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Driving mechanisms of many biological functions in a cell include physical
interactions of proteins. As protein-protein interactions (PPIs) are also important
in disease development, protein-protein interactions are highlighted in the
pharmaceutical industry as possible therapeutic targets in recent years. To
understand the variety of protein-protein interactions in a proteome, it is
essential to establish a method that can identify similarity and dissimilarity
between protein-protein interactions for inferring the binding of similar
molecules, including drugs and other proteins. In this study, we developed a
novel method, protein-protein interaction-Surfer, which compares and quantifies
similarity of local surface regions of protein-protein interactions. protein-protein
interaction-Surfer represents a protein-protein interaction surface with overlapping
surface patches, each of which is described with a three-dimensional Zernike
descriptor (3DZD), a compact mathematical representation of 3D function. 3DZD
captures both the 3D shape and physicochemical properties of the protein surface.
The performance of protein-protein interaction-Surfer was benchmarked on
datasets of protein-protein interactions, where we were able to show that
protein-protein interaction-Surfer finds similar potential drug binding regions that
do not share sequence and structure similarity. protein-protein interaction-Surfer is
available at https://kiharalab.org/ppi-surfer.
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1 Introduction

Proteins are involved in almost all essential biological processes. Biological functions of
proteins are usually exhibited through interaction with other molecules such as DNA,
proteins, hormones, and small chemical compounds. Therefore, a core concept of drug
discovery is to control the interaction of proteins with other biomolecules. Traditionally, a
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small chemical compound was identified as a drug that binds to a
well-defined pocket of a target protein. The compound typically
competes with a natural binder of the target to inhibit or enhance
its function. Even though the concept has been successfully applied
to drug discovery since the mid-twentieth century, the efficiency of
the research and development process has been decreasing
(Scannell et al., 2012). The main reason is because the space of
druggable proteins explored has almost been saturated (Rask-
Andersen et al., 2011; Scannell et al., 2012). According to Rask-
Andersen et al. (2011), the number of FDA-approved drugs
targeting unexploited proteins has decreased from ten to five
from 2001 to 2010. To expand druggable sites in the human
proteome, protein-protein interactions (PPIs) have been
suggested as a new type of drug targets since early 2000
(Toogood, 2002; Arkin and Wells, 2004; Ivanov et al., 2013; Jin
et al., 2014). Since an interaction is generated with more than two
proteins, the number of PPIs is much greater than the single
protein drug target space. The size of the human proteome is
estimated at about 19,000, whereas the size of the PPI interactome
is approximated as 650,000 by Stumpf et al. (2008).

A typical example of small molecule protein-protein interaction
inhibitors (SMPPIIs) is those which target interaction between
p53 and mouse double mutant 2 homolog (MDM2). P53 is a
tumor suppressor but it is downregulated in cancer cells via
interaction with MDM2 (Vassilev et al., 2004). Thus, compounds
that bind at the PPI site of MDM2 can prevent MDM2 to interact with
p53 and re-activate p53. Many compounds were developed under this
strategy. In fact, over 300 small chemical compounds with an
IC50 value less than 1 nM are reported in the ChEMBL compound
database (Gaulton et al., 2017).

Although PPIs have attracted lots of attention as drug targets,
there are not many SMPPIIs successfully developed so far. From
2004 to 2014, about forty PPIs have been targeted, among which
only six of them have further proceeded to clinical trials (Shin et al.,
2020). PPIs are still difficult to target because they have different
nature from traditional drug-binding sites. Drug-binding interface
at PPI tends to be larger, flatter, and more hydrophobic than single
protein targets. Moreover, a drug binding site at PPI is often
formed by transient surface fluctuation, which is not observed
in the protein-protein complex. Due to these differences, PPI is
more challenging for discovering pharmacological compounds
(Arkin et al., 2003; Eyrisch and Helms, 2007). Alzyoud et al.
(2022) calculated the druggability scores (Dscore) of twelve
commonly targeted PPIs using SiteMap. Out of six PPIs where
both apo structure and SMPPII bound conformation are available,
the Dscore of the apo structure turned out to be smaller than the
corresponding holo form. One interesting example is B-cell
lymphoma-extra large. The Dscores of the holo and apo
structures are very different, 1.09 and 0.73, respectively. Induced
fit occurs on F105, L108, and L130, which causes unwinding of a
helix and formation of a groove near the compound binding
pocket, which is not observed in the apo structure.

SMPPIIs also have distinguishing features from traditional drugs,
which are summarized as the rule of four (RO4): SMPPIIs tend to have
a molecular weight higher than 400 Da, logP higher than four, more
than four rings, andmore than four hydrogen-bond acceptors (Morelli
et al., 2011). These properties are very different from the well-known
Lipinski’s rule of 5 (Lipinski, 2004) for traditional drugs that bind to a
pocket in a protein surface. As PPIs have different properties than

traditional druggable sites, computational tools are urgently needed
that can characterize, compare, and classify PPI sites so that
researchers can identify potential druggable PPI sites and
repurpose SMPPIIs. However, computational methods for
developing SMPPIIs are critically lacking (Shin et al., 2017).

Several computational algorithms have been developed to examine
and classify PPIs. The methods can be categorized into two classes,
ones that align PPIs first and the others which are alignment-free. One
of the alignment-based methods is MAPPIS (Shulman-Peleg et al.,
2007). The method aligns PPIs and identifies corresponding amino
acids that have common interaction types from the PPIs, such as
hydrogen bonds, hydrophobic, and aromatic interactions. PCalign
(Cheng et al., 2015) quantifies physico-chemical similarities between
amino acids at PPIs. The program gives a score called PC-score that
quantifies the similarity of PPIs based on the classification. Gao and
Skolnick developed an alignment-based PPI comparison algorithm,
iAlign (Gao and Skolnick, 2010). The Galinter method (Zhu et al.,
2008) represents a PPI as a graph that connects non-covalent
interactions as edges and aligns two PPIs with a graph matching
algorithm.

PatchBag is an example of alignment-free methods (Budowski-Tal
et al., 2018). In PatchBag, an exposed residue is represented as a
normal vector of a local surface patch that is defined as neighboring
residues. Patches are classified by geometrical similarity of residues in
patches, which are then used to define similarity of PPIs that are
represented by a set of patches. PBSword (Pang et al., 2012) is another
alignment-free method, which represents a PPI as a set of vectors of
local geometric features.

