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The aliphatic hydrophobic amino acid residues—alanine, isoleucine, leucine,
proline and valine—are among the most common found in proteins. Their
structural role in proteins is seemingly obvious: engage in hydrophobic
interactions to stabilize secondary, and to a lesser extent, tertiary and
quaternary structure. However, favorable hydrophobic interactions involving
the sidechains of these residue types are generally less significant than the
unfavorable set arising from interactions with polar atoms. Importantly, the
constellation of interactions between residue sidechains and their
environments can be recorded as three-dimensional maps that, in turn, can be
clustered. The clustered averagemap sets compose a library of interaction profiles
encoding interaction strengths, interaction types and the optimal 3D position for
the interacting partners. This library is backbone angle-dependent and suggests
solvent and lipid accessibility for each unique interaction profile. In this work, in
addition to analysis of soluble proteins, a large set of membrane proteins that
contained optimized artificial lipids were evaluated by parsing the structures into
three distinct components: soluble extramembrane domain, lipid facing
transmembrane domain, core transmembrane domain. The aliphatic residues
were extracted from each of these sets and passed through our calculation
protocol. Notable observations include: the roles of aliphatic residues in
soluble proteins and in the membrane protein’s soluble domains are nearly
identical, although the latter are slightly more solvent accessible; by comparing
maps calculated with sidechain-lipid interactions to maps ignoring those
interactions, the potential extent of residue-lipid and residue-interactions can
be assessed and likely exploited in structure prediction and modeling; amongst
these residue types, the levels of lipid engagement show isoleucine as the most
engaged, while the other residues are largely interacting with neighboring helical
residues.

KEYWORDS

hydrophobic residues, hydropathic interactions, solvent-accessible surface area (SASA),
membrane proteins, lipid interactions

OPEN ACCESS

EDITED BY

Mohd Sajid Ali,
King Saud University, Saudi Arabia

REVIEWED BY

Pierre Tuffery,
Institut National de la Santé et de la
Recherche Médicale (INSERM), France
Mrinal Shekhar,
Broad Institute, United States

*CORRESPONDENCE

Glen E. Kellogg,
glen.kellogg@vcu.edu

SPECIALTY SECTION

This article was submitted to Protein
Biochemistry for Basic and
Applied Sciences,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 05 December 2022
ACCEPTED 20 February 2023
PUBLISHED 28 March 2023

CITATION

AL Mughram MH, Catalano C,
Herrington NB, Safo MK and Kellogg GE
(2023), 3D interaction homology: The
hydrophobic residues alanine, isoleucine,
leucine, proline and valine play different
structural roles in soluble and
membrane proteins.
Front. Mol. Biosci. 10:1116868.
doi: 10.3389/fmolb.2023.1116868

COPYRIGHT

© 2023 AL Mughram, Catalano,
Herrington, Safo and Kellogg. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 28 March 2023
DOI 10.3389/fmolb.2023.1116868

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1116868/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1116868/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1116868/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1116868/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1116868/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1116868/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1116868&domain=pdf&date_stamp=2023-03-28
mailto:glen.kellogg@vcu.edu
mailto:glen.kellogg@vcu.edu
https://doi.org/10.3389/fmolb.2023.1116868
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1116868


Introduction

The structural roles of the amino acid residues within
proteins have been studied and debated since even before
X-ray diffraction data collected from crystals were
painstakingly and laboriously analyzed to ultimately reveal the
first actual crystal structures. Linus Pauling proposed the α-helix
and β-strand motifs based on his knowledge of chemistry and
diffraction patterns (Pauling et al., 1951) before they were
actually seen in a protein’s structure. The crystal structures of
myoglobin by John Kendrew (Kendrew et al., 1958; Kendrew
et al., 1960) and hemoglobin by Max Perutz (Perutz, 1960; Perutz,
1962) largely confirmed Pauling’s hypotheses. Pauling’s original
musings on structure were focused on hydrogen bonding, which
of course is a very critical component of protein structure,
especially amongst the backbone atoms of a chain. The
richness of sidechain-sidechain residue-residue interactions,
however, was not appreciated until it could be systematized
from multiple crystal structures, e.g., in the atlas composed by
Juswinder Singh and Janet Thornton (Singh and Thornton,
1992). Perhaps the most fascinating interactions are those that
are classified as “hydrophobic”, because their seemingly obvious
nature is actually disguising a complex molecular event that
involves enthalpy, entropy and solvation components
(Spyrakis et al., 2017). The fact that hydrophobic phenomena
are inherent in proteins was recognized by Irving Klotz (Klotz,
1958) before the first X-ray structures were available. Later, a
number of researchers recognized that the hydrophobicity of
residue sidechains has a relationship with protein secondary
structure, thus igniting a plethora of schemes and algorithms
to exploit this observation in protein structure prediction (Simm
et al., 2016).

Hydrophobicity as a macro, molecular property has also been
studied and reported since the late 1800s (Overton, 1899; Leo et al.,
1971). In its most common form, hydrophobicity is taken as the log
of the ratio of a molecule’s solubility in 1-octanol and in water,
i.e., log10

[M]1−octanol
[M]water , or log Po/w. For the purposes of drug discovery and

development, log Po/w represents an easy-to-use proxy for lipid and
membrane transport to sites of action, e.g., for orally administered
drugs. The famous Lipinski “rules of five” (Lipinski et al., 2001)
suggest that compounds with log Po/w > 5 may not be orally active.
In addition to direct measurement of log Po/w, considerable effort
has been expended in developing prediction algorithms, with
hundreds of articles and dozens of reviews or benchmarking
studies (Buchwald and Bodor, 1998; Grassi et al., 2002; Machatha
and Yalkowsky, 2005; Aliagas et al., 2022).

These two somewhat different views of the same phenomenon,
hydrophobicity, coalesced in the mind of Donald J. Abraham, whom
this article collection is memorializing. Abraham was a medicinal
chemist who realized before virtually all of his colleagues the
potential power of using X-ray crystal structures to design drugs.
He convinced Max Perutz to let him come to Cambridge and pursue
this idea in search of molecules that could modulate hemoglobin, in
particular as a treatment for sickle cell disease (Perutz et al., 1986).
Also, as a medicinal chemist, Abraham was well aware of the lengthy
and expensive process to design and develop a drug, so he had a keen
interest in computational tools that could facilitate the process,
especially in the context of the emerging structure-based paradigms.

Another article in the collection reviews the origins and capabilities
of our HINT program (Kellogg and Abraham, 2000; Sarkar and
Kellogg, 2010), which was thus designed by Abraham and Kellogg to
connect the rich information content of log Po/w (from medicinal
chemistry) with X-ray crystallographic structural data (from
structural biology).

3D interaction homology

The focus of this contribution is also on the relationship between
hydrophobicity and structure and was inspired by Abraham’s vision.
It utilizes a very specific feature and application of HINT. The
hypothesis is that it is the character of residues, and in particular,
their three-dimensional interaction networks that drive protein
structure on multiple scales. This rather obvious assertion is in
seeming contrast with the dogma of sequence homology being the
key factor in protein folding, etc. In actuality, these two notions
merge in cases of higher sequence homology or similarity. In our
approach, each residue in a protein has a hydropathic valence, which
is the constellation of interactions that it ideally would make,
including interaction type (e.g., hydrophobic, hydrogen bond,
etc.), strength of interaction and spatial arrangement of these
interactions. Interestingly, we have shown that there are a limited
number of these interaction sets, dependent on residue type and
backbone angles, and they can be represented as three-dimensional
sets of contourable hydropathic interaction maps. In previous
publications, as we developed this paradigm, these results were
demonstrated for a number of residue types: tyrosine (Ahmed
et al., 2015), alanine (Ahmed et al., 2019), phenylalanine, tyrosine
and tryptophan (Al Mughram et al., 2021a), serine and cysteine
(Catalano et al., 2021), and aspartic acid, glutamic acid and histidine
(Herrington and Kellogg, 2021). Further, these studies illustrated
that the observed 3D map profiles are conserved motifs (Ahmed
et al., 2019), the hydropathic interaction maps carry even subtle
interaction information like pi-pi stacking and pi-cation interactions
(Al Mughram et al., 2021a), have scope for adjustable
pH (Herrington and Kellogg, 2021), and provide insight into the
formation of cysteine-cysteine bridges (Catalano et al., 2021).
Finally, another study—a preliminary assessment of the
differences between residues in soluble and membrane proteins
with regard to their populations, hydropathic interaction
characteristics and solvent-accessible surface areas as functions of
backbone conformation (AL Mughram et al., 2021b)—compelled
further and deeper investigation into multiple observations from
that report.

In this contribution, we focus on the aliphatic hydrophobic
residues: alanine, isoleucine, leucine, proline and valine. While the
interaction characteristics of the sidechains with their environments
are limited to hydrophobic-hydrophobic and hydrophobic-polar
types, which can be thought of as favorable and unfavorable
hydrophobic interactions, respectively, the detailed hydropathic
interaction map calculations we performed again reveal sets of
these that are dependent on the underlying backbone angles
(i.e., secondary structure). Furthermore, the solvent-accessible
surface areas of these residues (Fraczkiewicz and Braun, 1998),
although they are generally fairly “buried”, show backbone angle
dependence.
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Membrane proteins

We also evaluate in this work a second dataset, of membrane
proteins, where we might expect the interaction roles of these
residues to be largely reversed. In other words, while the
aliphatic hydrophobic residues are generally buried with low
solvent accessibility in soluble proteins, these residues should be
“exposed” when embedded within the membrane and available for
interaction with the lipid “solvent”. However, membrane proteins
consist of multiple components, each with unique characteristics:
some residues, e.g., in intracellular and extracellular loops, likely do
not interact at all with the lipids; another set of residues with likely
minimal direct lipid interactions are those at the core of the trans-
membrane region, e.g., in channels or GPCR binding sites; and
lastly, a set consisting of the residues that do interact with the
membrane/lipids.

Importantly, most reported X-ray crystallographic and cryo-
electron microscopic structures of membrane proteins do not
contain native-like lipids due to a plethora of issues in extracting
and preserving them throughout the measurements (Carpenter
et al., 2008; Matar-Merheb et al., 2011; Hendrickson, 2016). A
key issue is that detergents are usually used to separate the
protein from the membrane, and that procedure can be
deleterious to the delicate environment surrounding the protein
and facilitating its structure and function (Yang et al., 2014; Chipot
et al., 2018; Guo, 2020; Guo, 2021). Thus, computational approaches
to evaluate lipid-protein interactions are particularly necessary in
order to really appreciate membrane protein structure and function.
The basis of our approach, the water-to-octanol partition coefficient,
has been shown to be relevant for understanding amino acid
sidechains partitioning into lipid bilayers (MacCallum et al., 2007).

To perform this work, we applied several filters from the
MemProtMD database (Newport et al., 2019) to populate and
characterize the three sets of residue environments in membrane
proteins defined above. MemProtMD is a database (http://
memprotmd.bioch.ox.ac.uk) of over 5,000 intrinsic membrane
protein structures abstracted from the Protein Data Bank, pre-
oriented such that the transmembrane axes correspond to z, and
inserted into simulated lipid bilayers
(dipalmytoylphosphatidylcholine, DPPC), through application of
Coarse-Grained Self Assembly Molecular Dynamics simulations.
While some PDB-deposited, fully experimentally-derived,
membrane protein structures do possess lipid electron density
and fitted lipid coordinates, such structures are of inconsistent
completeness and quality. To obtain residue-level solvent-
accessible surface areas (SASA), we used the GETAREA
(Fraczkiewicz and Braun, 1998) algorithm and output. We also
adapted GETAREA to define a new parameter, lipid-accessible
surface area (LASA); in other words, treating the lipid bilayer as
a solvent (McIntosh and Simon, 2007; White, 2007).

