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Myeloid cells are physiologically related to innate immunity and inflammation.
Tumor-associatedmyeloid cells gained increasing interest because of their critical
roles in tumor progression and anticancer immune responses in human
malignancies. However, the associations between tumor-associated myeloid
cell-related genes and hepatocellular carcinoma have yet to be revealed. Here,
through the integrating analysis of bulk and single-cell RNA (scRNA) sequencing of
public HCC samples, we developed a gene signature to investigate the role of
HCC-specific myeloid signature genes in HCC patients. We firstly defined
317 myeloid cell marker genes through analyzing scRNA data of HCC from the
GEO dataset. After selecting the differentially expressed genes, eleven genes were
also proved prognostic. Then we built a gene signature from the TCGA cohort and
verified further with the ICGCdataset by applying the LASSOCoxmethod. An eight
genes signature (FABP5, C15orf48, PABPC1, TUBA1B, AKR1C3, NQO1, AKR1B10,
SPP1) was achieved finally. Patients in the high risk group correlated with higher
tumor stages and poor survival than those in the low-risk group. The risk score was
proved to be an independent risk factor for prognosis. The high risk group had
higher infiltrations of dendritic cells, macrophages and Tregs. And the APC co-
inhibition, T cell co-inhibition pathways were also activated. Besides, the risk score
positively correlated with multidrug resistance proteins. In conclusion, our
myeloid cell marker genes related signature can predict patients’ survival and
may also indicate the levels of immune infiltration and drug resistance.
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Introduction

Hepatocellular carcinoma accounts for the majority of liver
cancer and is one of the leading cause for cancer-related deaths
globally (Sung et al., 2021). Further, most patients lost the chance of
surgery because of vascular invasion or even metastasis. For these
advanced HCC, systemic treatments including immune treatment
are highly recommended (Sharafi et al., 2022). Among various solid
tumors, immune treatment is especially widely used in HCC.
Immune checkpoint inhibitors treatment was highly
recommended to combine with TKI or bevacizumab. The
combination of ICIs and tyrosine kinase inhibitor/bevacizumab
therapy has gained synergistic effects (Finn et al., 2020; Roskoski,
2022). However, until now, there are no well-established indicators
of immunotherapy response for HCC because of limited knowledge
about the immune-related tumor microenvironment.

Myeloid cells are physiologically related to innate immunity and
inflammation for cancer. Tumor associated myeloid cells, as an
important part of the TME, can be divided into monocytes/
macrophages, myeloid-derived suppressor cells, dendritic cells,
and granulocytes (Bassler et al., 2019). In recent decades, the
exact roles of TAMCs have gained increasing interest since these
cells are important indicators for treatment efficacy and disease
prognosis in patients. For example, the density of TAMCs are
commonly negatively correlated with patients’ survival, while
some special subtypes of TAMCs (M1 subtype macrophage,
N2 subtype neutrophil) are proved to be associated with better
prognosis (DeNardo and Ruffell, 2019; Engblom et al., 2016;
Fridlender et al., 2009; Locati et al., 2020; Nakamura and Smyth,
2020). In HCC, our previous work showed that the high post-
treatment neutrophil-to-lymphocyte ratio indicated a higher risk of
metastasis for patients undergoing transarterial chemoembolization
(Xue et al., 2015). Especially, the TME infiltrating neutrophils, as one
kind of innate immune cells have been shown to be involved in
treatment and prognosis among HCC patients (Chen et al., 2021).
Due to the flexibility of TAMCs, it is necessary to develop gene
signatures to evaluate their roles in immune infiltration and predict
patients’ prognosis. Through high-throughput sequencing
technologies, we are now able to perform analysis to
comprehensively catalog myeloid cells related genes in cancers.
Liu et al. developed a myeloid cells related gene signature
containing 5 genes, which was valuable in evaluating the
prognosis and immunity for head and neck squamous cell
carcinoma (Liu et al., 2021). However, their myeloid signature
genes were generated from published literature of various
tumors. To the best of our knowledge, the HCC specific myeloid
cells marker genes related signature has not yet been reported.