Recently, we have developed a series of surface-based molecule
similarity calculation programs using three-dimensional Zernike
descriptors (3DZD) (Venkatraman et al., 2009a; Kihara et al.,
2011). The notable strength of 3DZD is that it transforms a
molecular surface into a rotationally-invariant vector with the
Canterakis-Zernike base function. 3DZD allows fast comparison of
molecular surfaces in terms of their shapes and physicochemical
properties because similarity is computed by comparing vectors.
Taking advantage of the strength, 3DZD has been applied for
many biological problems including protein shape comparison (La
et al., 2009; Xiong et al., 2014; Han et al., 2017; Aderinwale et al., 2022),
protein-protein docking (Christoffer et al., 2021a; Christoffer et al.,
2021b), comparing chemical compounds (Venkatraman et al., 2009b;
Shin et al., 2015), structure-based virtual screening (Hu et al., 2014;
Shin et al., 2016; Shin and Kihara, 2018), cryo-EM map comparison
(Sael and Kihara, 2010a; Esquivel-RodriguezXiong et al., 2015; Han
et al., 2017; Han et al., 2019), and binding site comparison (Sael and
Kihara, 2010b; Chikhi et al., 2011; Sael and Kihara, 2012; Zhu et al.,
2015; Zhu et al., 2016). Particularly, for aiding drug discovery, we have
developed a virtual screening program, PL-PatchSurfer (Hu et al.,
2014; Shin et al., 2016; Chiba et al., 2017; Shin and Kihara, 2018; Chiba
et al., 2019; Shin and Kihara, 2019). PL-PatchSurfer calculates
complementarity between a protein binding pocket and a ligand
compound using 3DZD. In PL-PatchSurfer molecular surface of a
binding pocket and a ligand is segmented into a set of overlapping
surface patches, where local chemical complementarity is represented
by 3DZDs. The fit of a binding pocket and a ligand is evaluated by
finding patch pairs from the pocket and the ligand that are
complementary to each other. PL-PatchSurfer showed superior
performance to existing methods in virtual screening especially
when the input receptor structure is slightly different from the
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holo form, such as an apo structure or a computational model because
the surface representation is more tolerant to such structural changes.

Here, we developed a new method, PPI-Surfer, which represents a
PPI surface with 3DZDs and quantifies the similarity between
different PPIs. Similar to PL-PatchSurfer, PPIs are segmented into
overlapping surface patches and their physicochemical properties are
represented by 3DZDs. Compared with the above-mentioned PPI
comparison methods, PPI-Surfer is unique in that several
physicochemical features mapped on a PPI surface are naturally
described in the same fashion by using 3DZDs. Compared with
existing methods discussed above, first, PPI-Surfer is an alignment-
free method, thus different from the alignment-based methods which
need to superimpose interacting protein complexes to compute their
similarity. Compared with the two existing alignment-free methods
(Pang et al., 2012; Budowski-Tal et al., 2018), a novel strength of PPI-
Surfer is it can identify local surface similarities in PPIs because
combinations of similar surface patches within the two given PPIs
are explored. In contrast, the two existing methods compute similarity
of a pre-defined PPI regions.

PPI-Surfer was benchmarked on three datasets: On the 2P2I
database (Morelli et al., 2011; Basse et al., 2016), which stores
32 experimentally determined complex structures of drug-targeted
PPIs, PPI-Surfer overall identifies similarities of PPIs consistently
as a sequence-based and a ligand docking-based method yet was
able to identify PPI site pairs that are similar in terms of the surface
properties but not similar in terms of sequence. Then, we applied
PPI-Surfer to identify hotspot regions of PPIs that are identified by
MAPPIS (Shulman-Peleg et al., 2007), an alignment-based PPI
comparison method. Finally, we used a dataset of SARS-CoV-
2 spike protein binders (Cao et al., 2020), and showed the
program successfully identified the true binder from artificially
generated decoy proteins.

2 Materials and methods

2.1 The algorithm of PPI-Surfer

2.1.1 Generating of molecular surface patches
The aim of the PPI-Surfer is to calculate the similarity between

two PPIs. A PPI surface is defined by surface atoms that are closer
than 5 Å from any heavy atoms of the binding partner protein.
Figure 1 illustrates an overview of the algorithm. The first step of
PPI-Surfer is to generate surface patches of given PPI structures
using the APBS program (Jurrus et al., 2018). APBS constructs a
3D grid spacing of 0.6 Å, covering the whole structure of a given
protein. The program constructs the surface of a protein by
removing the grid points outside of the protein with a water
probe (a 1.4 Å radius). For instance, for the structure of SRC
kinase, which has 452 amino acids, the number of grid points is
reduced to 300,044 from about six million points. Then, the
electrostatic potential on surface points is assigned by solving
the Poisson-Boltzmann equation. To further characterize protein
surface, we also compute and assign three other physicochemical
features, hydrogen-bond acceptors and donors, hydrophobicity,
and visibility. For hydrophobicity, atomic logP values are assigned
to each atom using the same parameter as the XlogP3 program
(Cheng et al., 2007). Then, a molecular hydrophobic field at a
surface point is calculated as Eq. 1 (Heiden et al., 1993).

MHPi �
∑N

j�1fj 1 + exp rij − 4( )[ ]−1
∑N

j�1 1 + exp rij − 4( )[ ]−1 (1)

Indices i and j are a surface point and an atom from a protein,
respectively. fj is an atomic logP value from the XlogP3 parameter and
rij is the distance between the voxel point i and the atom j.

FIGURE 1
Workflow of PPI-Surfer.
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The hydrogen-bond property of a surface point is assigned by
considering the closest atom of the protein. If the closest atom is a
hydrogen-bond donor or an acceptor, a value of 1 or −1, respectively,
is assigned to the surface point. Otherwise, the point is assigned
with zero.

The visibility concerns the local curvature of a surface point (Li
et al., 2008; Sael and Kihara, 2012). It has a value that ranges from 0 to
1 with 1 for a fully exposed and 0 for a fully buried point. To compute
visibility for a surface point, a set of rays is expanded from the point to
512 directions and the fraction of rays that are not blocked by a protein
surface is computed. A ray is considered blocked if the nearest-
neighbor point (which is in 0.3 Å) belongs to the protein surface.

After assigning all the features to surface points the surface of a
given PPI surface is divided into patches. Seed points are iteratively
selected from protein surface points so that they are separated by more
than 5 Å from each other. Then, a surface patch is segmented by a
sphere of a 10 Å radius centered at a seed point. Patches can overlap
and cover the entire PPI surface (see Figure 1).

The physicochemical properties on a surface patch are
represented by 3DZD (Canterakis, 1999; Venkatraman et al.,
2009a; Kihara et al., 2011) essentially in the same way as we
used in PL-PatchSurfer2 (Shin et al., 2016; Shin and Kihara,
2018). 3DZD represents a 3D function f(x) as a vector of
coefficients. The similarity (or the distance) of two 3D
functions, which represents a physicochemical feature on patch
surfaces, can be simply computed by the Euclidean distance
between the vectors. A 3D function f(x) is converted to 3DZD
as follows:

Ωm
nl �

3
4π

∫
x| |≤ 1

f x( )Zm
nl x( )dx (2)

x � (x, y, z) � (r, θ, π) and Z(x) is the Zernike-Canterakis basis
function, composed of radial function Rnl(r) and spherical harmonics
Ym
l (θ,φ) (Eq. 3).

Zm
nl � Rnl r( )Ym

l θ,φ( ) (3)
n, l,m are integers and the conditions for the numbers are −l <m <

l, 0 < l < n, and (n-l) is even.
3D Zernike moment is further converted to 3DZD, which is

rotationally invariant, by taking a norm:

Fnl �











∑m�l

m�−l Ωm
nl( )2√

(4)

The dimension of 3DZD is determined by the order n, which also
sets the resolution of the 3DZD representation. In PPI-Surfer, n is set
to 15, making 3DZD a 72-dimensional vector.

