(Supplementary Figure S1). Then, the clMagR/clCry4-transfected
E. coli were tested by qualitative MRI-T1 and -T2 scans. As shown
from the images, there were no significant differences for either
mode nor were there any differences in the relaxation rates R1 and R2

(Figure 1D). Furthermore, MRI-T1 and -T2 mapping modes were
used to quantitatively evaluate the imaging contrast of transfected
E. coli. The mean gray values acquired from the mapping images
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FIGURE 1
Bacteria construction and MRI analysis. (A) Schematic illustration of the prokaryotic expression system and bacterial culture. clMagR/clCry4 is
transfected into a commonly used bacterial model (as heterologous host), the E. coli BL21 (DE3) strain to investigate MRI susceptibility. (B) SDS-PAGE
analysis. Arrows point to clMagR and clCry4. PageRuler prestained protein ladder was used to indicate the apparent molecular mass standards (marker,
kDa). (C) ESR spectrum of the clMagR/clCry4 protein. Signal at g’ ≈ 4.3 in spectrum attributed to protein-Fe(III) complex. (D)MRI-T1 and -T2 images
show the signal intensity of E. coli. Histograms represent bacterial R1 and R2 statistical values. (E) Bacterial MRI-T1 mapping and the corresponding mean
gray values analysis. (F) Bacterial MRI-T2 mapping and the corresponding mean gray values analysis. It should be noted that the bacterial densities of
samples were almost equivalent (A600 units/mL, OD 50.0). Data were presented as mean ± SD (n = 3). For MRI R1 and R2 values, statistical differences
were analyzed using the unpaired Student’s t-test. For the mean gray value data, statistical significances were analyzed using two-way ANOVA followed
by the Bonferroni and Tukey’s HSD post-hoc test. ns, no significance (p > 0.05).
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were measured using the Python language and two-way ANOVA
statistics, followed by the Bonferroni and Tukey’s HSD post-hoc test.
Both the images and the statistical values of the mean gray areas also
showed minimal differences (Figures 1E, F). In addition, only the
clMagR-transfected E. coli also showed a little imaging contrast with
the control (Supplementary Figure S2). We tested the MRI contrast
properties for the purified clMagR/clCry4 protein. The protein itself
showed a little MRI contrast effect (Supplementary Figure S3). Based
on these cases, the transfection of the clMagR/clCry4 gene was
unable to influence MRI spin relaxation signals. Due to its
presence in a living organism, the clMagR/clCry4 protein could

perceive a magnetic field; thus, we hypothesized that the magnetism
of the clMagR/clCry4 protein would associate with the electron
transfer, that is, binding with Fe. Because there was insufficient Fe in
the medium for E. coli, the clMagR/clCry4 complex was incapable of
producing magnetic behaviors.

Thus, we added ammonium ferric citrate (FAC) to the medium
as an exogenous iron donor. FAC is a soluble ferric salt that has
been approved by the U.S. FDA as a food supplement and clinical
drug (Tenne et al., 2015). Hence, it is safe and has clear effects, as
confirmed by scanning electron microscopy (SEM) and live/dead
BacLight stain tests. As revealed by the SEM micrographs, E. coli

FIGURE 2
Biological effects of exogenous iron on bacteria. (A) Iron content analysis. Data corresponding to iron content were determined by ICP-MS. The
intracellular Fe content of E. coli transfectedwith clMagR/clCry4was higher than that of the control. Data were presented asmean ± SD (n= 3). Statistical
significance was analyzed using the unpaired Student’s t-test. ***p < 0.001. (B,C) Hydroxyl radical generation was monitored by ESR measurement. The
main quartet signal characteristic for the •DMPO-OH adduct is indicated by gray columns. Compared to control E. coli, the quartet signal was also
detected at by E. coli transfected with clMagR/clCry4 but at a much lower intensity. Data were normalized for intergroup difference comparison. (D,E)
Hysteresis loops (magnetizationM versus applied field H) of E. coliweremeasured by SQUIDmagnetometry. When cultured in the exogenous iron supply
medium, E. coli transfected with clMagR/clCry4 showed detectable magnetic properties (magnetic susceptibility, 0.00625 emu/g).
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retained its typical rod-shaped morphology without any
discernible alteration (Supplementary Figure S4). The
fluorescence pattern of SYTO 9 and double-staining with
propidium iodide (PI) further confirmed the good viability of
bacteria as shown in Supplementary Figure S5, where green
indicates living cells and red indicates dead cells. Beyond that,
the addition of FAC significantly increased the intracellular iron
content within bacteria, and E. coli transfected with clMagR/clCry4
gene showed higher levels than the control, which was
experimentally verified by ICP-MS (Figure 2A). However, the
status of iron within the bacteria was different. Dissociative Fe
will produce abundant hydroxyl free radicals resulting from the
Fenton reaction, while Fe binding could greatly reduce this
production of free radicals (Dixon and Stockwell, 2014). Thus,
we used ESR to identify the hydroxyl free radicals with the spin
adduct of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-hydroxyl
radicals. For control E. coli, the quartet signal was
unambiguously detected, indicating the presence of abundant
hydroxyl free radicals (Figure 2B). However, for E. coli
transfected with clMagR/clCry4 gene, the intensity of the
corresponding ESR signal decreased greatly, meaning that