Through single-cell RNA-sequencing (scRNA-seq) method, we
may further uncover the molecular characteristics of HCC
associated myeloid cells in the TME (Chen et al., 2019). In the
present study, we firstly identified the tumor associated myeloid cells
related marker genes with scRNA-seq analysis of HCC samples from
the Gene Expression Omnibus (GEO) dataset. And then, a myeloid
cell marker genes related signature was built and validated as an
independent risk factor. Besides, the risk score was proved to be
associated with immune infiltration and immune-suppressive
microenvironment. Moreover, the relationship between risk
scores and drug sensitivity was further evaluated.

Materials and methods

Data source

ScRNA-seq data of 7 tumor samples from 2 HCC patients was
obtained from the GEO dataset, namely, GSE112271. RNA
sequencing data of (fragment per kilobase million, FPKM) was
obtained from the TCGA database (https://portal.gdc.cancer.gov/
repository), which included 374 HCC patients. The International
Cancer Genome Consortium (ICGC) database (https://icgc.org/)
contained 231 HCC samples. And the TCGA database was used for
model construction, while the ICGC database for model validation.
All datasets were available from public websites, and ethics approval
was confirmed to be obtained from original studies.

Achieving HCC-specific myeloid cell marker
genes

The scRNA-seq data fromGSE112271 has been fully described by
Bojan Losic et al. (Losic et al., 2020). Here, we combined data from all
7 samples derived from 2 HCC patients. The data was then analyzed
with the R software by using the Seurat package (Butler et al., 2018).
Quality control was performed as the following: gene numbers more
than 500, mitochondrial gene percentage no more than 20, and total
UMI counts more than 1,000 (Guan et al., 2022). The “RunHarmony”
function in R package “harmony” was then applied to remove the
batch effects (Korsunsky et al., 2019). Principal component analysis
(PCA) was conducted with the top 2000 variable genes. And cell
clusters were defined with the method of shared nearest neighbor
(SNN), and the resolution was set as 0.5. The uniform manifold
approximation and projection (UMAP) analysis was introduced for
visualization. The differentially expressed genes (DEGs) were
identified with the “FindAllMarkers” function. The cutoff
threshold was set as an adjusted p-value <0.01 and |log2 (fold
change)| >1. Cell clusters were annotated by using data from
published literature as well as the Human Primary Cell Atlas
(Losic et al., 2020; Mabbott et al., 2013; Sun et al., 2021).

Construction and validation of a myeloid
marker genes related gene signature

The cutoff threshold was set as an adjusted p-value <0.01 and |
log2 (fold change)| >1.5 for identifying DEGs between tumor tissues
and non-tumor tissues with the “limma” R package in TCGA dataset.
The prognostic value of myeloid marker genes was further analyzed
by Univariate Cox. Intersection genes were acquired from DEGs and
prognostic genes and were then used for model construction with the
method of least absolute shrinkage and selection operator (LASSO)
Cox regression (Tibshirani, 1997).Then, an eight myeloid marker
genes related gene signature was constructed. For each patient, a risk
score was calculated by using his gene expression and the regression
coefficient. According to the median risk score, all patients were
divided into high and low-risk groups. The “survminer” and
“timeROC” R package was adopted for survival analysis and
predictive accuracy. The ICGC dataset was used for verification
with the same formula. Besides, clinical factors such as age,
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gender, and tumor stage were manually extracted from both the
TCGA and ICGC datasets, and were applied for univariate and
multivariable Cox regression analysis.

Patients and immunohistochemical staining

Seventy tumor tissues were obtained from 70 HCC patients in
our liver cancer institute. SPP1, CD11b, CD4, and CD8 were selected
for protein validation by immunohistochemistry. The expression
intensity of SPP1 was evaluated according to a previous research
(Wu et al., 2010). The number of positive cells were counted as
previously reported (Deng et al., 2017). The study was approved by
the Ethics Committee of Zhongshan Hospital, Fudan University.

Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were performed by gene set enrichment analysis (GSEA) with GSEA
software 4.0.1 according to the high and low-risk group. And the top
50 pathways between different groups were exhibited.

Immune infiltration, TME and drug sensitivity
analysis

Immune infiltration analysis was conducted with the “GSVA” R
package. Single-sample gene set enrichment analysis (ssGSEA) was
adopted for calculating the infiltration scores of immune cells and
immune-related pathways (Newman et al., 2019). The association
between risk score and pan-cancer immune infiltrates was also
compared (Tamborero et al., 2018). Stromal and immune cell
infiltration scores were also analyzed with the “ESTIMATE” R
package (Yoshihara et al., 2013). Correlations between multidrug
resistance genes and risk scores were also analyzed.