2.1.2 Similarity between PPI sites
To quantify similarity of two PPI sites, which are represented by a

set of patches, we optimize pairing of patches from the two PPI sites so
that the following score (distance), PatchScore, is minimized:

Patch Score PPI1, PPI2( ) � wP × pDist PPI1, PPI2( )
+ wR × RMSD PPI1, PPI2( )
+ wA × APPD PPI1, PPI2( ) (5)

The first term, pDist, is a weighted sum of the Euclidean distance
between 3DZD for matched patch A and B.

pDist PPI1, PPI2( ) � ∑
i
wi 3DZD1,i − 3DZD2,i

∣∣∣∣ ∣∣∣∣ (6)

The index i denotes physicochemical features of a patch, which are
3D shape, electrostatic potential, visibility, hydrogen-bond acceptors/
donor distribution, and hydrophobicity. Relative weights of the
features, wi, were trained on the protein structures that bind to
multiple partner proteins, called a hub protein set, extracted from
the PiSite database (Higurashi et al., 2009). PiSite collects structures of
protein complexes that share a common component protein and
provides protein-protein interaction sites at a residue level. The
details of the training will be described in the next section.

The second term of Eq. 5 is the root-mean-square deviation
(RMSD) of the seed points of the matched patches. The
coordinates of seed points of matched patches on each PPI site are
extracted and superimposed to calculate the RMSD. The last term of
Eq. 5 is called APPD, an abbreviation of Approximate Patch Position
Difference:

APPD PPI1, PPI2( ) � APP1 − APP2| | (7)
APP is a histogram of the geodesic distance from a seed point to

other seed points in the given PPI site. The bin size was set to 1.0 Å.
APP represents an approximate position of a patch in the PPI surface,
i.e., the patch is placed in the middle or edge of a PPI site.

To search similar patch pairs between PPI sites, a modified version
of the auction algorithm, a bipartite matching method, is used (Sael
and Kihara, 2010b). The algorithm minimizes the PatchScore (Eq. 5)
by matching similar patches pairs iteratively. Once the
correspondence of surface patches is finalized, the overall similarity
between the two PPI sites is calculated as a different score, the PPI
Score:

PPI Score � kP × Avg pDist( ) + kR × Avg RMSD( )
+ kA × Avg APPD( ) + kS × SD (8)

where the Avg(X) is an average of a term X in Eq. 5 over all matched
pairs. All the weights (kis) in Eq. 8 were optimized to maximize the
benchmark performance measured by the hub protein set, which will
be described in the next section. The last term, SD, refers to the Size
Difference between the PPI sites, which is inferred by counting the
number of patches on each PPI site. The term is determined by
dividing the difference between the number of patches of two PPI sites
by the number of surface patches of the larger PPI site. PPI Score is a
distance metric; similar PPI sites have a small value.

2.2 Score optimization using the hub protein
dataset

The weight optimization of the scores was performed on the hub
protein dataset. This dataset contains “hub” proteins, which bind
multiple partner proteins using the same interface. We first obtained
180 complexes that consist of 69 hub proteins and their binding
partners from PiSite (Higurashi et al., 2009). From this set, the
complex with the highest resolution was selected and the rest were
disregarded if multiple structures of the same complex were included.
Also, we removed proteins that undergo a large conformational
change upon binding. An example of this category of the hub
protein is calmodulin. Finally, a hub protein and its binding
proteins were removed if the binding proteins do not share a
sufficiently large common binding area with the hub protein. To
quantify the common PPI area in the two binding proteins, first, two
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complex structures between the hub and a binding protein were
overlapped by superimposing the hub protein structures. Then, the
PPI interfaces and surface patches in the two binding proteins were
generated. Patches from the two binding proteins were considered as
corresponding overlapping patches if the distance between their seed
points on the PPI surfaces was less than 5 Å. If the number of
overlapping patch pairs was less than five, the partners were
discarded. A hub protein was kept in the training set if it has more
than two partner proteins. After these steps the dataset remained
129 PPI pairs of 49 hub proteins and their interacting proteins. The
number of interacting proteins for a hub protein ranged from 2 to 6
(average: 2.6).

Using the hub protein dataset, weights in Eqs 5, 6, 8 were
optimized. First, the weight values for pDist (Eq. 6) were
optimized, which concerns the balance among given features that
characterize surface patches. We aimed to identify weights that can
find corresponding PPI patches in the binding proteins that share the
same hub proteins. The corresponding PPI patches were defined as the
distance between seed points is less than 5 Å.

The pDist weight optimization was performed as follows: First, we
counted the total number of corresponding PPI patches after
superimposing two PPI surfaces with hub protein. Then, the weight
sum of Eq. 6 was computed for all pairs of patches from the two PPI sites.
From a query patch of a PPI site, we examined whether the patch from
the other PPI sites with the minimum distance was its corresponding
patch or not. All weights were trained by a grid search, by varying the
value from 0.0 to 2.0 with an interval of 0.1. The target function of the
training is the number of identified corresponding pairs by pDist divided
by the total number of corresponding pairs that are found at the first
step. The resulting weights were 1.0, 0.1, 1.0, 0.3, and 1.6 for shape, the
electrostatic potential, visibility, hydrogen-bond acceptor/donor, and
hydrophobicity, respectively. We took the grid search approach rather
than a machine learning approach to determine the weights because the
number of features and the number of training data were not large.

Next, the weights of Eq. 5 were trained. The hub protein set and
the grid search strategy were also used for this step. The weights of
individual terms searched from 0.0 to 2.0 with a grid space of 0.1.
Auction algorithm was applied to identify patch pairs that have
minimum Patch Score (Eq. 5). The target function was the number
of the corresponding patches identified by Auction algorithm divided
by the total number of corresponding patches. The success rate of
19.99%. The optimized weights are 0.7, 0.9, and 1.7 for pDist, RMSD,
and APPD, respectively.

Lastly, weights for the PPI Score (Eq. 8) were determined. The
weights were optimized so that a query PPI surface (the PPI surface
of a binding protein) was able to identify the similar PPI sites,
which is the PPI site of a binding protein that shares the same hub
protein among all the 158 binding proteins in the hub dataset. The
target function we used was an average rank of the correct partner
proteins that share the same hub protein. For example, if the hub
protein H interacts with partner proteins A, B, C, D, and E, we took
A as a query and searched the dataset that includes the other
partner proteins. Then, the average rank of the other four binding
proteins, B, C, D, and E, was calculated. For this test we only used
20 hub proteins that have more than three partner proteins were
used. The best average rank is 44.036. The optimized weights of
individual terms of Eq. 8 are 0.6, 0.1, 0.2, and 0.1 for pDist, RMSD,
APPD, and SD, respectively. PPI-Surfer is made available at https://
kiharalab.org/ppi-surfer.