Objectives

With this extensive collection of data in hand, we set out to
explore several questions, such as: 1) What are the roles of the
aliphatic hydrophobic residues in protein structure and are these
roles backbone angle dependent; 2) Are the hydrophobic residues in

the extracellular/intracellular data sets from membrane proteins
similar to those in the soluble protein set, in terms of residue
population frequency and hydropathic character? 3) What are
the similarities and differences between the “core” and lipid-
facing residues in the transmembrane regions? 4) Are there
identifiable and calculable markers in the hydropathic residue
interaction maps and derived parameters that may predict the
likelihood of a specific residue being in a membrane environment
or elsewhere in a protein?

Long range, our vision is to exploit the maps and their associated
characteristics for all residues in protein structure prediction settings
such as sidechain rotamer optimization, protein-protein docking
and de novo structure prediction. The prerequisite for that, however,
has been building an understanding of the actual roles that each
residue type plays in structure. The articles in this series, as
referenced above, combined with the new results here for the
aliphatic hydrophobic residues, including emerging information
about those in membrane proteins, are getting us close to this goal.

Materials and methods

Soluble protein dataset

From a collection of 2,703 randomly selected proteins from the
RCSB Protein Data Bank, using only structures containing no ligand
or cofactor, we extracted all alanine, isoleucine, leucine, proline and
valine residues from each structure, excluding N- and C-terminal
residues. We have previously described our selection criteria for this
protein structure dataset (Ahmed et al., 2015), i.e., to abide by
random population-based sampling of a variety of primary,
secondary, and tertiary structures. We do not a priori exclude
proteins with similar or identical sequences, but do believe the
size of our dataset likely includes virtually all unique residue
environments of alanine, isoleucine, leucine, proline and valine.
For similar reasons, we did not apply any resolution cut-offs so that
more rare interaction environments that might be present in low-
resolution structures would be included. Hydrogen atoms were
added to heavy atoms of all structures based on their
hybridization, which was followed by conjugate gradient
minimizations of their positions using Sybyl X.2.1 (Tripos, St.
Louis, MO, United States). Residues from this data set are
designated as ALA, ILE, LEU, PRO and VAL.

Membrane protein dataset

Similarly, we extracted all alanine, isoleucine, leucine, proline
and valine residues from 362 membrane protein structures in the
Grazhdankin et al. (2020) dataset, which is a subset of the
MemProtMD database (Newport et al., 2019) of structures that
were, as deposited, pre-oriented, lipid “solvated” and subjected to ~1
μs of coarse grain molecular dynamics (Stansfeld et al., 2015). In
previous work (ALMughram et al., 2021b; Catalano et al., 2021), our
data set was slightly larger, but supplementary files (vide infra) for
seven proteins (pdbids: 3fb5, 3wxv, 4xwk, 5f1c, 5jsz, 5llu, 5m94) we
had used are not currently available. Lipids more than 6 Å away
from the protein were removed and missing hydrogen atoms were
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again added to heavy atoms and energy minimized as above. The
MemProtMD dataset structures do not include water molecules,
ions or other cofactors. To distinguish residues from the membrane
protein dataset, we designated these residues as ALAm, ILEm,
LEUm, PROm and VALm.

To bin the residues into sets representing their locations
within the membrane proteins, we relied on two of the
supplementary files in MemProtMD associated with each
protein-lipid model. First, the “Distortions“ snapshots are
PDB-formatted coordinate files (pdbid_default_dppc-
distortions.pdb) of the average surfaces formed by lipid
phosphates “beads” over the final 800 ns of simulation time
(Newport et al., 2019), which can be interpreted as the extents of
the membrane region. We averaged the z-coordinates of these
“atoms” in the upper and lower planes, which had a standard
deviation of ~1 Å, and defined all residues where the
z-coordinates of all three of their backbone atoms, N, CA and
O, are between those bounds to be in the membrane region.
Residues not meeting that criteria were assumed to be extra- or
intramembrane and placed in “soluble” bins, ALAmS, ILEmS,
etc. Residues in the membrane region were then further classified
using the second MemProtMD “residue-wise analysis” file
(pdbid_default_dppc-by-resid.csv) that reports (true/false) if
each residue is a constituent of the pore inner surface. For
“true” cases, we placed that residue in “core” bins, e.g.,
ALAmC, ILEmC, etc., while for “false” cases, the residues
were placed in the “lipid” bins ALAmL, ILEmL, etc. In order
to isolate the contribution of protein-lipid interactions, we also
calculated (vide infra) map data for this last dataset that ignored
interactions with lipids, and we identified these results as
ALAmN, ILEmN, etc.

Alignment calculations

To systematize our analyses with respect to backbone angles, we
overlayed an 8 by 8 “chessboard” over the standard plot of
Ramachandran ϕ (phi)—ψ (psi) space, with each chess square
named a1-h8 and denoted in bold italic (Ahmed et al., 2015).
The grids of the boards for alanine, isoleucine, leucine and valine
residues were shifted by −20° and −25° in the ϕ and ψ directions,
respectively, to optimally position higher-density regions, e.g., to
center the highly populated α-helix conformation within a few chess
squares. The proline Ramachandran plot’s grid was shifted by −35°

and −5° in the ϕ and ψ directions, respectively. The ϕ, ψ, and χ angles
were all calculated for every residue in our dataset, and each residue
was binned into their proper chess square based on its respective ϕ
and ψ angles. All isoleucine and leucine residues in each chess square
were further divided by their χ1 angles into three parse groups: group
“.60” (0° ≤ χ1 < 120°), group “.180” (120° ≤ χ1 < 240°), and group
“.300” (240° ≤ χ1 < 360°). In the case of proline, residues were parsed
by their χ1 angles into two bins, −30° (330°) and +30°, which we will
denote as “.30 m” and “.30p”, respectively. See Figure 1 for a
schematic of these definitions. These parses were added as suffix
to each chess square name, e.g., as b1.180. Further parsing, e.g., χ1
for valine or χ2 for isoleucine and leucine, is not necessary because
the mapping and clustering (vide infra) generally captures those
structural differences. Supplementary Tables S1-S5 contain all

information for each residue of each type in our two datasets,
including their chess squares, parses, PDB IDs, ϕ, ψ and ω
torsion angles and atom numbers for the backbone atoms and
CB of each residue.

All residues of each type were aligned to a model residue at
the center of each chess square, with the Cartesian origin at the
CA atom, the CA-CB bond corresponding to the z-axis, and the
CA-HA bond on the yz-plane (Ahmed et al., 2015). Rotation and
translation matrices were determined with least-squares fitting
of each residue’s constituent atoms to those of the model. Thus,
all calculated maps and environments result from that residue’s
interactions, and they can be aligned with all other residues of
that type in the chess square.

To simplify nomenclature for the following results and
discussion, each studied residue was assigned a number in a list
of residues within each chess square or, as needed, χ1 parse; e.g., the
first alanine in the a1 chess square is 1, the third isoleucine in the
c5.300 parse is 3, etc. Supporting information Supplementary Tables
S1A-D, Supplementary Tables S2A-D, Supplementary Tables S3A-
D, Supplementary Tables S4A-D and Supplementary Tables S5A-D,
for alanine, isoleucine, leucine, proline and valine, respectively,
unpack these codes into the actual pdbid, residue number, etc.,
From our datasets for the soluble protein (a), soluble domain (b) of
the membrane protein, lipid-facing (c) and core (d) transmembrane
residues. For example, residue 1 for the b1 chess square of (soluble)
valine (Supplementary Table S5A) is Val 46A of protein
(pdbid) 1A06.

HINT scoring function

The HINT forcefield (Sarkar and Kellogg, 2010; Kellogg and
Abraham, 2000; Kellogg, G. et al., 1991) was used for interatomic
interaction scoring. Atom-focused parameters, the hydrophobic
atom constant, an atom-level logPo/w (a1, ai > 0 for hydrophobic
atoms and ai < 0 for polar atoms), calculated using an approach
similar to CLOG-P in that it uses the defined fragments and factors
of the Hansch and Leo methodology (Hansch and Leo, 1979;
Abraham and Leo, 1987), and solvent-accessible surface area

FIGURE 1
Definition of residue χ1 parses. (A) Schema used for isoleucine
and leucine. The CA atom is behind the CB atom, the torsion is defined
as CA-CB-CG-CDn, yielding three rotamers at 60°, 180° and 300°. (B)
Schema used for proline. The CA atom is behind CB and the
torsion is defined as CA-CB-CG-CD, yielding two rotamers at 30°

(.30p) and 330° (.30m).
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(SASA, Si), calculated from local geometry (Kellogg, et al., 1992), for
atom i. carry the interaction information.

The interaction score between atoms i and j, bij, is calculated by:

bij � ai Si aj Sj Tij e
−r + Lij,

where r is the distance (Â) between atoms i and j. Tij is −1, 0, or 1 to
account for acidic, basic, etc., character of atoms involved and helps
assign the proper sign to the interaction score. Finally, Lij
implements a Lennard-Jones potential function (Kellogg et al.,
1991) described previously. In practice, bij > 0 for favorable
interactions, such as Lewis acid-base and hydrophobic-
hydrophobic interactions, and bij < 0 for unfavorable
interactions, e.g., hydrophobic-polar or Lewis base-base
interactions.

Generally, interactions were calculated for the residue of interest
only with respect to all other residue types and water, but for the
“lipid” datasets (ALAmL, ILEmL, etc.) atoms from the DPPC lipid
molecules were considered in calculations.

HINT basis interaction maps

Each residue was placed within a three-dimensional box large
enough to accommodate the structure of a residue, plus an
additional 5 Å on each dimension. These boxes, based on residue
type, are as follows: alanine, −7.5 Å ≤ x ≤ 8.5 Å; −7.5 Å ≤ y ≤ 8.5 Å;
−7.5 Å ≤ z ≤ 8.5 Å (35,937 points, 4096 Å3); isoleucine and
leucine, −9.0 Å ≤ x ≤ 9.0 Å; −9.0 Å ≤ y ≤ 9.0 Å; −7.5 Å ≤ z ≤
9.5 Å, (47,915 points, 5,508 Å3); proline, −9.5 Å ≤ x ≤ 9.5 Å; −9.5 Å ≤
y ≤ 9.5 Å; −7.0 Å ≤ z ≤ 9.0 Å (50,193 points, 5,776 Å3); and
valine, −8.5 Å ≤ x ≤ 8.5 Å; −8.5 Å ≤ y ≤ 8.5 Å; −7.5 Å ≤ z ≤
9.5 Å, (42,875 points, 4913 Å3); all with a point spacing of 0.5 Å.
As described previously (Ahmed et al., 2015), interaction grids
representing the 3D interaction space surrounding residues of
interest were calculated. Such maps visualize pairwise HINT
scores into 3D objects indicating position, intensity, and type of
atom-atom interactions between the residue and those neighboring
it. Each grid point for a map was calculated with:

ρxyz � ∑ bij exp(–[(x – xij)2 + (y – yij)2 + (z – zij)2]/σ),

where ρxyz is the map interaction score at coordinates (x, y, z), bij is
the score between atoms i and j, xij, yij and zij are coordinates of the
midpoint of the vector between atoms i and j, and σ is the width of
the Gaussian map peak, here σ = 0.5. Map data were calculated for
sidechain atoms of the studied aliphatic hydrophobic residues with
individual maps for four interaction classes: favorable polar,
unfavorable polar, favorable hydrophobic and unfavorable
hydrophobic.