Statistical analysis

DEGs between different groups were compared by Wilcoxon
test. The ssGSEA scores between different groups were compared by
Mann-Whitney test, and the adjusted p-values were generated by
using Benjamini–Hochberg method. Survival analysis was
conducted with the Kaplan-Meier method. Univariate and
multivariate Cox analyses were utilized for identifying prognostic
factors. p-value < 0.05 was considered to be statistical significance if
not specified. All data analyses and figures were accomplished with
the R software (version 4.1.3).

Results

Identification of HCC-specific myeloid cell
marker genes

Through scRNA-seq data analysis of GSE112271, we obtained
30054 eligible cells from seven samples of two HCC patients and

were further divided into 15 clusters (Figures 1A, B). Next, we
annotated the cell clusters with data from published literature and
the Human Primary Cell Atlas. Similar to the results of Bojan Losic
et al., 7 cell types were discovered, including Malignant cell (ALB,
FGG), myeloid-derived cell (HLA-DQB1, CD68), cancer-associated
fibroblasts (ACTA2, TAGL), endothelial cell (VWF, KDR), T cell
(CD3D, CD2), B cell (CD79A, IGJ) and NK cell (CD69, GNLY).
Cells in cluster 2, 13, and 14 were defined as myeloid-derived cells
(Figure 1C). By using the “FindAllMarkers” function, marker genes
belonging to different cell type were defined, the top 10 genes were
shown in Figure 1D. Finally, we identified 317 HCC-specific myeloid
cell marker genes (Supplementary Table S1). The flow chart of the
study design and analysis was indicated in Supplementary Figure S1.

Construction and validation of amyeloid cell
marker genes related gene signature

Based on the TCGA cohort, we firstly identified 32 DEGs
between the tumor and non-tumor tissues. At the same time, by
univariate Cox analysis, 11 genes were finally selected to be both
differently expressed and prognostic (Figure 2A). The expression of
these genes was shown as a heatmap (Figure 2B). The hazard ratio of
each gene was shown in Figure 2C. The correlations among different
genes were exhibited in Figure 2D. Next, through the LASSO Cox
regression analysis, we constructed an 8 genes signature, the
calculation function of risk score was set as follows: Riskscore =
(0.06*FABP5 expression) + (0.064*C15orf48 expression) +
(0.063*PABPC1 expression) + (0.103*TUBA1B expression) +
(0.019*AKR1C3 expression) + (0.015*NQO1 expression) +
(0.005*AKR1B10 expression) + (0.07*SPP1 expression). We next
selected the top 3 genes with highest weights (TUBA1B/SPP1/
C15orf48) and validated the correlation between their expression
and the infiltration of myeloid cell in HCC with the online tool
Timer (https://cistrome.shinyapps.io/timer/). And the results
showed that all three genes were positively correlated with the
infiltration of macrophage, neutrophil, and dendritic cell
(Supplementary Figure S2). Moreover, SPP1 protein level was
further investigated by immunohistochemistry, and the
association between SPP1 and tumor-infiltrating immune cells
was explored. As shown in Supplementary Figure S3, SPP1 was
positively correlated with the infiltration of myeloid cells (indicated
as CD11b positive cells), and negatively correlated with CD4/
CD8 cells.

According to the median risk score, patients from the TCGA
cohort were divided into the two groups. Figures 3A, B showed the
distribution between risk scores and patients’ prognosis. By Kaplan-
Meier analysis, the results showed that patients in the high-risk
group had worse overall survival (OS) (Figure 3C). Further, the
time-dependent ROC results indicated that the 1, 2, and 3-year AUC
values were 0.745, 0.661, and 0.626, respectively (Figure 3D).