3 Result and discussion

The developed PPI-Surfer was tested in classifying PPI surfaces in
three datasets. The three datasets have no overlap with the hub protein
set taken from PiSite that were used as the training set to determine
weighting factors in the scoring functions of PPI-Surfer.

3.1 Application of PPI-Surfer to classify PPI
surfaces in the 2P2I database

The 2P2I database is a hand-curated database of 3D structures of
druggable PPI interfaces (Morelli et al., 2011; Basse et al., 2016). It
contains 32 PPIs (Accessed on September 2017). For each PPI, three
types of structures are provided, which are a PPI complex, protein-
ligand (a drug molecule) complexes, and apo protein structures of a
receptor protein that the drug and partner protein bind. The database
classifies PPI surfaces into three categories: protein-peptide
complexes, protein-protein complexes, and bromodomain-histone
complexes. The last category, bromodomain-histone, could be
included in the first category, protein-peptide complexes. However,
the authors classified them into a separate class because they share
specific binding modes and high sequence similarities. In addition,
compounds that inhibit the bromodomains have a smaller size and
lower hydrophobicity than inhibitors of the other categories. We
analyzed the interface of the receptors taken in each of the
32 PPIs, which is the one that has protein-bound structures. The
32 complex structures are shown in Figure 2.

To understand how PPI Score evaluates the similarity of PPI sites
(Eq. 8), we computed the PPI Score for all pairs of the 32 PPI sites
using PPI-Surfer and compared the results with two other reference
scores that quantify different aspects of PPIs. The first reference we
used was the sequence similarity of the target proteins, which is a
conventional metric to capture evolutional and the global similarity of
proteins. We used the bit scores of the SSEARCH program (Pearson,
1991) for sequence similarity. Then, for a single PPI site, a vector of bit
scores against all PPI sites in the dataset was constructed. The
sequence distance between PPI sites was defined as 1.0—(cosine of
the vectors of the two PPI sites). Thus, if two PPI sites are identical, the
sequence distance is 0.0.

The second reference score we compared against with the PPI
Score considers the similarity of the ranked order of drugs that would
bind to PPI sites. This score was used in previous works for comparing
drug-binding pockets by other groups (Fukunishi et al., 2005;
Govindaraj and Brylinski, 2018). We call it the drug ranking
distance. The assumption of this score is that similar protein
surface would bind similar ligands. Thus, the drug ranking distance
evaluates PPI sites focusing on a different aspect from the PPI score by
PPI-Surfer. To compute the drug ranking distance, we docked
1,267 FDA-approved drugs from the Prestwick Chemical Library
(https://www.prestwickchemical.com/), a collection of 1,520 off-
patent small molecules, to the PPI sites using the GLIDE SP ligand
docking program (Halgren et al., 2004). Among the 1,267 drugs,
1,113 were successfully docked to all the 32 PPIs. To run GLIDE SP the
inner and outer docking boxes were set to have 10 Å and 30 Å lengths
for each side and the centers of the docking boxes were set to the
centroid of the PPI interface residues. The interface residue was
defined as residues that are closer than 4.5 Å from any heavy atom
of the partner protein. Using the 1,113 compounds that commonly
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docked to the PPI sites, for each PPI site we computed a ranked list of
the 1,113 compounds according to their binding scores. Then, for all
pairs of PPI sites, we computed the sum of the Euclidean distance of
the ranks of the same compounds. The drug ranking distance was then
defined as the Z-score using the score distribution from all the pairs of
PPI sites. If two PPI sites have similar compound docking results, it
has a small negative Z-score. Thus, for all three metrics including PPI
Score, a small value means that the PPI sites are similar to each other,
and a large value indicates that the PPI sites are different.

Since PPI-Surfer compares PPI surfaces locally by surface patch
characteristics rather than globally, it is expected that the program
could yield PPI pairs that share locally similar physicochemical surface
properties that may not be identified by the global similarity search, as
we observed in our protein local surface-based binding site

comparison methods, PatchSurfer (Sael and Kihara, 2010b; Chikhi
et al., 2011; Sael and Kihara, 2012; Zhu et al., 2015; Zhu et al., 2016)
and PL-PatchSurfer (Hu et al., 2014; Shin et al., 2016; Chiba et al.,
2017; Shin and Kihara, 2018; Chiba et al., 2019; Shin and Kihara,
2019). To find out the unique characteristics of PPI Score, we analyzed
the Pearson’s correlation between PPI Score and the other two
reference metrics and hierarchical clustering based on the three
metrics.

Figures 3A, B show correlations between the PPI Score with the
sequence distance and the drug ranking distance, respectively. In
Figure 3A, pairs of PPI sites with a small sequence distance of less
than 0.3 belong to the same protein families. For example, HRAS and
KRAS has a sequence distance of 0.006 and X-linked inhibitor of
apoptosis protein (XIAP) and cellular inhibitor of apoptosis 1 (CIAP)

FIGURE 2
Entries in the 2P2I dataset. Proteins in blue were considered as receptors and their PPI surface were compared.
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has a sequence distance of 0.22. Comparing PPI Score with the two
reference metrics, PPI Score did not show overall strong correlation
with the two metrics. The Pearson correlation coefficient with the
sequence distance was 0.171, while it was 0.067 with the docking
ranking distance. The overall small correlation coefficient between the
sequence distance, the drug ranking score with PPI Score are not
surprising because the sequence distance concerns the global similarity
of the proteins while the PPI Score is local physicochemical similarity
of PPI regions. Also, the drug ranking distance only indirectly reflects
chemical similarity of local regions in PPIs sites. However, at the same
time we can see cases that these metrics are related. In Figure 3A, very
small PPI Scores only occurred for PPIs from the same family and
reversely, relatively large PPI Scores (e.g., over 1) were only observed
for PPIs from different protein families. Similarly, in Figure 3B, we see
that a relatively small drug ranking distance was observed only when
PPIs have a small PPI Score.

Next, we performed hierarchical clustering of PPI sites using the
three metrics. Figures 4A–C show clustering results using the sequence
distance, drug ranking distance, and the PPI Score, respectively.

We first discuss the clustering results using the two reference
scores, the sequence distance (Figure 4A) and the drug ranking
distance (Figure 4B). In these two clustering results, PPI sites of
bromodomain-histone complexes, which are indicated with “B” in
their IDs, were consistently grouped (shown in dark blue and violet
boxes). They are separated into two subgroups, one colored in dark
blue and the other in violet. Bromodomain-containing proteins have
two bromodomains in their structures. The five members of the dark
blue box are the first bromodomains (BD1s) and all four members of
the violet box are the second bromodomains (BD2s). PPI sites of these
two groups are slightly different in the histone peptide binding region.
The binding site near the C-terminal of the co-complexed histone
peptide is different between BD1s and BD2s. BD2s form a helix, while
BD1s have a coil structure.