dissociated Fe was bound (Figure 2C). A similar case occurred
for E. coli transfected with clMagR gene, while the intensity
decrease was slightly lower than that of E. coli transfected with
clMagR/clCry4 gene (Supplementary Figure S6). Thus, we assumed
that the dissociative Fe within E. coli was bound to the clMagR/
clCry4 protein, causing the alteration of bacterial magnetism. The
SQUID measurement confirmed this point. As predicted, control
E. coli were diamagnetic, even after exposure to FAC (Figure 2D).
A similar diamagnetic curve was also observed in E. coli transfected
with clMagR/clCry4 gene in the absence of an exogenous iron
supply. However, the bacteria exhibited a paramagnetic curve after
culture in the presence of media containing an exogenous iron
supply, and the intensity of magnetization increased by two orders
of magnitude (Figure 2E). As shown by the magnetization loop,
there was even a very slight hysteresis, which seemed somewhat
superparamagnetic (magnetic susceptibility, 0.00625 emu/g).
Surprisingly, this effect was not observed in clMagR-transfected
E. coli, where the bacteria retained the diamagnetic behavior
(Supplementary Figure S7). Therefore, these findings supported
the potential effects on MRI contrast of transfection with clMagR/
clCry4 gene in the presence of exogenous iron supply.

FIGURE 3
MRI analysis of bacteria under exogenous iron supply conditions. (A)MRI-T1 and -T2 images showing signal intensity of bacteria. (B)MRI statistical R1

and R2 values analysis of the bacteria. (C) Bacterial MRI-T1 mapping and the corresponding mean gray values analysis. (D) Bacterial MRI-T2 mapping and
the correspondingmean gray values analysis. It should be noted that the bacterial densities of samples were almost equivalent (A600 units/mL, OD 50.0).
Data were presented asmean ± SD (n = 3). For MRI R1 and R2 values, statistical differences were analyzed using the unpaired Student’s t-test. For the
mean gray value data, statistical significances were analyzed using two-way ANOVA followed by Bonferroni and Tukey’s HSD post-hoc test. ns, no
significance (p > 0.05), ***p < 0.001.
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As shown by the qualitative MRI scan, the clMagR/clCry4-
transfected E. coli exhibited significant MRI-T2 contrast after
culturing with FAC, while there was little influence on the MRI-
T1 mode (Figure 3A); the histograms represent the corresponding
statistical R1 and R2 values (Figure 3B). Furthermore, to
quantitatively confirm the imaging contrast effect, the mean gray
values acquired from the mapping of MRI-T1 and -T2 images
(Figures 3C, D) were calculated. Independently of the time of TE,
it can be clearly seen that clMagR/clCry4 gene transfection imparted
the contrast effect of MRI-T2 to E. coli, which was significantly
different from that of the control E. coli strains. Moreover, the
influence of the FAC concentration (exogenous iron level) in the
medium, and the bacterial density on the imaging contrast effect,

was evaluated (Supplementary Figures S8, S9). As described in
detail, with an increase in the iron level or bacterial density
assayed, clMagR/clCry4 protein achieved a more significant
influence on the T2-contrast of the transfected E. coli. Here, the
corresponding original gray values were plotted against the TE for
different bacterial densities after pseudocolor processing
(Supplementary Figure S10). With an increase in the bacterial
density, the MRI gray value of E. coli-transfected clMagR/clCry4
gene tended to go from a constant to a high-order power function
versus the TE time course of MRI-T2 mapping.

To explore the underlying mechanism responsible for MRI-T2
contrast E. coli transfected with clMagR/clCry4 cultured in the presence
of FAC, the purified clMagR/clCry4 protein was tested for contrast