Furthermore, we assessed the predictive value of the gene
signature in the ICGC HCC dataset. ICGC patients were also
divided into different groups by applying the same median risk
score from the TCGA dataset. Similar to the result of the TCGA
dataset, the high risk group indicated poorer OS (Figures 3E–G), and
the AUC value was 0.669 for 1 year, 0.677 for 2 years, and 0.650 for
3 years (Figure 3H).
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Independent prognostic value of the risk
score

By univariate Cox analysis, our results showed that the risk score
was significantly correlated with patients’ survival (For TCGA
cohort: HR = 1.68, 95% CI = 1.369–2.062, p < 0.001; For ICGC
cohort: HR = 2.203, 95% CI = 1.519–3.195, p < 0.001; Figures 4A, B).
By multivariable Cox regression analysis, the risk score was proved
to be an independent risk factor for both the training and validation
cohort (For TCGA cohort: HR = 3.203, 95% CI = 2.016–5.088, p <
0.001; For ICGC cohort: HR = 2.395, 95% CI = 1.164–4.928, p =
0.018; Figures 4C, D). We also evaluated the associations between
the risk score and common clinical parameters. Our results showed
that the risk score was significantly associated with tumor grade and
tumor stage (Figures 5C, D, G).

Functional enrichment analysis between the
low and high risk groups

Results of the GSEA analysis showed the 50 most significantly
enriched KEGG pathways. The endocytosis, chemokine signaling,
leukocyte transendothelial migration, and VEGF signaling pathways
were enriched in the high risk group.While peroxisome, peroxisome

proliferator-activated receptors, fatty acid metabolism, and nitrogen
metabolism pathways were enriched in the low risk group (Figure 6).

Immune infiltration and TME analysis

By ssGSEA, we further analyzed the correlations between risk
score and immune infiltration. We calculated the scores of different
immune cells and immune-related pathways. Our results indicated
that higher levels of infiltration of aDCs, DCs, iDCs, pDCs,
macrophages and Treg were observed in the high risk group both
in the TCGA and ICGC cohorts, while the APC co-inhibition, T cell
co-inhibition pathways were also activated in these groups.
Interestingly, the type II IFN response was inhibited in the high
risk group both in the TCGA and ICGC cohorts (Figures 7A–D).

The correlations between risk score and pan-cancer immune
infiltration subtypes was further evaluated. As reported by David
Tamborero, immune infiltrates in solid tumors may be divided into
six types (C1-C6 types), which indicated the role from tumor
promotion to tumor inhibition (Tamborero et al., 2018). Our
results showed that high risk score correlated with tumor
promotion subtype, while low risk score implied tumor inhibition
subtype (Figure 7E). By applying the ESTIMATE analysis, our
results showed that the risk score was weak positive correlated

FIGURE 1
Myeloid cell marker genes defined by Single-cell RNA sequencing (A) UMAP plot colored by 7 HCC samples. (B) UMAP plot colored by 15 cell
clusters. (C) Cell types defined by known cell marker genes. (D) Heatmap exhibiting the top 10 marker genes for each cell type.
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FIGURE 2
Identification of the candidate Myeloid cell marker genes. (A) Venn plot showing the intersection genes. (B)Heatmap showing the expression of the
11 intersection genes. (C) Forest plots showing the prognostic value of the 11 intersection genes. (D) The correlations between 11 selected genes.

FIGURE 3
Construction and validation of the gene signature. (A, B) The distribution of risk score and survival status for the TCGA dataset. (C) Survival analysis
between the high and low risk groups for the TCGA dataset. (D) ROC curves showing the predictive value of the risk score for the TCGA dataset. (E, F) The
distribution of risk score and survival status for the ICGC dataset. (G) Survival analysis between the high and low risk groups for the ICGC dataset. (H) ROC
curves showing the predictive value of the risk score for the ICGC dataset.
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with the immune score and stromal score (Figures 7F, G). In
addition, multidrug resistance (MDR) is one of the main causes
for treatment failure in HCC, and multidrug resistance proteins
(MRPs) mediated multidrug resistance in various cancers including
HCC (Ding et al., 2022). Here, we also analyzed the correlation

between the risk score and MRPs (MRP1-MRP9). The results
showed that the risk score was positively correlated with MRP1,
MRP4, MRP5, and MRP7, which indicated that patients in the low
risk group may be more likely to derive benefit from chemotherapy
or targeted therapy (Figure 8).

FIGURE 4
The independent prognostic value of the risk score. (A)Univariate cox regression analysis for the TCGA dataset. (B)Univariate cox regression analysis
for the ICGC dataset. (C) Multivariate cox regression analysis for the TCGA dataset. (D) Multivariate cox regression analysis for the ICGC dataset.