Besides the bromodomain entries, all the clusters formed by the
sequence distance (Figure 4A) within 0.6 are consistent with clusters in
the dendrogram by the drug-ranking distance (Figure 4B). A cluster of

five PPI sites (sky blue box), four PPI sites of CIAP (3D9UAB,
3D9TBD, 1G73DA, and 3D9TAC) and XIAP (1G73DA) in the
protein-peptide complex class (indicated with “1” at their IDs) and
one PPI site, XIAP (1NW9AB) from the protein-protein complex class
(indicated with “2” at their IDs), are grouped in both dendrograms
although additional entries are included in the drug ranking distance
dendrogram (sky blue). Despite residing in different classes, 1G73DA
and 1NW9AB are both XIAP proteins with different binding partners,
which explains why they were grouped in the sequence distance
dendrogram. Similarly, clusters indicated with boxes in different
colors (green, yellow, orange, and red) are consistent between the
two dendrograms.

Although the sequence-based clustering (Figure 4A) and the drug
ranking-based clustering (Figure 4B) are consistent in many places,
there are also differences. In the sequence-distance-based dendrogram
(Figure 4A), a loose cluster with a distance over 0.6, which includes
eight PPI sites from the protein-peptide complex and protein-protein
complex classes, was formed at the top of the dendrogram. But these
PPI sites are scattered in the drug-ranking distance-based
dendrogram, indicating that the sequence distance at 0.6 or lower
is not generally sufficient to assume similar drug-binding properties.

Next, we examine the clustering results based on the PPI Score
(Figure 4C) relative to the two reference metrics. As visualized in
colors, most of the clusters in the sequence- and drug-ranking-based
dendrograms were consistently observed in the PPI Score-based
clustering results. The common clusters include four out of five
entries in the bromodomain, BD1 (dark blue), three out of four in
the bromodomain, BD2 (violet), four out of five in the CIAP and XIAP
complexes (sky blue), B-cell lymphoma (green), HIV integrase
(yellow), KRAS and human RAS proteins (orange), and two out of
three entries of double mutant 2 proteins (red). The average PPI Score
of PPI pairs from same family with a (sequence distance less than
0.3 was 0.574.

On the other hand, there are also differences. In the PPI Score-
based clustering, two subgroups of bromodomain cluster (dark blue
and violet) were separated in the dendrogram and some entries were

FIGURE 3
Score distribution of PPI Score of 32 PPIs in the 2P2I database. (A) scatter plot of the PPI Score and the sequence distance. (B) scatter plot of the PPI Score
and the drug ranking distance. The red and green squares are 2FLUXP/1YCRAB and 1TUEAB/4GQ6AB pairs, which are discussed in the text.
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isolated from the rest of the subgroup members. Among five BD1 PPI
sites, 2DVQBQ was not clustered together and placed close to the
BD2 cluster (violet). The main reason for this separation turned out to
be the number of patches, i.e., the size of the PPI interface. The PPI
Score (Eq. 8) includes a term for PPI site size difference, which
accounts for the differences of number of patches. As 2DVQBQ
has a 17-residue-long histone peptide in the complex, which is
longer than peptides of the other four BD1 members (peptides of

BD31AB, 3UVWAB, BDT1AB are13 residue long 2DVQAP has a 10-
residues-long peptide), the PPI site of 2DVQBQ had more surface
patches than the other members. The PPI site of 2DVQBQ consists of
20 patches, while the other members had 13–16 patches (average: 14.5)
(Figure 2). This patch number difference of 2DVQBQ made the SD
term larger to the rest of the BD1 members, which resulted in the
separation in the dendrogram (Figure 4C). Besides the SD term in Eq.
8, 2DVQBQ has similarities to other BD1members in other terms. For

FIGURE 4
Hierarchical clustering of the 32 PPIs in the 2P2I database. We used the Ward’s clustering method. (A) clustering results using the sequence distance. (B)
Clustering results using the drug ranking distance. (C) Clustering results using the PPI Score. (D) Clustering results using only the hydrophobicity term to
quantify patch similarity in the PPI Score. After the corresponding patch pairs were identified between two PPIs, only the hydrophobicity term was used to
compute pDist score (Eq. 6). (E) Clustering result using only the electrostatic potential term in pDist. In the dendrogram, the 2P2I class of each PPI is
denoted in front of the PDB ID as follows: 1 for protein-peptide, 2 for protein-protein, and B for bromodomain. Entries in the same cluster by the sequence-
distance are shown in the same color across the three dendrograms.
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FIGURE 5
Comparison with 2FLUXP and 1YCRAB, which are clustered in the PPI Score-based clustering. (A)Molecular surfaces of KEAP1 (2P2I ID: 2FLUXP, left) and
MDM2 (2P2I ID: 1YCRAB, right) and seed points (center of patches, sky blue sphere). The seed points of patch pairs identified by PPI-Surfer are colored in red,
blue, purple, orange, and yellow. The pairs have the same color codes. (B–D) Seed points of the patch pairs andmolecular surface regions that are closer than
6 Å from the seed points. Patch #11 of KEAP and #6 of MDM2 red, panel (B), patch #3 of KEAP and #5 of MDM2 blue, panel (C), and patch #13 of KEAP
and #11 of MDM2 purple, panel (D). The KEAP patches are shown on the left and MDM2 patches are shown on the right.
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FIGURE 6
Comparison with 1TUEAB and 4GQ6AB, which are clustered in the PPI Score-based clustering. (A)Molecular surfaces of replication protein E1 (2P2I ID:
1TUEAB, left) and menin (2P2I ID: 4GQ6AB, right) and seed points (center of patches, sky blue sphere). The interface extracted is highlighted as pink. The seed
points of corresponding patch pairs identified by PPI-Surfer are colored in green, purple, orange, yellow, black, and pink. (B) The electrostatic potential
mapped on the PPI surface. The color changes from red (negative) to blue (positive). (C) Hydrophobicity mapped on the PPI surface. The color changes
from sky blue (hydrophilic) to orange (hydrophobic). (D) Patch pairs that have the closest distance from 1TUEAB and 4GQ6AB. 1TUEAB patch #8 and 4GQ6AB
patch #21. The seed points are shown in green. Surface regions within 6 Å to the seed points are colored also in green. (E) Patch pairs that have the second
closest distance from 1TUEAB and 4GQ6AB. 1TUEAB patch #12 and 4GQ6AB patch #22. The seeds and the surface regions are colored in purple. (F, G)
Predicted binding poses of folic acid panel (F) and imidazolidinyl urea panel (G) on the PPI surfaces of 1TUEAB and 4GQ6AB. Two-dimensional structures of
the compounds are shown at the middle of the panels.
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example, 2DVQBQ and BD31AB has an average physicochemical
similarity of patches, pDist (the first term in Eq. 8) of 0.268, the first
term of PPI Score, which is the seventh rank of pDist among all pairs of
31 PPI sites.

The PPI site size difference in the complexes also explains why
2E3KDR was separated far from two clustered BD2 members,
BD42AB and BD32AB (violet). The length of the 2E3KDR histone
peptide is 14, shorter than 16 that bind to the other BD2 PPIs.
Moreover, the C-terminal tail of the 2E3KDR histone does not
bind to the bromodomain, which resulted in only four PPI patches
for 2E3KDR. This is much smaller than the average number of patches
of the other three BD2s, 16.3, which largely influenced to the PPI Score
between 2E3KDR and the rest.