Calculation of map-map correlation metrics
and clustering

The calculations of map-map correlations, i.e., comparisons of
two maps, m and n, was in general terms:

if Gt| |/F > 1.0, At � Gt/ Gt| |( ) log10 Gt| |/F( ); else, At � 0,

where each map point (Gt, for point at index t) is transformed to
log10 space and normalized with a predefined floor value, F = 1.0.
Calculational methods defining the similarity between maps m and
n, defined as D(m,n) was calculated as described previously in detail
(Ahmed et al., 2015). For clustering analysis of the pairwise map
similarity matrices, we utilized k-means clustering implemented in
the freely available R programming language and environment (R
Core Team, 2013). We opted to set a uniform maximum number of
clusters of 4 for each chess square of alanine, 9 for each chess square/
parse of isoleucine and leucine (up to 27 per chess square), 6 for
proline (up to 12 per chess square) and 9 for valine. Thus, we have
significant map diversity and scope for inter-chess square/inter-
residue comparisons. A limitation of k-means is that it does not
form singleton clusters, so we developed protocols to optionally
recover them by reconstructing the cluster solutions possessing
missing singletons. Any chess square/parse with four or fewer
maps was not subjected to clustering, but, was instead averaged
to create what is, effectively, a 1-cluster case. Each cluster is named
for the cluster member closest to its centroid; we represent cluster
names in bold, e.g., 123, to distinguish them from individual maps
or residues.

Average map and molecule RMSD
calculations

Average maps were calculated by Gaussian weighting (w) each
map’s contribution based on its Euclidean distance from the cluster
centroid:

w � exp – d2/σ2( )[ ],

where d is the map’s distance from the centroid and σ = dmax/8, the
average of all maximum distances across all clusters in the chess
square. Weighting was used so that maps closer to the cluster
centroid contribute more to the average map. In contrast, taking
an all-map flat average would overemphasize the importance of
maps further from the centroid, of which there are more (Ahmed
et al., 2015). We co-opted the term “exemplar” to represent the
residue datum closest to the centroid of each cluster output by the
k-means algorithm, which is slightly different from its formal
definition in affinity propagation clustering.

RMSDs (root-mean square distances) for each residue type were
calculated by first weighted-averaging all residue atomic positions in
a cluster to construct an average residue structure. RMSDs were then
calculated for both heavy atom and all-atom cases.

Solvent-accessible and lipid-accessible
surface area calculations

Solvent-accessible surface area (SASAs) for all residue
sidechains were calculated using GETAREA (Fraczkiewicz and
Braun, 1998) with default settings. The protein coordinates in
PDB-formatted files were submitted as input. Water molecules
are either explicit or presumed based on adequate available space.
From GETAREA’s “In/Out” parameter, we created the “foutside”
metric that represents the buriedness of residue collections,
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i.e., in a cluster, parse, chess square, etc., By designating “In” as 0.0,
“Out” as 1.0 and “indeterminant” as 0.5, and averaging these values
for the collection. For residues in the “mL” data sets, e.g., ALAmL,
the calculated SASAs are not wholly due to contact with water, either
explicit or presumed, but often arise from potential contact with
lipids; we thus term the resulting surface areas for these residues as
LASAs or lipid-accessible surface areas. Operationally, if the ratio of
the score sums involving lipid atoms to all atoms is greater than 0.1,
that residue’s SASA is reclassified as a LASA.

Results and discussion

Datasets

All five of the residue types studied in this work are common in
proteins. In our soluble dataset there are 57,104 alanines,
43,195 isoleucines, 69,012 leucines, 33,531 prolines and
53,826 valines. These account for 7.9%, 6.0%, 9.5%, 4.6% and
7.4% of all residues in this dataset, respectively. In the membrane
dataset (RESm) there are 33,988 alanines, 27,434 isoleucines,
45,551 leucines, 16,111 prolines and 30,885 valines. These
account for 8.8%, 7.1%, 11.7%, 4.1% and 8.0%, respectively of all
membrane protein residues in our dataset. These residue types,
except for PRO, are more prevalent in membrane proteins than
soluble proteins.

The three subsets we created from these data, i.e., “core”
(RESmC), “lipid” (RESmL) and “soluble” (RESmS), show
interesting trends - see Table 1. Not surprisingly, the RESmS
data set appears from this perspective to be similar to previously
reported residue frequencies for soluble proteins (AL Mughram
et al., 2021b), at least for these residues. The frequencies for residues
in the RESmL set, i.e., those more engaged with the lipids are higher
than those seen in soluble proteins, except for proline, which is
lower. The latter fact likely indicates that proline’s helix-breaking
role is unwanted in this region. At first look, the core region data
(RESmC) is very similar to the soluble region. We took a broader
look, performing the same analysis for all residue types (see
Figure 2).

Clearly, most residue types are similarly represented in the
soluble (RESmS) regions of membrane proteins as in soluble
proteins. Cysteine shows the largest negative deviation, but since
it is a fairly rare residue, it is difficult to assign much significance to

this point. The second largest negative deviation is with lysine;
interestingly it is sparsely found in all three regions despite its
frequency of >6% in soluble proteins. The dramatic swings in the
lipid accessible region (RESml) populations emphasize the structural
character and role of transmembrane residues. The “core” region
(RESmC) populations appear to be an amalgamation, and often an
average, of the other two limiting case regions. However, further
insight is to follow with other analyses we have performed in
this work.

Character and properties of residues

The soluble data set residue backbone angles follow very well the
expectations from Ramachandran’s work (see Figure 3 for alanine;
Figure 4 for isoleucine; Figure 5 for proline). Leucine
(Supplementary Figure S1) and valine (Supplementary Figure S2)
plots are in supporting information; the former is largely similar to
alanine and the latter to isoleucine. For alanine and valine, the
populations (log scale) are indicated by the size of the corresponding
square in that chess square, while for isoleucine, leucine and proline,
the χ1 parses are shown as horizontal bars (also in log scale). The
extent to which a chess square is filled represents its relative
population. Each of these squares are colored by their weighted
solvent accessible surface area—here defined as the fraction of the
residue “outside” or accessible. The hydrophobic residues in the β-
pleat motif are somewhat more buried than those in the α-helix
motif, an observation most evident for alanine.

The same analyses were performed for the three subsets of the
membrane proteins and are also displayed in these figures. First,
the RESmS subset data shows generally similar trends with respect
to chess square (backbone angle) populations as seen in the soluble
(RES) proteins, as should be expected. However, these residues are
significantly more solvent exposed than their counterparts. As the
protein fragments captured in this data set are lying just outside the
membrane, they may indeed be more exposed; in this vein, such
residues are known to often contain numerous less-structured
loops and are thus likely less well-packed. It also may be an artifact
of the isolation and crystallization techniques and protocols
applied that may have stripped away interacting species. In that
same vein, unnatural contacts, as a result of the forced
crystallization of such artificial constructs may have a similar
effect (Carpenter et al., 2008; Luo et al., 2015; Liu and Li,

TABLE 1 Frequency of ALA, ILE, LEU, PRO and VAL in membrane protein datasets.

Soluble
dataseta (%)

RESmS/
RESmb (%)

RESmL/
RESmb (%)

RESmC/
RESmb (%)

RESmS/
ALLmSc (%)

RESmL/
ALLmLc (%)

RESmC/
ALLmCc (%)

ALA 7.6 48.7 45.5 5.7 7.9 10.3 7.3

ILE 5.8 41.0 52.4 6.6 5.4 9.5 6.8

LEU 9.2 42.7 51.2 6.1 9.3 15.5 10.4

PRO 4.5 64.1 30.2 5.7 4.9 3.2 3.4

VAL 7.1 45.4 48.5 6.1 6.7 10.0 7.1

aAL Mughram et al., 2021b.;
bFraction RES in soluble domain, lipid-facing or core transmembrane domain of all RES in membrane proteins;
cFraction of RES in soluble domain, lipid-facing or core transmembrane domain of ALL residue types in these domains.
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2022). To our knowledge, detailed analyses of the hydropathic
interactions at crystallographic contacts in membrane protein
structures has never been performed, but we previously looked
at these phenomena with respect to interfacial water in soluble
proteins (Ahmed et al., 2013). Single-particle cryo-electron
microscopy-solved structures would not close-pack
extramembrane domains either, although a converse argument
can be made that “drying” of crystals artificially close-packs such
structures (Basak et al., 2018; Ravikumar et al., 2021). Also,
protein-protein interactions that are experimentally-induced
may be rarer in either case. Analyses of packing energetics
showed very little difference between soluble and
transmembrane proteins (Joh et al., 2009).

The second subset data, for the lipid exposed residues within the
transmembrane region, shows a robustly enhanced proportion of
residues in the α-helix motif: alanine—90.7%/62.4%;
isoleucine—91.9%/43.5%; leucine—91.3%/57.0%; proline—38.9%/
20.4%; and valine—91.4%/39.0%, for RES/RESmL α-helical
fractions. Most extant crystal structures of membrane proteins
have helix bundles in their transmembrane domains (As
mentioned above, prolines are expected to be rare in this

FIGURE 3
Population and solvent accessibility plots for alanine by chess
square. Square sizes are logarithmically proportional to population,
square colors encode the fraction of residues in that chess square
exposed to solvent or lipid, as defined by the inset color
map. Background colors show secondary structure.

FIGURE 4
Population and solvent accessibility plots for isoleucine by chess
square. Square sizes are logarithmically proportional to population,
square colors encode the fraction of residues in that chess square
exposed to solvent or lipid, as defined by the inset color
map. Background colors show secondary structure.

FIGURE 2
Fractions of membrane protein residues relative to residues in
soluble proteins for membrane soluble domain (RESmS), lipid-facing
(RESmL) and core (RESmC) transmembrane domains.
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environment.). Both SASA (left half of square or bar) and LASA (right
half) are shown. Note that the sum of SASA and LASA is the total
fraction exposed. These data are laid out in detail in Supporting
Information Supplementary Tables S6-S10. There are a few interesting
observations: except for very sparsely populated chess squares, the
SASA fraction is seldom zero. That is not to say that water was (or
would be) found in these structures, but the possibility does exist.
Water is known to associate with the lipid head groups and with
attached methylenes (Disalvo and de los Angeles Frias, 2019).

Lastly, the third subset data, RESmC (residues on the interior of
the transmembrane domain that are not directed towards the lipid
bilayer) are plotted in the lower right data block. The populations are
smaller and their, here water, solvent accessibility is modestly
enhanced relative to the RESmL set, but still less than that of the
(RES) soluble protein set. The residues in this subset are (or could
be) in contact with water or other ions moving through the channel
or transmembrane cavity they form. Thus, these residues could be
functionally very significant. However, the small aliphatic
hydrophobic residues of this study may also play the role of
something akin to “Teflon coating” the channel walls. Note also
that the membrane protein structures used here did not have water,

ions or, etc., In their models, which would be necessary for more
detailed analyses.

In this article, we are taking particular interest in the c5 chess
square as it is representative of the α-helix motif. For alanine, we
also examine the c5 chess square in the β-pleat conformation. In
ALA (Figure 3), the b1 is robustly populated in soluble proteins
and quite buried (10%–20% exposed); in the ALAmS, the relative
population is largely consistent, but these residues are now 40%–

50% exposed, suggesting fewer extended β-pleat subdomains in the
extramembrane regions. Alanines in this conformation are fairly
rare in the transmembrane region, but clearly those in contact with
lipids (ALAmL) are buried, and thus not quite accessible. For
alanine, the c5 data shows that, in soluble proteins, residues in the
α-helix conformation are common and 40%–50% exposed. Their
exposure increases to 50%–60% in extramembrane regions. As
noted above, alanines in the α-helix dominate the transmembrane
region, and are similarly buried (sum of LASA and SASA,
~30–40% for ALAmL).