FIGURE 4
Detailed information on intracellular granules. (A,B) Detection of the intracellular ultrastructure. Following the transfer of E. coli transfected with
clMagR/clCry4 into the exogenous iron supply medium, the electron micrograph shows that electron-dense granules were detectable in the cytoplasm
and form widely distributed aggregates, marked by solid circles. (C) Electron micrographs and the corresponding XEDS Fe (Kα) elemental mapping of
E. coli transfected with clMagR/clCry4 under exogenous iron supply conditions. (D) Electron micrographs and corresponding XEDS elemental
mappings of the two-dimensional morphologies of the extract particles. (E,F) SAED and HRTEM patterns indicated by the dotted frame in (D).
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properties in the MR imaging. As shown in Supplementary Figure S11,
the protein itself was unable to achieve MRI-T2 contrast signals. Thus,
an explanation should lie with event results within living organisms. To
validate this hypothesis, we first tested the intracellular pH of E. coli
after transfection of clMagR/clCry4 gene using the pH-sensitive organic
dye BCECF-AM, which has been widely used in elaborating the
physiology of prokaryotes and eukaryotes (Burgess and Han, 2010;
Chakraborty et al., 2017). As shown in Supplementary Figure S12, the
fluorescence alteration indicated that the microenvironment inside
E. coli changed from a weakly alkaline pH to acidic pH with the
addition of FAC. However, it was found that transfection of clMagR/
clCry4 gene inhibited this change in the pH value to maintain a weakly
alkaline state, the detailed mechanism of which remains unclear. Apart
from that, similar evidence was obtained by means of the conventional
glass electrode pH meter measurement (Supplementary Table S1). On
the other hand, the Fe ions will bind to biological molecules within the
bacteria. It has been known that E. coli secreted the siderophore
enterobactin to chelate Fe3+ with high affinity, forming soluble Fe
(III)-siderophores to transport inside E. coli (Liu et al., 1993; Faraldo-
Gomez and Sansom, 2003). Fe ions could then be released either by
siderophore hydrolysis or by reduction of flavin oxidoreductase, after
which the dissociative Fe would be recruited by the clMagR/clCry4
protein (Coves et al., 1993; Raymond et al., 2003). However, Fe-binding
residues in clMagR are flexible and easily disrupted, so the Fe ions can
partially dissociate into a free state resulting from the reactive oxygen
species (Rouault and Klausner, 1996; Ding and Clark, 2004). In the
presence of Fe ions under weakly alkaline conditions, the formation of
iron oxide nanoparticles is assumed, which is somewhat similar to a co-
precipitation reaction occurring within E. coli. Hence, it should be
noted that the FAD group of the clCry4 protein is widely known to
generate free radicals under photonic action, which may explain why
clMagR/clCry4 transfection is advantageous in the MRI-T2 contrast of
E. coli compared to clMagR transfection alone.

We used TEM to observe ultrathin bacterial sections. Under
low magnification, many electron-dense granules were clearly
observed in the E. coli transfected with clMagR/clCry4 in the
presence of exogenous iron supply (Figures 4A, B). Fe element
mapping further indicated that there were abundant iron-based
compounds detectable within E. coli (Figure 4C). Hence, we
speculated that the electron-dense granules should contain the
iron-based nanomaterials. These electron-dense granules were
then extracted from the bacteria for TEM characterization by
repeating magnetic separation and washing. Interestingly, a
magnet could be used to easily attract the extracted granules
(Supplementary Video S1), indicating that the magnetic iron
oxide nanoparticles were present. In the TEM micrographs,
aggregates of tiny nanoparticles can be clearly observed
(Figure 4D). The exact matching of Fe and O elements in the
XEDS mapping confirmed that the composition of the
nanoparticles was iron oxide.

In addition, STEM micrographs were acquired together with
XEDS elemental mappings to give complementary information on
the particles being imaged, and the extracted particles
demonstrated a small size range (averaged 20.62 ± 3.5 nm)
(Supplementary Figure S13). Furthermore, SAED and HRTEM
demonstrated the coexistence of the Fe2O3 and Fe3O4 polycrystal
phases in the tiny nanoparticles (Figures 4E, F), which provides
evidence supporting the presence of a magnetization loop and the

MRI-T2 contrast effect of clMagR/clCry4 transfected in E. coli.
Nonetheless, it should be mentioned that aggregates of tabular-like
ferric oxide nanoparticles with poor crystalline features were also
detected (Supplementary Figure S14). These amorphous
precursors demonstrated, in part, that the formation process of
such nanoparticles was somewhat similar to that achieved by a
chemical co-precipitation method.

Conclusion

This study was the first to exploit the transfection of the clMagR/
clCry4 gene to produce an MRI-T2 contrast agent effect on a living
organism. This innovative phenomenon has neither been observed
nor hypothesized previously. Using E. coli as the model organism, an
exogenous iron supply was shown to be a critical factor for this
phenomenon. Exogenous Fe could be internalized in E. coli and
form a dynamic “bind-release” process with the clMagR/clCry4
protein. During the cycle, a biosynthesis process occurred in the
presence of dissociative Fe under weakly alkaline intracellular
conditions, which is somewhat similar to the chemical co-
precipitation reaction, leading to the formation of tiny iron oxide
nanoparticles. These tiny iron oxide particles influence the
transverse relaxation observed on MRI. Because this strategy
depends on the activity of the associated protein complex, it has
a wide range of potential applications that are dependent on the
presence of an exogenous iron supply. We believe that this novel
technique will play a key role in future biomedical imaging and
tracking applications. Furthermore, due to the key role of clMagR/
clCry4 protein in magnetoreception, our findings are useful for
harmonizing the long-term controversy over the existence of
magnetoreceptors in organisms, ranging from prokaryotes to
animals.
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