The next example of difference observed in the PPI Score-based
clustering is for three PPIs of double mutant 2 proteins (red). In the
PPI Score-based clustering, the cluster of double mutant 2 proteins
included two additional PPI sites, von Hippel-Lindau disease tumor
suppressor (VHL, 2P2I ID: 4AJYVH) and Kelch-like ECH-associated
protein 1 (KEAP1, 2P2I ID: 2FLUXP). 2FLUXP has a β-propeller
structure, complexed with a 16-residue-long peptide with two β-
strands. Figure 5A shows PDB structures of 2FLUXP and 1YCRAB
(mouse double minute 2 protein (MDM2) complexed with p53). This
PPI site pair had distances of 0.556, 0.863, and 1.943 for PPI Score,
sequence similarity score, and docking ranking score, respectively (red
square in Figures 3A, B); thus, these two PPIs are close in terms of PPI
Score despite the larger distance between them in terms of the
sequence similarity and the drug ranking score. The PPI Score of
0.556 is smaller than 0.574, which is the average PPI Score value of
PPIs from the same protein family.

A closer look at their PPI sites indeed identifies similarities in
corresponding surface patches. The top five patch pairs identified by
PPI-Surfer are shown in Figure 5A. Patch #11 of 2FLUXP and patch
#6 of 1YCRAB (red-colored patches, Figure 5B) have polar residues
such as TYR and GLN. Another patch pair, 2FLUXP #3 and 1YCRAB
#5 (blue-colored patches, Figure 5C), are mainly composed of
hydrophobic residues, TYR, PHE, and SER for 2FLUXP #3 and
LEU, ILE, and PHE for 1YCRAB #5. Similarly, both 2FLUXP
#13 and 1YCRAB #11 (purple-colored patches, Figure 5D) contain
polar (GLN), negative (ASP), and aromatic residues (TYR). The
patches in the two PPIs are also numerically close. The matched
patch pairs have high physico-chemical similarities, especially for
electrostatic potential and hydrophobicity. The average 3DZD
distance of electrostatic potential was 0.07, which is less than or
comparable to double mutant protein PPI pairs (0.09 for 3DABAB-
1YCRAB, 0.06 for 1YCRAB-1YCQAB, and 0.10 for 1YCQAB-
3DABAB). Similarly, average hydrophobicity distance of 2FLUXP-
1YCRAB was 0.10, while the three pairs of the red cluster have 0.09,
0.07, and 0.08.

Figure 6 is a case where two PPI sites were similar and clustered by
the drug ranking score (Figure 4B) and PPI-score (Figure 4C), but not
by the sequence similarity (Figure 4A). They are protein E1 (2P2I ID:
1TUEAB) and menin (2P2I ID: 4GQ6AB) (olive in Figure 4). PPI
Score of these PPIs is 0.487, closer than the average PPI Score of the
same protein family. Their sequence, drug ranking, and PPI Score-
based distances are shown in green square in Figures 3A, B. These two
proteins do not share a high sequence and structural similarities
(sequence identity: 4.3% (Needleman and Wunsch, 1970), TM-
Score structural similarity: 0.16 (Zhang and Skolnick, 2004)).
Figure 6A shows their overall structures with the PPI sites

highlighted in pink and seed points of surface patches shown by
dots. The patch pairs identified by PPI-Surfer are colored in green,
purple, orange, yellow, black, and pink. The structures of their partner
proteins are also different; replication protein E1 binds to regulatory
protein E2 with 218 amino acids, while menin binds to a 12-residue-
long peptide. Despite these differences, 1TUEAB and 4GQ6AB have
similar PPI sites. The PPI of 1TUEAB and 4GQ6AB consists of 22 and
24 patches, thus they are similar in size. Also, as shown in Figures 6B,
C, these two PPIs are at a cavity of the protein surface and have a
somewhat similar distribution of the electrostatic potential and
hydrophobicity. The average 3DZD distances of electrostatic
potential and hydrophobicity are 0.05 and 0.10, respectively, which
are smaller or comparable to the same protein family as observed in
double mutant 2 protein family. The two PPIs are mostly negatively
charged (colored in red in Figure 6B) and hydrophobic regions
(colored in orange in Figure 6C) locate at the boundary of the
PPIs. In Figure 6D, we closely looked at patch pairs 1TUEAB
#8 and 4GQ6AB #21 (green seed points), which have the closest
distance among corresponding pairs. The patch #8 of 1TUEAB is
surrounded by hydrophobic residues (ILE), a negatively charged
residue (GLU), and an aromatic residue (TYR) and similarly, the
patch #21 in 4GQ6AB is also composed of GLU, TYR, ILE, and MET.
The second closest patch pair (Figure 6E) was1TUEAB #12 and
4GQ6AB #22 (purple seed points). They are both composed of a
charged residue (GLU), a hydrophobic residue (LEU), and an
aromatic residue (TYR).

In terms of the drug ranking distance, 1TUEAB and 4GQ6AB
have four compounds in common among their top 10 scoring docked
compounds. Among the four common compounds, we can see two
compounds have similar binding modes on these two PPI sites. First
one show in Figure 6F is folic acid. The heterobicyclic ring is close to
the purple patch in both PPI sites, which has negative electrostatic
potential and hydrophilic character, and the benzyl ring in the middle
of the compound was placed close to the orange patch composed of a
negatively charged surface with half hydrophobic and half hydrophilic
character. Also, the terminal carboxyl group was predicted to bind to
the yellow patch, which is hydrophilic. Another common compound
ranked with in top 10 for the two PPI was imidazolidinyl urea
(Figure 6G). When surface patches that are closer than 5 Å from
the docked pose on both PPIs are examined, the black patch that has
negative and hydrophobic character is located close to the two peptide
bonds, and one of the five-membered heterocyclic ring is close to the
pink patch, which has neutral electrostatic potential and hydrophobic.

For comparison with the PPI Score, we only used the
hydrophobicity term and the electrostatic term to define the patch
distance, pDist (Eq. 6) in Figures 4D, E, respectively. Clusters made by
the single term made showed less consistent results with the two
reference scores (Figures 4A, B) as well as by the full PPI Score
(Figure 4C).

To summarize, PPI Score did not show a strong overall numerical
correlation to two existing reference metrics, the sequence distance
and the drug ranking distance. However, it holds general consistency
with the two metrics in identifying similarity in PPI pairs. PPIs of the
same protein family have a small PPI distance. Also, a small drug-
ranking distance corresponds to a small PPI Score. Therefore,
clustering results of PPIs with PPI Score included many common
clusters with the results by the two reference metrics as shown in
Figure 4. There are differences, of course, which can be explained by a
close look. PPI Score can be large (more distance) if two PPI sites have
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different size and identified similar PPIs by PPI Score have similarity
in the electrostatic potential and hydrophobicity.