Isoleucine (Figure 4), leucine (Supplementary Figure S1),
proline (Figure 5) and valine (Supplementary Figure S2) are
more hydrophobic than alanine, and are concomitantly more
buried. Essentially, the same general trends are observed for
isoleucine, leucine and valine structures, as for alanine, albeit
interpretation is less transparent for the first two due to the χ1
parses. Proline (Figure 5) has different secondary structure
definitions, and we are highlighting the c8 chess square in this
work. However, despite the low populations of transmembrane
prolines, its residue accessibility trends are largely consistent with
the other hydrophobic residues.

Three-dimensional interaction maps

As described in the Methods, three dimensional maps
cataloguing, for each residue in the study, the interactions
between that residue and its environment were calculated. These
maps illustrate the type (hydrophobic, hydrophobic-polar, favorable
polar such as hydrogen bonding and acid-base, and unfavorable
polar such as acid-acid and base-base), strength and loci of the
interactions. As described in previous communications (Ahmed
et al., 2015; Herrington and Kellogg, 2021), these maps, binned
by chess square, and additionally in the cases of isoleucine, leucine
and proline by χ1 angles, were clustered into map sets. Each cluster-
derived map set is expected to represent a unique constellation of
interactions between that residue and environment. We have termed
these constellations the hydropathic valence of the residue type/
secondary structure. In toto, these map sets are information-rich
backbone-dependent rotamer and interaction libraries.

Alanine
Figure 6 illustrates the interaction map sets for the four clusters

found for the sidechain interaction maps of alanine in the b1 chess
square. Table 2 lists a number of metrics describing these clusters,
including their relative populations, solvent-accessible surface areas
(SASAs), and similarity metrics. These three data assist in
characterizing the weighted average 3D maps calculated from
members of each cluster. First, the relative population of each
cluster indicates the fraction of residues within a chess square or

FIGURE 5
Population and solvent accessibility plots for proline by chess
square. Bar lengths are logarithmically proportional to population, bar
colors encode the fraction of residues in that chess square exposed to
solvent or lipid, as defined by the inset color map. Background
colors show secondary structure.
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chess square/parse that display the 3D interaction preferences ormotif
illustrated by the associated map. As will be discussed below, these
relative fractions carry significant information alone. Second, the
average SASAs (LASAs) indicate the average solvent (lipid)
exposure for the residue sidechains of the cluster members. We
include these data not only because they are informative and
characteristic of the average residue in the cluster, but also because
they are calculated completely independently from our HINT and
mapping protocol. Third, the map-map similarity or correlation data,
calculated as described above, indicates the sameness of two weighted
average cluster maps; here we are using it to compare maps from the
different residue datasets in this study. A similarity of 1.0000 suggests
that two maps are nearly or precisely identical, while lesser values
represent divergences. Supporting information, Supplementary
Tables S6A-E, contains these numerical data for all alanine chess
squares. In the discussion that follows, contoured maps will be
presented, deciphered and compared, with the above-described
numerical data as context.

Each map is depicted with two views: on the left, the z-axis
(CA-CB bond) is pointed up, while on the right, the z-axis is
pointed out of the paper’s plane. This convention is used for all
map views in this article. The top row maps are for alanines in the
soluble protein data set and were previously reported in another
article (Ahmed et al., 2019). The most common map, b1:760,
accounts for 62.4% of the alanines in this conformation and
presents with strong hydrophobic interactions in the z direction

with a collar of hydrophobic-polar interactions. Also of note, b1:
760 has a very low SASA (1±3) indicating that this particular 3D
interaction profile is almost exclusively buried. In contrast, b1:
1043 is mostly solvent-exposed (43±16), but relatively
rare—clustered at only 8.3% of b1 alanines. The second row of
maps (Figure 6) are those extracted from the soluble domains of
the membrane proteins, i.e., the ALAmS dataset. They are ordered
by similarity to alanines in the ALA dataset. Thus, b1:211 of
ALAmS is most similar to b1:760 of ALA. Indeed, Table 2 indicates
that this pair of maps has a similarity metric of 0.9974, and it is
plain that they are visually nearly identical. (All similarity metrics
for alanine’s b1 and c5 chess squares are available in supporting
information, Supplementary Table S11) While b1:211 of ALAmS
is the most common map, it is found at 40.5%, and the other three
ALAmS maps contribute more overall than in ALA. On the
surface, ALA b1:1043 and ALAmS b1:226 do not seem
similar, and their similarity is only 0.9593, but their SASA
values are consistent. It should be noted that our mapping
algorithm does calculate interactions for crystallographic
water molecules in the structures, but the Fraczkiewicz and
Braun (1998) GETAREA algorithm strips explicit water
molecules in its calculations. Note also that there are no
explicit (crystallographic or otherwise modeled) water
molecules in the membrane protein data set. Thus, the
interaction profiles represented by ALA b1:1043 and ALAmS
b1:226 are likely much more similar than they appear.

FIGURE 6
Three-dimensional clustered hydropathic interaction maps for alanine sidechains, in the b1 chess square. Each map pair (or cluster) is named by its
“exemplar”, which is the number of the map, as defined in the text, closest to the cluster’s centroid. Top row – alanine from soluble proteins dataset; 2nd

row – alanine from soluble domains of membrane proteins dataset; 3rd row – lipid-facing alanines in transmembrane domains, including residue-lipid
interactions; 4th row – as 3rd row, ignoring residue-lipid interactions; and 5th row – core-facing alanines in transmembrane domains. Each residue/
map is displayed in two orientations: left – z-axis (CA-CB bond) directed up, right – z-axis directed out of page. Green contours represent favorable
hydrophobic interactions between the residue sidechain and its environment; purple contours represent unfavorable hydrophobic interactions.
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TABLE 2 Cluster parameters and cluster-cluster similarities for alanine data sets.

Dataset Chess
square:
cluster

Relative
fractiona

(%)

SASA
(Å2)b

LASA
(Å2)c

Most similar
ALAd

Most similar
ALAmSe

Most similar
ALAmLf

Most similar
ALAmNg

Most similar
ALAmCh

cluster metric cluster metric cluster metric cluster metric cluster metric

ALA b1:760 62.3 1±3 -- -- -- b1:211 0.9974 b1:38 0.9749 b1:38 0.9749 b1:14 0.9362

b1:1043 8.3 43±16 -- -- -- b1:226 0.9593 b1:10 0.8709 b1:43 0.8851 b1:8 0.8770

b1:1186 14.9 17±12 -- -- -- b1:177 0.9726 b1:38 0.9615 b1:38 0.9615 b1:14 0.9179

b1:1276 14.5 9±11 -- -- -- b1:173 0.9827 b1:43 0.9544 b1:39 0.9469 b1:7 0.9433

c5:829 26.8 42±14 -- -- -- c5:128 0.9837 c5:518 0.9336 c5:518 0.9333 c5:86 0.9352

c5:1830 12.5 61±12 -- -- -- c5:771 0.9599 c5:518 0.8858 c5:518 0.9092 c5:86 0.9031

c5:3020 25.2 8±11 -- -- -- c5:905 0.9885 c5:393 0.9952 c5:18 0.9890 c5:7 0.9859

c5:3449 35.5 11±11 -- -- -- c5:905 0.9712 c5:679 0.9957 c5:679 0.9943 c5:139 0.9768

ALAmS b1:173 21.3 14±17 -- b1:1276 0.9827 -- -- b1:43 0.9433 b1:43 0.9426 b1:11 0.9345

b1:177 22.4 28±21 -- b1:1186 0.9726 -- -- b1:38 0.9258 b1:38 0.9258 b1:11 0.9057

b1:211 40.5 2±5 -- b1:760 0.9974 -- -- b1:38 0.9726 b1:38 0.9726 b1:14 0.9365

b1:226 15.8 56±32 -- b1:1043 0.9593 -- -- b1:10 0.8620 b1:43 0.8673 b1:8 0.8696

c5:128 22.5 47±25 -- c5:829 0.9837 -- -- c5:518 0.9490 c5:518 0.9379 c5:86 0.9460

c5:771 14.0 79±26 -- c5:1830 0.9599 -- -- c5:518 0.8891 c5:518 0.9159 c5:86 0.9207

c5:905 45.3 8±13 -- c5:3020 0.9885 -- -- c5:18 0.9970 c5:18 0.9979 c5:7 0.9905

c5:996 18.2 22±25 -- c5:3020 0.9786 -- -- c5:393 0.9819 c5:393 0.9836 c5:7 0.9634

ALAmL b1:10 15.9 25±22 16±36 b1:1186 0.9242 b1:177 0.9177 -- -- b1:10 0.9995 b1:8 0.9319

b1:38 29.5 5±10 3±9 b1:760 0.9749 b1:211 0.9726 -- -- b1:38 1.0000 b1:14 0.9163

b1:39 31.8 11±16 7±19 b1:1276 0.9526 b1:211 0.9502 -- -- b1:39 0.9947 b1:14 0.9548

b1:43 22.7 3±4 12±27 b1:1276 0.9544 b1:173 0.9433 -- -- b1:43 0.9782 b1:11 0.8895

c5:18 43.9 1±4 10±22 c5:3020 0.9881 c5:905 0.9970 -- -- c5:18 0.9990 c5:7 0.9926

c5:393 24.6 5±10 17±29 c5:3020 0.9952 c5:996 0.9819 -- -- c5:393 0.9956 c5:7 0.9776

c5:518 8.9 27±30 20±33 c5:829 0.9336 c5:128 0.9490 -- -- c5:518 0.9793 c5:57 0.9311

c5:679 22.6 6±11 11±23 c5:3449 0.9957 c5:905 0.9875 -- -- c5:679 0.9991 c5:139 0.9855