FIGURE 5
Box plots showing the correlations between risk score and clinicopathological factors. (A–D) Age, gender, grade and stage from TCGA dataset.
(E–G) Age, gender and stage from ICGC dataset.
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Discussion

ScRNA-seq technologies have deeply changed the paradigm to
explore the TME. TAMCs, as the main immune cell types, are
enriched and highly heterogeneous in tumor tissues. Here, we
adopted the scRNA-seq method to explore the roles of HCC
related TAMCs. We firstly defined 317 HCC-specific myeloid cell
marker genes through scRNA-seq analysis of the GEO dataset. Then
a novel prognostic gene signature was developed and validated by
the TCGA and ICGC dataset. Similar to our results, another myeloid
cell marker gene related gene signature was proved to be prognostic
and predictive of immunotherapy response for patients with
HNSCC (Liu et al., 2021). Further, the risk score was proved to
be correlated with tumor grade and stage. Patients in the high-risk
group had shorter OS. Besides, the risk score was associated with a
tumor promotion environment. In addition, the risk score was also
proved to be positively associated with drug resistance.

Our gene signature contained 8 myeloid cell related genes
(FABP5, C15orf48, PABPC1, TUBA1B, AKR1C3, NQO1,
AKR1B10, SPP1). All these genes were shown to be
overexpressed in HCC tissues and also to be prognostic. 1)
FABP5 takes part in fatty acids delivery as an intracellular carrier
(Kaczocha et al., 2012). Accumulating evidence has suggested that
FABP5 is commonly upregulated in most human malignancies.
FABP5 was overexpressed in HCC and involved in the proliferation,
migration, and invasion of HCC cells through a FABP5/CREB/miR-
889-5p/KLF9 axis (Tang et al., 2022). More recently, FABP5 in
monocytes/macrophages was shown to promote lipid accumulation
and induction of the inhibitory tumor microenvironment of
HCC(Liu J. et al., 2022). 2) C15orf48 is also known as NMES1,
the function of this gene is poorly understood. Recently,
C15orf48 was found to be overexpressed in response to
activation of macrophages and involved in regulating
inflammatory cytokines expression (Liu et al., 2009).
C15orf48 was also proved to reduce tissue inflammation and
immunity and proved to be protective during infection and

inflammation (Lee et al., 2021). 3) PABPC1 was proved to take
part in miRNA-mediated gene silencing including HCC(Tritschler
et al., 2010; Zhang et al., 2015). Interestingly, PABPC1 was shown to
regulate immunoglobulin secretion in immune cells (Peng et al.,
2017). 4) TUBA1B, encodes the protein of tubulin alpha-1B chain, is
the major constituent of microtubules. Study has shown that
changes in the relative content of tubulin may regulate
neutrophils activation (Rothwell et al., 1993). 5&6) AKR1C3 and
AKR1B10 are enzymes that catalyzes redox transformation and play
important role in tumor progression (Penning, 2015).
AKR1C3 promoted HCC cells proliferation and metastasis
through the AKR1C3/NF-κB/STAT3 axis, and was upregulated in
HCC tissues. High expression of AKR1C3 correlated with poor
survival (Zhou et al., 2021). AKR1C3 also inhibited the
ubiquitination of PARP1 and thus resulting in HCC cell
proliferation and resistance to Cisplatin (Pan et al., 2022).
Similarly, AKR1B10 also promoted HCC progression and drug
resistance (Zhang et al., 2022). 7) NQO1 is a flavoprotein, which
is important in the cellular response to numerous stresses (Lee et al.,
2015). NQO1 was shown to be overexpressed in HCC and correlated
with poor survival (Lin et al., 2017). Mechanistically,
NQO1 functioned as an agonist at pathways of PI3K/Akt and
MAPK/ERK, which promoted HCC cell proliferation and tumor
growth (Dimri et al., 2020). 8) SPP1 is a multifunctional gene, which
takes part in a variety of cellular processes including cell epithelial
transformation, a cytokine participating in the regulation of IL-12/
IFN-γ, and the promotion of tumorigenesis (Ashkar et al., 2000; Han
et al., 2019; Kashani-Sabet et al., 2017). Interestingly, SPP1 was also
proved to be overexpressed in HCC and correlated with patients’
survival as well as an indicator for immunotherapy. More
importantly, SPP1 may promote macrophages transition via
SPP1-CD44 signaling (Liu L. et al., 2022;Liu Z. et al., 2022;Wang
et al., 2019). In glioblastoma, SPP1 was found to be responsible for
neutrophil and macrophage infiltration (Atai et al., 2011). Similarly,
in this study, we found that SPP1 was positively correlated with
myeloid cell infiltration but negatively correlated with CD4/CD8 cell