3.2 Identifying PPI hotspots

As PPI-Surfer compares two PPI interfaces locally and identifies
similar local patches, it could be useful to identify interface hotspots.
The hotspots are residues at a PPI interface and are responsible for
maintaining a high binding affinity of the PPI. Therefore, hotspot
residues are often preserved both sequentially and spatially among
related proteins (Glaser et al., 2003; Ma et al., 2003; Aytuna et al., 2005;
Res and Lichtarge, 2005). In this section, we tested PPI-Surfer on three
pairs of protein complexes that have common hotspot residues. The
hotspot residues were defined by the MAPPIS method, which
superimposes the structures of interacting protein pairs and
identifies residues that have similar physico-chemical interactions
between them and defines them as hotspot residues (Shulman-
Peleg et al., 2007). In the paper of MAPPIS, the authors collected
71 PDB entries from 14 proteins and provided hotspot information for
three protein sets. They are sets of ribonucleases inhibitor complexes
(four PPIs), immunity proteins with colicin DNase (six PPIs), and
T-cell receptors (TCR) with superantigens (six PPIs) (Table 1 of Ref.
17). Each set contains different protein complexes but they often share
the same proteins with 100% identical sequences. Thus, here, we ran
PPI-Surfer for pairs of proteins that are not 100% identical.

In the first set, we compared ribonuclease inhibitors (RIs) from the
PDB entry 1a4y and from 1dfj. The sequence identity between them is
77%. Three hotspot residues in RI have been experimentally
confirmed, which are TYR434, ASP435, and TYR437 (the residue
numbers are from 1a4y A chain). In order to evaluate the performance
of PPI-Surfer on hotspot identification, we defined a hotspot patch as a
patch that locates closer than 5 Å to any heavy atom of a hotspot
residue when computed from its seed point. For example, seven
hotspot patches were identified on RI with angiogenin (1a4yA).

Table 1 summarizes the results of hotspot patch and residue
detection by PPI-Surfer. Hotspot residues and patches of RIs are
shown in Figure 7 as an example. Out of the seven hotspot patches on
the PPI interface of 1a4yA (Figure 7A), six of them are identified as
common when compared to 1dfjB (Figure 7B). All the six patches are
located near experimentally determined hotspots (TYR434, ASP435,
and TYR437 in 1a4yA). In Figure 7, the three lowest pDist distance
(i.e., the three most similar) patches are colored in black, red, and blue,
which distribute among all three hotspot residues.

The second pair is proteins from the immunity proteins with colicin
DNases, 1bxiA and 1znvA, which have a sequence identity of 59%.
GLU30, ASP51, TYR54, TYR55, and PRO56 in 1bxiA are hotspot
residues that were identified by experiments. MAPPIS identified all
these five residues (Shulman-Peleg et al., 2007). Likewise, PPI-Surfer
identified the five residues in 1bxiA when compared with 1znvA. The last
pair is 1jckA and 1ktkE, from T-cell receptors. The sequence identity
between them is 55%. They have four experimentally identified hotspot
residues, ALA52, GLU53, THR55, and PRO70 (the residue numbers are
from 1jckA). PPI-Surfer was able to identify hotspot patches that
correspond to all four hotspot residues.

The results on this experiment show that PPI-Surfer detects
hotspot patches since they are similar in physico-chemical
properties among related proteins. The difference between MAPPIS
and PPI-Surfer is that while MAPPIS takes protein complexes as input
and identifies common interactions through structural alignments,
PPI-Surfer identifies similar regions without the information of the
binding partner, thus without structural alignment operation.

3.3 Predicting SARS-CoV-2 virus protein
inhibitor

Next, we applied PPI-Surfer to a dataset of SARS-CoV-2mini protein
inhibitors, a set of helical proteins that were computationally designed to
bind to the receptor-binding domain (RBD) of human Angiotensin
Converting Enzyme 2 (ACE2). The bound mini protein inhibitor
interferes with the interaction of RBD with the SARS-CoV-2 spike
protein (Cao et al., 2020). Many mini-protein inhibitors were initially
computationally designed and then their interactions were verified by
experiments. Through this process, the authors identified eight proteins,
named LCB1 to LCB8, which bind to RBD with a dissociation constant,
KD, of 1–20 nM (Cao et al., 2020). The amino acid sequence lengths of the
eight proteins are between 56 and 65. The global pairwise sequence
identities of the eight LCB peptides ranged from 7.6% to 50.0% (Table 2).
As shown in the table, LCB2 and LCB7 have a sequence identity of 50%
between each other and the rest of the pairs share less than 30% identity.
The complex structures with ACE2 were made available in PDB only for
LCB1 (PDB ID: 7JZU, Figure 8A) and LCB3 (PDB ID: 7JZM).
Additionally, we modeled the tertiary structure of the remaining six
designed inhibitors, LCB2, 4, 5, 6, 7, 8, using GalaxyTBM (Ko et al., 2012)
and then docked them to RBD using GalaxyTongDock (Park et al., 2019).
All the designed proteins were predicted to have helix bundle fold. The
binding residues information of ACE2, which is available in
Supplementary Table S1 of Cao et al. (2020), was used to guide
protein-protein docking.

Starting from each of the eight binders, we constructed decoy
proteins by sequence optimization using Rosetta FixBB (Kuhlman
et al., 2003), where the sequence of each starting LCB was mutated
randomly while maintaining the backbone conformation in the

TABLE 1 Detection of hotspots using PPI-Surfer. Three pairs of PPI surfaces were
compared with PPI-Surfer and corresponding patches were identified between
them. Among the identified patch pairs, hotspot patches and residues were
reported. Under each PDB ID, we listed the number of hotspot patches and
hotspot residues of the entry. The numbers of detected hotspot patches and
residues by PPI-Surfer are shown in the column of Identified.

Ribonucleases

PDB ID 1a4yA 1dfjB Identified

Hotspot Patches 7 12 6

Hotspot Residues 3 3 3

Colicin Immunity Proteins

PDB ID 1bxiA 1znvA Identified

Hotspot Patches 12 14 9

Hotspot Residues 5 5 5

T-Cell Receptors

PDB ID 1jckA 1ktkE Identified

Hotspot Patches 10 12 8

Hotspot Residues 4 4 4

Frontiers in Molecular Biosciences frontiersin.org12

Shin et al. 10.3389/fmolb.2023.1110567

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1110567


docking pose with RBD. Among those generated sequences, we
selected 10 amino acid sequences which have the 10 lowest Rosetta
energy. Thus, for each LCB, 10 mutant proteins that share the same
backbone structure and PPI interface were produced. The predicted
structures and their mutants are made available at a public repository,
doi: 10.5281/zenodo.7214132.

On the library of the eight designed binders and their decoys, we
calculated the surface similarities among their PPIs using PPI-Surfer and
examined if the PPI Score can discriminate the binders from other
generated decoy proteins. We first compared LCB1, LCB3, and their
decoys in terms of the PPI Score. We started with these two binders
because LCB1 and LCB3 has a low sequence identity of 18.3% and both
have experimentally determined complex structures with RBD. We
performed PPI site comparison in two directions. First, the PPI site of
LCB1was compared with the PPI site of LCB3 and its 10 decoys. Next, we
computed the PPI site similarity from LCB3 with LCB1 and its 10 decoys.