ALAmC b1:7 33.3 56±10 -- b1:1276 0.9433 b1:173 0.9234 b1:39 0.9361 b1:39 0.9387 -- --

b1:8 13.3 30±26 -- b1:1186 0.9025 b1:173 0.8962 b1:10 0.9319 b1:10 0.9321 -- --

b1:11 26.7 12±1 -- b1:1276 0.9376 b1:173 0.9345 b1:39 0.9239 b1:39 0.9255 -- --

b1:14 26.7 4±4 -- b1:760 0.9362 b1:211 0.9365 b1:39 0.9548 b1:39 0.9506 -- --

c5:7 43.9 2±4 -- c5:3020 0.9859 c5:905 0.9905 c5:18 0.9926 c5:18 0.9913 -- --

c5:57 20.4 18±17 -- c5:3020 0.9615 c5:996 0.9482 c5:393 0.9672 c5:393 0.9633 -- --

c5:86 8.3 46±21 -- c5:829 0.9352 c5:128 0.9460 c5:518 0.9178 c5:518 0.9262 -- --

c5:139 27.4 20±16 -- c5:3449 0.9768 c5:905 0.9586 c5:679 0.9855 c5:679 0.9849 -- --

aFraction of residues in cluster relative to all in chess square.parse;
bFrom GETAREA (Fraczkiewicz and Braun, 1998);
cAdapted from GETAREA results as described in text;
dCluster map in ALA dataset most similar to cluster map named by row. Note that this may not be commutative;
eCluster map in ALAmS dataset most similar to cluster map named by row;
fCluster map in ALAmL dataset most similar to cluster map named by row;
gCluster map in ALAmN dataset most similar to cluster map named by row;
hCluster map in ALAmC dataset most similar to cluster map named by row.
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The lipid facing dataset for alanine, ALAmL, was evaluated in
two ways: 1) interactions involving the artificial/modeled lipids
were included in the map calculations, as shown on the third row
of Figure 6; and 2) these interactions were ignored, as is shown on
the fourth (ALAmN) row. Clustering was performed on the
ALAmL set and that clustering solution was applied to the
ALAmN set. (The ALAmN dataset can also be independently
clustered: it is generally similar to the clustering afforded by
ALAmL, but the advantage of direct comparisons is evident.). We
see the ALAmL maps as training membrane-contacting residue
clusters for the types of interactions that may be expected. Also,
the extent of lipid-residue interactions was used to define the
difference between solvent-accessible and lipid-accessible surface
areas. Table 2 lays out the data for these clusters. There is
obviously, in this case, very little difference between the
ALAmL and ALAmN data sets—the similarities between
cluster pairs are 0.9782 and better. This is likely because
accessibility is low in the b1 conformation. The only evident
difference is in b1:43, where some z-axis hydrophobic
interactions present in ALAmL were lost in the ALAmN
maps. It should also be recalled that the b1 conformation, as
are all β-pleat chess squares, weakly populated—with ~1% of the
population in soluble ALA and ~10% of the ALAmS
population—so the resultant data b1 data in transmembrane
regions is less statistically certain. This latter point is even
more true for ALAmC, whose maps are displayed on the fifth
row of Figure 6. The observation made above, with respect to the
reduced solvent-accessibility of the core residues (Figures 3, 4, 5,
Supplementary Figure S1, Supplementary Figure S2) compared to
the soluble protein, are evident here as well: there are significantly
fewer unfavorable hydrophobic interactions in the ALAmC set.

For comparison, the cluster maps for the c5 chess square
conformation are shown in Figure 7, with the associated data
again in Table 2. This conformation more often exposes alanines
to solvent with close to 40% of alanines (clusters 829 and 1830) in
the soluble data set having SASAs greater than 40 Å2 vs only 8% in
b1 (1043). In the similarities for c5, we see what may be described as
confusion with respect to pair matching; e.g., cluster 905 of ALAmS
shows high similarity to both 3020 (0.9885) and 3449 (0.9712) of
ALA. The 3020–3449 map pair itself has a fairly high similarity of
0.9418, which suggests that perhaps three rather than four clusters
might have been appropriate. However, calculating cluster sets with
inconsistent numbers of clusters tends to obscure both visual and
numerical similarity comparisons.

It is clearer that the ALAmN set is different than the ALAmL set
in this chess square compared to b1 because alanines in this
conformation are more solvent exposed. All cluster pairs show
visual differences, but cluster 393 is perhaps the most revealing.
It interacts significantly with lipids in the former, but is more
apparently exposed in the latter. Ignoring lipid interactions, as in
ALAmN, it is, overall, exposed about 22 Å2, with a SASA of ~5 Å2

complemented by a LASA of ~17 Å2. We believe that this
information, which is calculated for every residue in this study,
for all clusters and chess squares, is novel and useful.

Valine
As we have indicated, the population of chess squares

comprising the β-pleat secondary structure, i.e., the b1 chess
square, are weakly populated and are not discussed. The maps
shown in Figure 8 are for four selected clusters from the c5
conformation. The numerical data for the c5 chess square is set
out in Table 3 (and more detailed data is in supporting information

FIGURE 7
Three-dimensional clustered hydropathic interaction maps for alanine sidechains, in the c5 chess square. See caption for Figure 6.
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Supplementary Tables S7A-E for all valines, and all similarity
metrics for its b1 and c5 chess squares are in Supplementary
Table S12. Valine has three hydrophobic atoms compared to
alanine’s one, and is obviously more engaged in hydrophobic
interactions. The VAL/VALmS paired maps are quite similar in
appearance and only the solvent-accessible 1759/322 pair has a
similarity less than 0.97. It is perhaps unexpected, but the actual
average SASA (5 Å2) for all valines in the lipid-facing region
(VALmL) is only slightly larger than that for all alanines (4 Å2);
however, its LASA is larger (23 Å2) vs alanine (16 Å2). In soluble
proteins the SASAs for ALA and VAL are 17 Å2 and 18 Å2,
respectively. None of these comparisons are statistically
significant, but we feel that they do indicate shifting of roles for
the two residues in different environments. Evidence for the
importance of lipid-residue interactions is somewhat more easily
found here than in alanine; e.g., the 86, 442 and 513 maps show
diminished hydrophobic interactions in VALmN vs VALmL.
Generally, clusters with low SASA and relatively high LASA
show this effect, e.g., 513, where SASA ~3 Å2 and LASA ~20 Å2.

Isoleucine
For isoleucine (and leucine) there are three χ1 “parses” per chess

square with a similarly increased number of clusters. Thus, we have

prepared visual cluster maps displays (Figure 9) for only one parse
(c5.300) and only four of its nine clusters. Because of isoleucine’s
particular conformation, the χ1 = 300° parse is not as highly
populated as either the 60° or 180° parses, and this chess square
is significantly less populated than c5 of leucine. The maps are
organized, as above for alanine and valine, by similarity to the
soluble (ILE) dataset cluster maps. With four, compared to one,
hydrophobic sidechain atom, isoleucine maps are much more
hydrophobic than alanine maps. Also, the atom-atom interaction
matrices from which the maps are calculated are up to four times as
complex, so the maps are also more complex. Nevertheless, there are
clearly commonalities in map profiles and features. The metrics
describing the clustered maps for c5.300 are listed in Table 4. Many
map pairs have similarities of ~0.96 or larger, especially for ILE/
ILEmS, e.g., ILE 34 and ILEmS 47, which again shows that these two
sets are quite similar. There are now very obvious differences
between the ILEmL and ILEmN cluster maps (Figure 9), with
reduced cluster-cluster similarity metrics in Table 4 (See
supporting information Supplementary Tables S8A-E for all
isoleucine data, and similarity metrics for alanine’s b1 and c5
chess squares are available in supporting information,
Supplementary Table S13) For instance, cluster 26—that
represents more than an eighth of the map profiles—is markedly

FIGURE 8
Three-dimensional clustered hydropathic interaction maps for valine sidechains, in the c5 chess square. Each map pair (or cluster) is named by its
“exemplar”, which is the number of the map, as defined in the text, closest to the cluster’s centroid. Top row – valine from soluble proteins dataset; 2nd

row – valine from soluble domains of membrane proteins dataset; 3rd row – lipid-facing valines in transmembrane domains, including residue-lipid
interactions; 4th row – as 3rd row, ignoring residue-lipid interactions; and 5th row – core-facing valines in transmembrane domains. See also caption
for Figure 6.
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TABLE 3 Cluster parameters and cluster-cluster similarities for valine data sets.

Chess
square:
cluster

Relative
fractiona (%)

SASA
(Å2)b

LASA
(Å2)c

Most similar
VALd

Most similar
VALmSe

Most similar
VALmLf

Most similar
VALmNg

Most similar
VALmCh

cluster metric cluster metric cluster metric cluster metric cluster metric

VAL c5:184 12.3 14±15 -- -- -- c5:357 0.9865 c5:513 0.9897 c5:513 0.9862 c5:25 0.9647

c5:777 7.9 7±8 -- -- -- c5:468 0.9926 c5:60 0.9917 c5:60 0.9868 c5:44 0.9769

c5:883 8.3 27±16 -- -- -- c5:357 0.9514 c5:187 0.9695 c5:187 0.9590 c5:44 0.9230

c5:1305 9.6 31±16 -- -- -- c5:362 0.9763 c5:442 0.9769 c5:442 0.9718 c5:50 0.9713

c5:1350 16.4 14±11 -- -- -- c5:385 0.9821 c5:369 0.9902 c5:369 0.9830 c5:101 0.9616

c5:1702 5.1 101±13 -- -- -- c5:322 0.9161 c5:187 0.8443 c5:187 0.8549 c5:12 0.8644

c5:1759 8.3 81±14 -- -- -- c5:322 0.9264 c5:543 0.8844 c5:543 0.8896 c5:12 0.8803

c5:1857 10.0 40±15 -- -- -- c5:124 0.9834 c5:369 0.9785 c5:369 0.9773 c5:101 0.9470

c5:1888 22.2 3±5 -- -- -- c5:385 0.9972 c5:86 0.9973 c5:86 0.9959 c5:101 0.9797

VALmS c5:40 0.7 92±14 -- c5:1702 0.8669 -- -- c5:436 0.8167 c5:436 0.8588 c5:12 0.7945

c5:124 15.2 28±21 -- c5:777 0.9834 -- -- c5:369 0.9828 c5:369 0.9809 c5:101 0.9598

c5:195 7.8 34±25 -- c5:1305 0.8983 -- -- c5:60 0.9137 c5:60 0.9157 c5:24 0.9083

c5:262 8.2 24±18 -- c5:883 0.9512 -- -- c5:60 0.9510 c5:60 0.9422 c5:44 0.9101

c5:322 4.8 71±25 -- c5:1759 0.9264 -- -- c5:187 0.8561 c5:187 0.8638 c5:12 0.8683

c5:357 12.3 8±10 -- c5:184 0.9865 -- -- c5:513 0.9922 c5:513 0.9900 c5:25 0.9451

c5:362 12.6 11±15 -- c5:1888 0.9780 -- -- c5:442 0.9767 c5:442 0.9726 c5:101 0.9612

c5:385 23.4 3±11 -- c5:1888 0.9972 -- -- c5:86 0.9959 c5:86 0.9943 c5:101 0.9786

c5:468 15.0 5±11 -- c5:777 0.9926 -- -- c5:60 0.9927 c5:60 0.9835 c5:44 0.9764

VALmL c5:48 6.9 4±6 16±27 c5:1888 0.9855 c5:385 0.9799 -- -- c5:48 0.9969 c5:103 0.9629

c5:60 25.0 2±5 25±30 c5:777 0.9916 c5:468 0.9927 -- -- c5:60 0.9971 c5:44 0.9754

c5:86 17.2 1±2 19±24 c5:1888 0.9973 c5:385 0.9959 -- -- c5:86 0.9983 c5:101 0.9813

c5:187 7.1 6±12 30±34 c5:184 0.9802 c5:357 0.9842 -- -- c5:187 0.9980 c5:92 0.9503

c5:369 10.5 7±11 16±25 c5:1350 0.9902 c5:385 0.9885 -- -- c5:369 0.9989 c5:101 0.9770

c5:436 4.2 20±30 48±39 c5:883 0.8740 c5:468 0.8725 -- -- c5:436 0.9214 c5:50 0.8728

c5:442 7.8 7±9 11±21 c5:1888 0.9839 c5:362 0.9767 -- -- c5:442 0.9994 c5:101 0.9751

c5:513 16.4 3±6 20±27 c5:184 0.9897 c5:357 0.9922 -- -- c5:513 0.9986 c5:92 0.9669

c5:543 5.1 17±19 24±30 c5:1857 0.9546 c5:362 0.9527 -- -- c5:543 0.9958 c5:101 0.9440