FIGURE 6
GSEA analysis exhibiting the top 5 enriched KEGG pathways in the high and low risk groups.
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infiltration. In summary, our findings of the signature genes may
provide new therapeutic and prognostic targets for HCC.

The association between risk score and immune infiltrations
were further explored. We firstly explored its role with the
previously reported pan-cancer immune infiltration subtypes
(Tamborero et al., 2018). Our results indicated that higher risk
score positively correlated with C1 tumor promoting subtype. Next,
we adopted the ssGSEA for evaluating the correlations between risk
score and immune cell infiltration. Our study indicated that higher
levels of DCs, Treg, and macrophages infiltrations were observed in
the high-risk group. Besides, the APC co-inhibition, T cell co-
inhibition pathways were also activated in the high-risk
group. However, the type II IFN response was inhibited. It is
widely recognized that a high abundance of Treg contributes to
immunosuppression and tumor progression, as well as the tumor

associated macrophages (Deng et al., 2021; Zhang et al., 2019).
Consistently, type II IFN response has played important roles in
tumor surveillance, and IFN-γ, as the only executor of type II IFN
response and the most important macrophage stimuli, can induce
direct antimicrobial and antitumor effects (Petermann et al., 2019;
Schroder et al., 2004). Moreover, through ESTIMATE analysis, our
results showed that the risk score did not significantly correlated
with both the immune score and stromal score, which needed to be
verified in future studies. We next analyzed the pathways changed
between the different groups by GSEA analysis. And the data
showed that the endocytosis, chemokine signaling, leukocyte
transendothelial migration and VEGF signaling pathways
activated in the high-risk group. While fatty acid metabolism,
peroxisome, peroxisome proliferator-activated receptors and
nitrogen metabolism pathways were enriched in the other group.

FIGURE 7
Immune infiltration between the high and low risk groups and drug resistance analysis. (A, C) Immune cells and immune-related pathways between
the high-risk and low-risk groups in the TCGA dataset. (B, D) Immune cells and immune-related pathways between the high-risk and low-risk groups in
the ICGC dataset. (E) Correlations between risk score and different immune subtypes. (F, G) Correlations between risk score and immune score, stromal
score. (p values were represented as: ns not significant; *p < 0.05; **p < 0.01; ***p < 0.001.)
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Chemical or targeted drugs are important method for HCC
treatment. For example, sorafenib and lenvatinib were all
recommended as first-line therapies for unresectable hepatocellular
carcinoma (Cheng et al., 2009; Kudo et al., 2018). However, MDR
seriously affected the treatment efficacy. The MRPs are the well-
known transporters, which takes part in multidrug resistance through
extruding drugs from cancer cells (Sodani et al., 2012). Here, our
results showed that the risk score was positively correlated with
MRP1, MRP4, MRP5, and MRP7. Our data indicated that the
low-risk group may be more sensitive to chemical or targeted therapy.

Nevertheless, our study has some limitations. Firstly, we only
validated the expression of SPP1 in HCC tissues. As all the analyses
retrieved is from public sources, further experimental studies are still
needed to verify these findings. Secondly, due to the limitation of
scRNA-seq technique, a depth coverage of rare cell types was
restricted. We could not clearly distinguish neutrophils/
macrophage subtypes with known marker genes. Besides, all the
included genes were derived from myeloid cell marker genes, while
the TME was rather heterogeneous. So, the prognostic predicting
value may be inhibited. Last but not least, the underlying
connections for these genes between TME and tumor cells
deserved to be investigated further.

In conclusion, we constructed a gene signature from HCC
specific myeloid cell marker genes and this gene signature was
proved to be valuable in immune infiltration analysis, drug
resistance prediction and prognostic prediction. The study
exhibits valuable knowledge regarding the roles of myeloid cell

marker genes in HCC. Our findings may be useful for
individualized treatment decisions making.
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