As shown in Table 3, when LCB1 was compared with LCB3 and its
decoys, PPI-Surfer identified that the binder, LCB3, is the most similar
PPI site to LCB1 than the other 10 decoys (the left column) with a

substantial Z-score of less than −2. Similarly, the search from
LCB3 against LCB1 and its 10 decoys also identified LCB1 as the
most similar PPI site. Thus, PPI-Surfer was able to identify the binder
pairs from decoys despite their low sequence identity. In Figures 8B, C,
we showed top five corresponding surface patches from PPI sites of
LCB1 and LCB3 in the same colors. All the corresponding patches are
located around the center of the RBD binding site, which is between
two helices. The most similar patch pair (shown in purple in Figures
8D, E) has hydrophobic characteristics. The seed point of LCB1 patch
#20 (Figure 8D) is surrounded with ILE, SER, TYR, MET, and PHE,
and the partner patch from LCB3 #12 (Figure 8E) is composed of LEU,
MET, THR, TYR, and PHE.

We further analyzed PPI sites of other six LCBs, LCB2, 4, 5, 6, 7,
and 8. We compared the PPIs of the LCBs and their decoys with
LCB1 and LCB3, the two binders that have crystal structures, in terms
of the PPI Score by PPI-Surfer. To rank the PPIs, first, we computed
Z-Scores of PPI Scores from LCB1 and LCB3 separately and averaged
them. In Figure 8, the averaged Z-score of PPI Score are shown relative
to the Rosetta energy.

The PPI-Surfer identified the original sequence of LCB5 as the
top. Besides the original sequence of LCB was the second closest PPIs
with LCB1 and LCB3 for three other cases (LCB4, 6, 7) (Figure 9).
LCB5 was the fourth 4th strongest binder among the 8 LCBs and
prevented ~20% of virus infections when ~100 nM was treated (Cao
et al., 2020). By the authors’ experiment, LCB4 showed a nanomolar
range of EC50 (Cao et al., 2020). LCB2 is an interesting case. PPI Score
did not identify the original LCB2 among the closest PPI to LCB1 and
3, but it recognized decoys that have the lowest Rosetta energy as the
closest PPI. PPI Score and the Rosetta energy showed substantial
correlation of 0.604.

To summarize, PPI-Surfer identified experimentally verified
binders or the one that has the lowest binding energy as the closest
PPIs by the PPI surface similarity, which is not obvious from the
sequence similarity of the proteins.

FIGURE 7
Hotspot patches in two ribonuclease inhibitors (RIs), which were identified by PPI-Surfer. (A), 1a4yA. Three hotspot residues, TYR434, ASP435, and
TYR437 are shown in the stick representation. (B), 1dfjB. The three hotspot residues, TYR430, ASP431, and TYR433 are shown in the stick representation. These
two receptors have a sequence identity of 77%. The seed points of six corresponding patch pairs identified by PPI-Surfer are shown in spheres in the same
colors. In addition, other seeds of hot spot patches are shown with light gray spheres. The three lowest pDist patch pairs and their surfaces are colored
black, red, and blue.

TABLE 2 Pairwise sequence identities (%) between LCBs.

LCB2 LCB3 LCB4 LCB5 LCB6 LCB7 LCB8

LCB1 27.1 18.1 19.7 26.4 23.3 28.3 24.6

LCB2 29.4 23.4 7.6 25.9 50.0 17.6

LCB3 19.3 11.2 24.6 24.6 19.0

LCB4 18.6 21.7 20.0 23.0

LCB5 7.7 23.3 14.9

LCB6 25.8 12.4

LCB7 10.8
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FIGURE 8
PPI sites of LCB1 and LCB3. (A) The crystal structure of the ACE2 RBD domain (Gold) and LCB1 (sky blue). PDB ID: 7JZU. (B) The structure and seed points
(spheres) of LCB1. (C) The structure and seed points (spheres) of LCB3. Top 5 closest patch pairs are indicated by the same color. (D, E) The closest patch pairs
(purple) from (D) (LCB1 #20) and (E) (LCB3 #12). The residues surrounding LCB1 #20 (ILE, SER, TYR, MET, and PHE) and LCB3 #12 (LEU, MET, THR, TYR, and
PHE) are shown in a stick representation.

TABLE 3 PPI Scores between ACE2 binders, LCB1, LCB2 and their mutants (decoys). The numbers in the parentheses are Z-Scores.

Compared with LCB1 (PDB ID: 7JZU) Compared with LCB3 (PDB ID: 7JZM)

Protein PPI Score Protein PPI Score

LCB3 0.877 (−2.101) LCB1 0.877 (−2.070)

Mutant #1 1.024 (0.657) Mutant #1 0.941 (−0.449)

Mutant #2 1.068 (1.482) Mutant #2 0.995 (0.919)

Mutant #3 1.005 (0.300) Mutant #3 0.985 (0.665)

Mutant #4 0.945 (−0.825) Mutant #4 0.976 (0.437)

Mutant #5 1.010 (0.394) Mutant #5 0.934 (−0.626)

Mutant #6 0.977 (−0.225) Mutant #6 0.987 (0.716)

Mutant #7 0.976 (−0.244) Mutant #7 1.006 (1.197)

Mutant #8 1.055 (1.238) Mutant #8 0.951 (−0.196)

Mutant #9 0.956 (−0.619) Mutant #9 0.981 (0.564)

Mutant #10 0.986 (−0.056) Mutant #10 0.913 (−1.158)
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4 Conclusion

We developed PPI-Surfer, which quantifies PPI surface similarity
that considers five physicochemical properties relevant for forming
PPIs. A strength of PPI-Surfer is it can identify similar local regions in
given PPIs, unlike existing methods that compares predefined PPI
regions. PPI-Surfer is unique in that it identifies similarity of surface
properties that do not rely on amino acid sequence and atom positions
in the 3D structure of proteins. When tested on the 2P2I database, we
found that the PPI Score by PPI-Surfer is in general in a good
agreement with the protein sequence distance and the drug ranking
distance yet showed interesting cases where PPI-Surfer uniquely
identified surface similarity that are not obvious from the sequence
distance. PPI-Surfer was also able to identify hotspots in PPIs. When
tested on the SARS-CoV-2 protein inhibitors, PPI-Surfer was able to
find surface similarities of potent binders that again do not have a high
sequence similarity.

At this junction, we acknowledge the limitations of this work.
While the results presented are promising, the robustness of the
method must be further tested on different data and tasks as the
datasets used in this works are not large. Specifically, direct
relevance of identified PPI interface similarity to PPI drugs has
not been examined as the number of approved PPI drugs is too
small. Additionally. PPI-Surfer does not take into account the

flexibility of protein structures. As a result, potential drug
binding sites in PPIs that appear in the dynamics (cryptic
binding sites) are not detected.

Despite the importance and growing interests in PPI drugs,
computational protocols for the development are not well
established. PPI-Surfer would be a valuable tool for finding
similarities and classifying PPI sites and aid protein-based PPI drug
discovery.
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