VALmC c5:12 14.2 22±14 -- c5:1857 0.9151 c5:124 0.9106 c5:543 0.9219 c5:543 0.9188 -- --

c5:24 9.4 17±9 -- c5:1888 0.9281 c5:468 0.9407 c5:48 0.9322 c5:48 0.9289 -- --

c5:25 7.5 11±7 -- c5:184 0.9647 c5:357 0.9451 c5:513 0.9501 c5:513 0.9443 -- --

c5:44 19.8 4±6 -- c5:777 0.9768 c5:468 0.9764 c5:60 0.9754 c5:60 0.9611 -- --

c5:48 3.8 27±10 -- c5:1857 0.9328 c5:124 0.9358 c5:369 0.9418 c5:369 0.9327 -- --

c5:50 10.4 17±13 -- c5:1305 0.9712 c5:362 0.9429 c5:442 0.9673 c5:442 0.9654 -- --

c5:92 9.4 4±5 -- c5:184 0.9572 c5:357 0.9613 c5:513 0.9669 c5:513 0.9574 -- --

c5:101 16.0 6±8 -- c5:1888 0.9797 c5:385 0.9786 c5:86 0.9812 c5:86 0.9802 -- --

c5:103 9.4 10±8 -- c5:1888 0.9534 c5:385 0.9411 c5:48 0.9629 c5:48 0.9489 -- --

aFraction of residues in cluster relative to all in chess square.parse;
bFrom GETAREA (Fraczkiewicz and Braun, 1998);
cAdapted from GETAREA results as described in text;
dCluster map in VAL dataset most similar to cluster map named by row. Note that this may not be commutative;
eCluster map in VALmS dataset most similar to cluster map named by row;
fCluster map in VALmL dataset most similar to cluster map named by row;
gCluster map in VALmN dataset most similar to cluster map named by row;
hCluster map in VALmC dataset most similar to cluster map named by row.
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different between the two (similarity = 0.9301 and ILEmN cluster
17 is actually numerically more similar to ILEmL 26). The large
cluster 26 LASA of ~41 Å2 and no SASA indicates its structural role
of interacting with lipids within the transmembrane region. Cluster
22 shows less difference between ILEmL and ILEmN (0.9907) and
has about half the LASA of 26. Its structural role would appear to be
more integral to supporting its associated helix. The core
transmembrane isoleucine (ILEmC) cluster maps are noticeably
less similar to the soluble (ILE) set. Their similarities (Table 4)
are now closer to 0.9, with the highest (0.9343) between ILE 34 and
ILEmC 8. It is important to reiterate, however, that the RESmC data
sets are not highly populated, so both visual and numerical
comparisons may be less reliable here.

Leucine
As above for isoleucine, the maps in Figure 10 illustrate four

selected clusters of the c5.300 cluster/parse of leucine. Table 5 lists
the properties of all c5.300 clusters for this residue (Supporting
information Supplementary Tables S9A-E lists all residue and
cluster data for the five leucine datasets and Supplementary Table
S14 lists the similarity matrices for the b1 and c5 chess squares.).

Interpretation of these maps and the associated cluster metrics is
largely parallel to that of isoleucine. First, there are very obvious
visual similarities in the LEU/LEUmS pairs displayed and the
numerical data support these with three of the four >0.99. The
solvent-exposed cluster pair 4045/1292 still has a strong similarity
of almost 0.97. Also, both of these account for only ~5% of their
relative chess square/parse populations. Probably because leucine’s
sidechain is more compact than that of isoleucine and it does not
penetrate into the lipids as deeply, the differences between the
LEUmL and LEUmN sets are not as clear as was seen in
isoleucine maps. Non-etheless, each cluster map encodes this
structural information. Remarkably, three of the four LEUmC
maps (36, 65 and 122, Figure 10; Table 4) have similarity
metrics >0.97 to maps (3795, 4903 and 5258, respectively) in the
soluble protein LEU set, which is a reversal of observations made in
isoleucine map comparisons; but, as mentioned above, this chess
square and the χ1 = 300° parse is much more robustly populated in
leucine, suggesting that the leucine results are perhaps more reliable,
and that the transmembrane core residues actually are largely
indistinguishable in terms of their interactions to residues in
soluble proteins or domains. The large numbers of leucines seen

FIGURE 9
Three-dimensional clustered hydropathic interaction maps for isoleucine sidechains, in the c5 chess square, χ1 = 300°. Top row – isoleucines from
soluble proteins dataset; 2nd row – isoleucines from soluble domains of membrane proteins dataset; 3rd row – lipid-facing isoleucines in transmembrane
domains, including residue-lipid interactions; 4th row – as 3rd row, ignoring residue-lipid interactions; and 5th row – core-facing isoleucines in
transmembrane domains. See also caption for Figure 6.
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TABLE 4 Cluster parameters and cluster-cluster similarities for isoleucine data sets.

Chess
square.parse:
cluster

Relative
fractiona

(%)

SASA
(Å2)b

LASA
(Å2)c

Most similar ILEd Most similar
ILEmSe

Most similar
ILEmLf

Most similar
ILEmNg

Most similar
ILEmCh

cluster metric cluster metric cluster metric cluster metric cluster metric

ILE c5.300:19 9.6 40±24 -- -- -- c5:90 0.9087 c5:125 0.9130 c5:125 0.9461 c5:17 0.9019

c5.300:26 10.1 98±18 -- -- -- c5:27 0.8737 c5:125 0.8465 c5:13 0.8554 c5:18 0.8581

c5.300:34 20.2 7±10 -- -- -- c5:47 0.9625 c5:67 0.9593 c5:67 0.9484 c5:8 0.9343

c5.300:38 5.6 38±19 -- -- -- c5:67 0.9569 c5:17 0.9368 c5:22 0.9437 c5:22 0.9120

c5.300:42 19.7 3±4 -- -- -- c5:90 0.9579 c5:26 0.9682 c5:22 0.9483 c5:22 0.9278

c5.300:100 10.1 10±10 -- -- -- c5:90 0.9668 c5:22 0.9473 c5:17 0.9380 c5:17 0.9172

c5.300:132 7.9 130±20 -- -- -- c5:27 0.8737 c5:125 0.7902 c5:13 0.8316 c5:18 0.8861

c5.300:140 8.4 42±21 -- -- -- c5:47 0.9244 c5:67 0.9369 c5:67 0.9285 c5:8 0.8997

c5.300:147 8.4 22±17 -- -- -- c5:55 0.9304 c5:22 0.9179 c5:22 0.9107 c5:8 0.9008

ILEmS c5.300:14 11.4 13±12 -- c5:38 0.9402 -- -- c5:26 0.9369 c5:22 0.9345 c5:22 0.8979

c5.300:27 10.4 67±27 -- c5:19 0.8877 -- -- c5:22 0.8734 c5:22 0.8820 c5:22 0.8619

c5.300:30 9.5 5±4 -- c5:34 0.9337 -- -- c5:67 0.9161 c5:67 0.9000 c5:8 0.8995

c5.300:47 14.3 11±16 -- c5:34 0.9625 -- -- c5:67 0.9776 c5:67 0.9755 c5:8 0.9318

c5.300:55 8.6 30±26 -- c5:147 0.9304 -- -- c5:22 0.8931 c5:22 0.8869 c5:18 0.8703

c5.300:67 14.3 25±22 -- c5:38 0.9569 -- -- c5:17 0.9419 c5:22 0.9323 c5:22 0.9173

c5.300:71 1.0 153±0 -- c5:132 0.8339 -- -- c5:125 0.7300 c5:27 0.7912 c5:18 0.8923

c5.300:88 8.6 23±26 -- c5:34 0.9215 -- -- c5:23 0.9380 c5:23 0.9300 c5:8 0.9055

c5.300:90 21.9 3±3 -- c5:100 0.9668 -- -- c5:17 0.9614 c5:17 0.9578 c5:17 0.9357

ILEmL c5.300:6 5.1 6±10 47±33 c5:42 0.9057 c5:67 0.9159 -- -- c5:14 0.9226 c5:23 0.9106

c5.300:13 10.2 0±1 55±35 c5:42 0.9534 c5:90 0.9400 -- -- c5:47 0.9159 c5:17 0.9224

c5.300:17 14.0 2±4 30±27 c5:42 0.9479 c5:90 0.9614 -- -- c5:30 0.9805 c5:22 0.9366

c5.300:22 17.2 1±6 18±25 c5:42 0.9593 c5:90 0.9468 -- -- c5:47 0.9907 c5:22 0.9138

c5.300:23 8.9 4±6 16±23 c5:34 0.9299 c5:88 0.9380 -- -- c5:55 0.9989 c5:8 0.9406

c5.300:26 12.7 0±0 41±23 c5:42 0.9682 c5:90 0.9519 -- -- c5:30 0.9526 c5:22 0.9402

c5.300:67 18.5 3±6 26±30 c5:34 0.9593 c5:47 0.9776 -- -- c5:71 0.9922 c5:8 0.9404

c5.300:125 8.3 7±10 21±24 c5:100 0.9377 c5:90 0.9353 -- -- c5:88 0.9620 c5:17 0.9275

c5.300:141 5.1 14±21 31±30 c5:34 0.9132 c5:47 0.9054 -- -- c5:90 0.9684 c5:8 0.8885

ILEmC c5.300:4 24.0 13±5 -- c5:42 0.9100 c5:90 0.8957 c5:26 0.9186 c5:17 0.9022 -- --

c5.300:8 12.0 3±2 -- c5:34 0.9343 c5:47 0.9318 c5:23 0.9406 c5:67 0.9348 -- --

c5.300:17 20.0 4±4 -- c5:42 0.9275 c5:90 0.9357 c5:26 0.9320 c5:125 0.9078 -- --

c5.300:18 16.0 3±5 -- c5:100 0.8861 c5:71 0.8923 c5:26 0.8861 c5:26 0.8908 -- --

c5.300:22 16.0 3±2 -- c5:42 0.9278 c5:67 0.9173 c5:26 0.9402 c5:17 0.9226 -- --

c5.300:23 12.0 9±6 -- c5:42 0.9011 c5:90 0.8941 c5:125 0.9234 c5:125 0.9132 -- --

aFraction of residues in cluster relative to all in chess square.parse;
bFrom GETAREA (Fraczkiewicz and Braun, 1998);
cAdapted from GETAREA results as described in text;
dCluster map in ILE dataset most similar to cluster map named by row. Note that this may not be commutative;
eCluster map in ILEmS dataset most similar to cluster map named by row;
fCluster map in ILEmL dataset most similar to cluster map named by row;
gCluster map in ALAmN dataset most similar to cluster map named by row;
hCluster map in ALAmC dataset most similar to cluster map named by row.
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in α helices, especially in interior locations of soluble proteins, and
perhaps in the lipid-facing transmembrane regions, has been
suggested to be an important factor in folding of α proteins
(Nakashima et al., 2014).

Proline
The interaction maps for four clusters of the c8.30p prolines

are displayed in Figure 11. In the nomenclature used to describe
this conformation, it is in the polyproline II helical region.
Because it is often termed a “helix breaker” residue, and
helices comprise the large majority of secondary structure
motifs seen in transmembrane regions, there are
comparatively few prolines in the PROmL and PROmC
datasets compared to the vast numbers of them in soluble
proteins (PRO) and in the extramembrane (PROmS) domains
of membrane proteins. Table 6 lays out numerical data
describing the clustering of the c8.30p datasets (See also
Supplementary Tables S10A-E and Supplementary Table S15
for more thorough data.) Prolines seem to be generally exposed:
only one of the six clusters for c8.30p in PRO, 2516, is

dominated by hydrophobic interactions with its sidechain,
which is also evident from its low SASA compared to the
others. Perhaps this exposure is a cause or consequence of
proline’s well-known role in disrupting helices in soluble
proteins (Richardson and Richardson, 1988). Proline is less
disruptive in transmembrane helices, generally inducing a
kink (von Heijne, 1991; Wilman et al., 2014). Proline’s
structural roles are environment-dependent (Li et al., 1996),
but can be functional as well (Van Arnam et al., 2011). Very
similar profiles and metrics are seen in the PROmS set.
For prolines in the transmembrane region, their cyclic
sidechains are not well-poised for deep penetration into the
lipid: LEUmL’s average SASA, ~7 Å2, is the largest of the
hydrophobic residues of the lipid-facing RESmL datasets,
while its LASA, ~25 Å2, is not notably different from valine
(23 Å2), isoleucine (25 Å2) or leucine (27 Å2). Other than for
cluster 226, the differences between the PROmL and PROmN
maps are very minor. In contrast, cluster 68, which has only
modestly larger SASA, does not have seem to have significant
residue-lipid interactions.

FIGURE 10
Three-dimensional clustered hydropathic interaction maps for leucine sidechains, in the c5 chess square, χ1 = 300°. Each map pair (or cluster) is
named by its “exemplar”, which is the number of themap, as defined in the text, closest to the cluster’s centroid. Top row– leucines from soluble proteins
dataset; 2nd row – leucines from soluble domains of membrane proteins dataset; 3rd row – lipid-facing leucines in transmembrane domains, including
residue-lipid interactions; 4th row – as 3rd row, ignoring residue-lipid interactions; and 5th row – core-facing leucines in transmembrane domains.
See also caption for Figure 6.
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TABLE 5 Cluster parameters and cluster-cluster similarities for leucine data sets.

Chess
square.parse:
cluster

Relative
fractiona (%)

SASA
(Å2)b

LASA
(Å2)c

Most similar
LEUd

Most similar
LEUmSe

Most similar
LEUmLf

Most similar
LEUmNg

Most similar
LEUmCh

Cluster metric cluster metric cluster Metric cluster metric cluster metric

LEU c5.300:997 8.8 65±25 -- -- -- c5:1258 0.9816 c5:568 0.9661 c5:568 0.9686 c5:36 0.9232

c5.300:1645 8.1 53±25 -- -- -- c5:1413 0.9873 c5:968 0.9696 c5:968 0.9766 c5:122 0.9463

c5.300:2101 1.3 141±28 -- -- -- c5:1099 0.9323 c5:497 0.8257 c5:497 0.8797 c5:160 0.8192

c5.300:3795 27.0 4±7 -- -- -- c5:499 0.9930 c5:396 0.9954 c5:396 0.9887 c5:36 0.9726

c5.300:4045 4.8 107±23 -- -- -- c5:1292 0.9686 c5:497 0.8829 c5:497 0.9361 c5:160 0.8876

c5.300:4149 16.0 28±20 -- -- -- c5:499 0.9834 c5:268 0.9924 c5:396 0.9917 c5:36 0.9741

c5.300:4885 10.7 30±22 -- -- -- c5:828 0.9858 c5:9 0.9942 c5:9 0.9913 c5:122 0.9725

c5.300:4903 9.7 10±13 -- -- -- c5:1014 0.9910 c5:268 0.9869 c5:268 0.9835 c5:65 0.9785

c5.300:5258 13.5 7±10 -- -- -- c5:828 0.9951 c5:6 0.9884 c5:6 0.9828 c5:122 0.9866

LEUmS c5.300:499 21.7 6±12 -- c5:3795 0.9931 -- -- c5:396 0.9888 c5:396 0.9831 c5:36 0.9768

c5.300:652 5.5 35±22 -- c5:1645 0.9213 -- -- c5:630 0.9192 c5:630 0.9316 c5:160 0.9205

c5.300:828 17.2 9±17 -- c5:5258 0.9951 -- -- c5:9 0.9926 c5:9 0.9839 c5:122 0.9891

c5.300:1014 13.3 13±18 -- c5:4903 0.9911 -- -- c5:268 0.9861 c5:268 0.9816 c5:75 0.9838

c5.300:1099 1.5 90±31 -- c5:2101 0.9323 -- -- c5:497 0.8288 c5:497 0.8673 c5:160 0.8274

c5.300:1258 10.0 39±20 -- c5:997 0.9816 -- -- c5:568 0.9631 c5:568 0.9599 c5:36 0.9417

c5.300:1292 5.5 70±22 -- c5:4045 0.9686 -- -- c5:497 0.8849 c5:497 0.9520 c5:160 0.8800

c5.300:1307 12.7 18±15 -- c5:4885 0.9856 -- -- c5:9 0.9815 c5:9 0.9835 c5:36 0.9540

c5.300:1413 12.8 16±18 -- c5:1645 0.9873 -- -- c5:968 0.9722 c5:968 0.9651 c5:122 0.9538

LEUmL c5.300:6 17.9 1±4 24±27 c5:3795 0.9925 c5:828 0.9903 -- -- c5:6 0.9979 c5:122 0.9746

c5.300:9 11.5 3±7 27±30 c5:4885 0.9942 c5:828 0.9926 -- -- c5:9 0.9977 c5:122 0.9848

c5.300:268 10.6 3±8 25±29 c5:4149 0.9924 c5:1014 0.9861 -- -- c5:268 0.9983 c5:36 0.9754

c5.300:396 15.3 2±5 24±25 c5:3795 0.9954 c5:828 0.9906 -- -- c5:396 0.9966 c5:122 0.9843

c5.300:497 2.3 18±25 38±37 c5:1645 0.8854 c5:1292 0.8849 -- -- c5:497 0.8983 c5:65 0.8680

c5.300:568 7.6 11±15 23±28 c5:4149 0.9685 c5:1307 0.9685 -- -- c5:568 0.9952 c5:36 0.9633

c5.300:630 4.8 4±11 39±34 c5:4903 0.9663 c5:1014 0.9597 -- -- c5:630 0.9934 c5:65 0.9443

c5.300:968 11.8 3±7 29±31 c5:5258 0.9815 c5:828 0.9851 -- -- c5:968 0.9960 c5:122 0.9714

c5.300:1139 18.1 1±3 29±24 c5:3795 0.9913 c5:828 0.9885 -- -- c5:1139 0.9949 c5:122 0.9747

LEUmC c5.300:10 10.0 22±14 -- c5:4885 0.9299 c5:1307 0.9216 c5:9 0.9417 c5:9 0.9361 -- --

c5.300:36 15.0 10±9 -- c5:3795 0.9726 c5:499 0.9768 c5:396 0.9815 c5:396 0.9749 -- --

c5.300:40 5.0 48±11 -- c5:997 0.9163 c5:1307 0.9067 c5:568 0.9013 c5:568 0.9101 -- --

c5.300:56 6.1 10±8 -- c5:4149 0.9087 c5:1307 0.9191 c5:396 0.9220 c5:396 0.9156 -- --

c5.300:65 14.4 12±10 -- c5:4903 0.9785 c5:1014 0.9839 c5:268 0.9717 c5:268 0.9679 -- --

c5.300:75 3.3 12±13 -- c5:5258 0.9404 c5:1413 0.9384 c5:6 0.9479 c5:6 0.9397 -- --

c5.300:122 22.8 4±5 -- c5:5258 0.9866 c5:828 0.9892 c5:9 0.9848 c5:9 0.9755 -- --

c5.300:160 8.3 36±21 -- c5:1645 0.8895 c5:652 0.9205 c5:630 0.8843 c5:630 0.8938 -- --

c5.300:176 15.0 1±3 -- c5:5258 0.9844 c5:828 0.9811 c5:9 0.9747 c5:9 0.9669 -- --

aFraction of residues in cluster relative to all in chess square.parse;
bFrom GETAREA (Fraczkiewicz and Braun, 1998);
cAdapted from GETAREA results as described in text;
dCluster map in LEU dataset most similar to cluster map named by row. Note that this may not be commutative;
eCluster map in LEUmS dataset most similar to cluster map named by row;
fCluster map in LEUmL dataset most similar to cluster map named by row;
gCluster map in LEUmN dataset most similar to cluster map named by row;
hCluster map in LEUmC dataset most similar to cluster map named by row.
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Interaction character and accessibility

We showed in earlier work (AL Mughram et al., 2021a;
Herrington and Kellogg, 2021; Catalano et al., 2021) that
plotting interaction character as a function of our derived
solvent-accessible surface area metric, foutside, was useful for
understanding residue roles in structure. Figure 12 presents that
analysis for i) alanine from the soluble dataset (ALA); ii) alanine
from the soluble domain(s) for the membrane dataset; iii)
alanine from the lipid-facing dataset where lipid-residue
interactions were not calculated (ALAmN); and iv) alanine
with lipid interactions included (ALAmL) and the
accessibility plotted as foutside (SASA) and foutside (LASA).
Unsurprisingly, in the soluble proteins alanine dataset
(Figure 12, upper left), as accessibility increases, interaction
character shifts from ~30% hydrophobic at foutside near zero to
~10% hydrophobic at full exposure (foutside = 1). The trends in
the ALAmS dataset are similar (Figure 12, upper right),
although there are significantly fewer clusters at small values
of foutside, and the slopes of the population-weighted fit lines are
more aggressive. In Figure 12, lower left, the largest portion of
the data is 0.35 < foutside < 0.75, which suggests that many
alanines in the lipid-facing transmembrane region are more
involved with interactions within their (largely helical) domains
than externally. To further explore these structural concepts,

foutside, calculated with interactions between the alanines
and artificial lipids, was decomposed into its “solvent” and
“lipid” accessible portions, as displayed in Figure 12, lower
right. Here it can be seen that increased lipid accessibility does
appear to lead to a larger hydrophobic interaction character, but
it should be stated that there is very little data past the 50%
accessible level. ALAmC (data not shown) is largely consistent
with ALA.

Valine is a somewhat larger hydrophobic residue than
alanine. Figure 13 displays the same set of plots for this
residue. Because of its more hydrophobic nature, it has both a
higher fraction of hydrophobic interactions at low foutside, but
that drops more rapidly as foutside approaches one compared to
alanine (Figure 13, upper left). Trends similar to those of alanine
in the other three quadrants of Figure 13, modified by valine’s
larger size and hydrophobicity, are seen.

Larger hydrophobic residues, such as isoleucine (Figure 14)
have, as expected, more hydrophobic interactions. In fact, at
foutside near zero, interactions are almost exactly half
hydrophobic and half hydrophobic-polar. In the soluble
dataset (Figure 14, upper left), as exposure increases—very
likely to water, the fraction of hydrophobic interactions drops
precipitously. In contrast, in the soluble domain of membrane
proteins (ILEmS, Figure 14, upper right), that drop is less
dramatic and possesses a slope similar to the analogous

FIGURE 11
Three-dimensional clustered hydropathic interaction maps for proline sidechains, in the c8 chess square, χ1 = 300°. Each map pair (or cluster) is
named by its “exemplar”, which is the number of themap, as defined in the text, closest to the cluster’s centroid. Top row– prolines from soluble proteins
dataset; 2nd row – prolines from soluble domains of membrane proteins dataset; 3rd row – lipid-facing prolines in transmembrane domains, including
residue-lipid interactions; 4th row – as 3rd row, ignoring residue-lipid interactions; and 5th row – core-facing prolines in transmembrane domains.
See also caption for Figure 6.
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alanine plot. There are, more, however, lower-valued foutside
clusters than in alanine. ILEmN (Figure 14, lower left) shows
narrow range of highly populated clusters: 0.45 < foutside < 0.85,
and a weak dependence on foutside. Since this dataset does not
include interactions with the lipids, and there are no water
molecules in the membrane protein models, the observed
interactions are wholly associated with the residue-residue
sidechain interactions in the protein itself, and suggest a
delicate balance of hydrophobic and polar residues in this
region of a membrane protein. This balance is manifested
with more hydrophobic residues (isoleucine, leucine, proline
and valine, with methionine, phenylalanine also being more

prevalent), and a stronger tendency for the smaller (glycine,
serine and threonine) over the longer chain polar residues (Eilers
et al., 2002; Jaakola et al., 2005; Baeza-Delgado et al., 2013). Also,
the DeGrado group and others have analyzed helix-helix
interactions and packing in numerous studies (Eilers et al.,
2002; Gimpelev et al., 2004; Walters and DeGrado, 2006;
Zhang et al., 2009; Zhang et al., 2015) that are largely
supportive of our observations. Leucine data for this analysis
is very similar, but available in supporting information as
Supplementary Figure S3. In the same way, the data for
proline is more or less the same as valine, but available as
Supplementary Figure S4.

TABLE 6 Cluster parameters and cluster-cluster similarities for proline data sets.

Chess
square.parse:
cluster

Relative
fractiona

(%)

SASA
(Å2)b

LASA
(Å2)c

Most similar
PROd

Most similar
PROmSe

Most similar
PROmLf

Most similar
PROmNg

Most similar
PROmCh

cluster metric cluster Metric cluster metric cluster metric cluster metric

PRO c8.30p:1297 15.7 31±20 -- -- -- c8:110 0.9557 c8:226 0.9245 c8:226 0.9323 c8:116 0.9173

c8.30p:1767 6.5 93±18 -- -- -- c8:1057 0.8822 c8:238 0.8871 c8:238 0.8869 c8:116 0.8533

c8.30p:2516 30.5 5±8 -- -- -- c8:1228 0.9879 c8:226 0.9867 c8:124 0.9783 c8:27 0.9541

c8.30p:4001 11.2 43±26 -- -- -- c8:1283 0.9497 c8:68 0.9091 c8:68 0.9103 c8:116 0.8908

c8.30p:6641 19.0 44±21 -- -- -- c8:1808 0.9697 c8:223 0.9473 c8:74 0.9470 c8:46 0.9497

c8.30p:7209 17.1 81±19 -- -- -- c8:1114 0.9251 c8:238 0.8962 c8:74 0.8947 c8:116 0.9341

PROmS c8.30p:110 16.6 27±19 -- c8:1297 0.9557 -- -- c8:226 0.9334 c8:226 0.9487 c8:25 0.9336

c8.30p:1057 5.9 82±23 -- c8:1767 0.8822 -- -- c8:238 0.9151 c8:238 0.9162 c8:116 0.8358

c8.30p:1114 15.2 70±27 -- c8:7209 0.9251 -- -- c8:238 0.9498 c8:238 0.9526 c8:116 0.9278

c8.30p:1228 30.2 5±9 -- c8:2516 0.9879 -- -- c8:226 0.9881 c8:226 0.9857 c8:27 0.9584

c8.30p:1283 12.4 33±22 -- c8:4001 0.9497 -- -- c8:68 0.9250 c8:226 0.9279 c8:56 0.8993

c8.30p:1808 19.6 37±23 -- c8:6641 0.9697 -- -- c8:223 0.9627 c8:74 0.9747 c8:46 0.9352

PROmL c8.30p:68 16.5 6±14 44±32 c8:2516 0.9538 c8:1228 0.9632 -- -- c8:68 0.9639 c8:56 0.9222

c8.30p:74 18.9 4±7 32±34 c8:2516 0.9425 c8:1228 0.9550 -- -- c8:74 0.9769 c8:27 0.9468

c8.30p:124 21.8 3±7 17±25 c8:2516 0.9847 c8:1228 0.9874 -- -- c8:124 0.9982 c8:27 0.9647

c8.30p:223 17.4 19±23 30±33 c8:6641 0.9473 c8:1808 0.9627 -- -- c8:223 0.9966 c8:46 0.9393

c8.30p:226 17.4 3±6 24±33 c8:2516 0.9867 c8:1228 0.9881 -- -- c8:226 0.9920 c8:27 0.9591

c8.30p:238 8.0 38±43 43±42 c8:7209 0.8963 c8:1114 0.9498 -- -- c8:238 0.9930 c8:116 0.9016

PROmC c8.30p:25 19.7 17±16 -- c8:2516 0.9397 c8:1228 0.9363 c8:124 0.9346 c8:226 0.9408 -- --

c8.30p:27 37.6 4±7 -- c8:2516 0.9541 c8:1228 0.9584 c8:124 0.9647 c8:124 0.9646 -- --

c8.30p:46 7.7 20±11 -- c8:6641 0.9497 c8:1808 0.9352 c8:223 0.9393 c8:223 0.9260 -- --

c8.30p:56 17.9 8±7 -- c8:2516 0.9319 c8:1228 0.9469 c8:124 0.9439 c8:124 0.9384 -- --

c8.30p:88 6.0 19±11 -- c8:1297 0.8895 c8:110 0.8952 c8:124 0.8827 c8:124 0.8853 -- --

c8.30p:116 11.1 29±21 -- c8:7209 0.9341 c8:1114 0.9279 c8:238 0.9016 c8:74 0.9142 -- --

aFraction of residues in cluster relative to all in chess square. parse;
bFrom GETAREA (Fraczkiewicz and Braun, 1998);
cAdapted from GETAREA results as described in text;
dCluster map in PRO dataset most similar to cluster map named by row. Note that this may not be commutative;
eCluster map in PROmS dataset most similar to cluster map named by row;
fCluster map in PROmL dataset most similar to cluster map named by row;
gCluster map in PROmN dataset most similar to cluster map named by row;
hCluster map in PROmC dataset most similar to cluster map named by row.
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FIGURE 12
Interaction character as a function of residue accessibility for alanine datasets. Each data marker represents a cluster whose size is scaled by
population of its associated cluster; fit lines are fromweighted (by population) least squares. Greenmarkers and fit lines represent favorable hydrophobic
fraction of interaction character and purple markers and fit lines represent unfavorable hydrophobic fraction of interaction character when accessibility is
SASA; cyan and magenta markers and fit lines show character when accessibility is LASA. See text for further description of results.

FIGURE 13
Interaction character as a function of residue accessibility for valine datasets. See also caption for Figure 12.
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Summary and conclusion

This study had a number of objectives. First, we wished to
characterize the residue interaction environments of the
hydrophobic residues, alanine, isoleucine, leucine, proline and
valine to complement our earlier studies of the aromatic residues
(phenylalanine, tyrosine and tryptophan) (AL Mughram et al.,
2021a), the ionizable residues (aspartic acid, glutamic acid and
histidine) (Herrington and Kellogg, 2021) and the isostructural
residues serine and cysteine (Catalano et al., 2021). The latter
work also explored, for the first time with our approach, the
differences between soluble proteins and membrane proteins.
That analysis, although revealing, was somewhat limited because
no distinction was made amongst the multiple potential structural
domains of membrane proteins. The second objective of this work,
thus, was to identify broad classes of residues that performed unique
structural roles in membrane proteins, and characterize these
residues in terms of their interaction environments and other
properties. Here, we used concepts and parameters described in
the MemProtMD database (Newport et al., 2019) to define
membrane protein residue sets that are: 1) in soluble domains, 2)
transmembrane and facing the lipids, and 3) transmembrane and
facing the core. Lastly, we are continuing to assess the value of this
map paradigm in protein structure prediction scenarios.

The 3D maps we calculated illustrate the type, strength and
spatial location of interactions between the residue of interest and
all surrounding residues and water (if present). While each
residue in each protein is, of course, unique, we have shown
through this and previous studies that encoding their interactions
in 3D maps binned by backbone angles and (when necessary) χ1,

followed by clustering and intra-cluster averaging, reveals a much
more limited set of maps. For the hydrophobic residues, the
interaction types are limited to favorable and unfavorable
hydrophobic. Their profiles reveal the specific character and
loci of their interacting partners. Our 2019 report (Ahmed
et al.) showed that these maps are, in effect, a reproducible
motif of structure because similar backbone angle bins yielded
maps that were both visually and numerically very similar. Also
seen was that the solvent-accessible surface areas (SASAs) of
highly similar maps are also the same. The present study confirms
this assertion in an emphatic manner. We found that even maps
from unique and distinct datasets also often had very high
similarities, even remarkably so.

Although we expected that residues in soluble proteins and in
the soluble domains of membrane proteins would likely be similar,
the fact that their interaction maps were often indistinguishable was
surprising. We did note that the SASAs for the latter cases appeared
to be somewhat larger, which we hypothesize may be, at least in part,
an artifact of the conditions required to crystallize membrane
proteins. While commonalities in interaction environments exist
between residues in soluble proteins and in the lipid-facing
transmembrane domain, there are differences as well. Treating
them as unique data sets allows for more nuanced analyses, such
as exploring and isolating the specific features due to residue-lipid
interactions. These features are the nodes of a three-dimensional
network where each residue map is a puzzle piece. It is surprising,
however, that these “inside-out” residues where the solvent is a lipid
are even remotely similar in terms of their interactions with
environment. The numbers of residues falling in the last
category—“core” transmembrane—is unfortunately small, less

FIGURE 14
Interaction character as a function of residue accessibility for isoleucine datasets. See also caption for Figure 12.
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than 5% of those in the soluble protein set. Thus, clustering is less
precise, and the ensuing calculations are more uncertain.
Nevertheless, the RESmC maps are more than broadly similar to
the other sets.

In addition to the residue types that we have analyzed here, and
in our previous reports, we have now completed most calculations
for all residue types. While there are certainly other interesting
stories to relate concerning these residues, our more immediate goal
is to apply these maps and associated metrics in building three-
dimensional protein structure models. With the new knowledge
gained for membrane proteins related in this article, we believe that
our approach—incorporating indirect structural effects like the pi-pi
stacking and pi-cation interactions of aromatic residues (AL
Mughram et al., 2021a), the role of ionization states in structure
for ionizable residues (Herrington and Kellogg, 2021), the
differences between residues in soluble and membrane proteins
as in this work, and our generally robust and rational treatment
of hydrophobic interactions—has significant promise. We term our
methods “3D interaction homology” because the maps are agnostic
with respect to the identity of neighboring (environment) residues,
but are instead focused on the three-dimensional arrangement of
interactions and their types. This is a fundamental difference from
de novo structure prediction tools like AlphaFold (Senior et al., 2019;
Senior et al., 2020), Rosetta (Barth et al., 2009; Yang et al., 2020), and
the newly reported ESMFold (Callaway, 2022), which largely base
their predictions on sequence homology. Lower-level predictions
such as rotamer conformation, etc., are not handled very well in
these methods, likely to the extent that such predicted structures will
be inadequate for drug discovery applications where sidechain
orientations are critical. Rotamer library-based methods (Ponder
and Richards, 1987; Headd et al., 2009; Bhuyan and Gao, 2011;
Scouras and Daggett, 2011), such as SCWRL (Bower et al., 1997;
Wang et al., 2008; Krivov et al., 2009) do fill in a lot of such gaps but
are seemingly lacking in providing an understanding of structure.
Our paradigm is another way to approach this information gap in
numerous applications such as protein-protein docking, optimizing
sidechains after site-directed mutagenesis or low-to-medium density
residue replacement in homology-built models, or after de novo
folding. Lastly, this may be an especially relevant approach for
building better membrane protein models where native or even
reasonably similar lipids are rarely present in the crystals or cryo-
EM particles, and misinterpretations of reported structures have
been published (Rawson et al., 2016; Guo, 2020; Yao et al., 2020;
Ravikumar et al., 2021).
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