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The viral disease dengue is transmitted by the Aedes mosquito and is commonly
seen to occur in the tropical and subtropical regions of the world. It is a growing
public health concern. To date, other than supportive treatments, there are no
specific antiviral treatments to combat the infection. Therefore, finding potential
compounds that have antiviral activity against the dengue virus is essential. The
NS2B-NS3 dengue protease plays a vital role in the replication and viral assembly.
If the functioning of this protease were to be obstructed then viral replication
would be halted. As a result, this NS2B-NS3 proves to be a promising target in the
process of anti-viral drug design. Through this study, we aim to provide
suggestions for compounds that may serve as potent inhibitors of the dengue
NS2B-NS3 protein. Here, a ligand-based pharmacophore model was generated
and the ZINC database was screened through ZINCPharmer to identify molecules
with similar features. 2D QSARmodel was developed and validated using reported
4-Benzyloxy Phenyl Glycine derivatives and was utilized to predict the IC50 values
of unknown compounds. Further, the study is extended to molecular docking to
investigate interactions at the active pocket of the target protein. ZINC36596404 and
ZINC22973642 showed a predicted pIC50 of 6.477 and 7.872, respectively. They also
showed excellent binding with NS3 protease as is evident from their binding energy
of −8.3and −8.1 kcal/mol, respectively. ADMET predictionsofcompounds have shown
high drug-likeness. Finally, themolecular dynamic simulations integratedwithMM-PBSA
binding energy calculations confirmedboth identified ZINC compounds as potential hit
moleculeswith good stability.
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Introduction

Dengue, a viral disease caused by members of the Flaviviridae family, is a leading
public health concern, affecting most Asian and Latin American countries, and
becoming a major cause of hospitalization and death in these regions (WHO,
2022). The disease spreads among humans through infected female Aedes aegypti or
Aedes albopictus (Adawara et al., 2020). There are four serotypes of Dengue virus
(DENV), namely, DEN-1, DEN-2, DEN-3, and DEN-4, of which DEN-2 is considered
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the most virulent strain (Adawara et al., 2020; Dwivedi et al.,
2021). Up to date, other than supportive, no specific antiviral
treatment exists to treat the illness, thus finding potential
compounds that have an anti-dengue activity that can be
developed into efficient drugs with the least toxic effects on
human beings is the need of the hour (Wellekens et al., 2022). In
vitro testing of inhibitory activities of various compounds is a
time-consuming procedure and is also expensive, pointing
toward the usage of quantitative structure-activity
relationship (QSAR) models which is a promising way to
predict the biological activity of new compounds (Kurniawan
et al., 2020).

The viral genome encodes for three structural proteins and
seven non-structural proteins, of which NS3 is a non-structural
protein that is essential for RNA replication and viral assembly
(Dwivedi et al., 2021). This protein contains a serine protease
domain, whose activity depends on the formation of a non-
covalent complex with the NS2B protein as a cofactor, thus
making the NS3 protein an attractive target that can be used
to develop dual-acting drugs that are effective against DENV
(Behnam et al., 2015). It has been reported that structure-based
drug design may not be suitable for developing NS3–NS2B
inhibitors due to the specific structure of the protease which is
slightly smooth in 3D space, and to date, ligand interaction
mechanism and QSAR information are very limited (Luo
et al., 2017).

Various in silico studies aiming to identify NS2B/
NS3 inhibitors have been performed, for example, a study by
Qamar et al., in 2017 pointed out that plant flavonoids have the
potential to inhibit the dengue protease enzyme and could stop
replication of DENV(Qamar et al., 2017). Other studies focusing
on phytocompounds as novel dengue protease inhibitors have
also been reported isolated phytochemicals belonging to different
groups including fatty acids, glucosides, terpenes and terpenoids,
flavonoids, phenolics, chalcones, acetamides, and peptides.
Curcumin, quercetin, and myricetin were found to act as non-
competitive inhibitors for the NS2b/NS3 protease enzyme
(Saqallah et al., 2022). Though various in silico experiments
have been performed to identify NS2b/NS3 inhibitors, most of
these studies are molecular docking based, and studies based on
QSAR are few.

In 2015, Behnam et al. performed a study that presents an
extensive biological evaluation of NS3 inhibitors containing
benzyl ethers of 4-hydroxyphenylglycine that function as
non-natural peptide building blocks synthesized via a
copper-complex intermediate. In this study, we make use of
these inhibitors to develop a ligand-based pharmacophore
model as well as a QSAR model, in order to identify lead
compounds having anti-dengue activity. This study also
elaborates on the ligand interactions and toxicity analysis of
the inhibitors based on in silico predictions. These findings can
then be utilized and integrated into in vitro studies in order to
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TABLE 1 Structures of the selected FDA approved drugs and their docking scores.

S. No. Standard drug Structure Binding energy (kcal/mol)

1 Danoprevir −13.5

2 Glecaprevir −13

3 Simeprevir −12.1

4 Saquinavir −10.5

5 Indinavir −10.5

6 Tipranavir −10.3

7 Nelfinavir −10.2

8 Asunaprevir −9.9

(Continued on following page)

Frontiers in Molecular Biosciences frontiersin.org03

Poola et al. 10.3389/fmolb.2023.1106128

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1106128


TABLE 1 (Continued) Structures of the selected FDA approved drugs and their docking scores.

S. No. Standard drug Structure Binding energy (kcal/mol)

9 Darunavir −9.4

10 Amprenavir −9.3

11 Telaprevir −9.2

12 Fosamprenavir −9.2

13 Lopinavir −9.1

14 Boceprevir −8.8

15 Ritonavir −8.6

16 Atazanavir −8
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further confirm the possibility of developing these inhibitors
into effective drugs.

Methodology

Identification of inhibitor compounds

An extensive survey of literature revealed the DenvInD-
Database of inhibitors of Dengue virus (https://webs.iiitd.edu.in/
raghava/denvind/), a curated database of Dengue virus inhibitors for
clinical and molecular research (Dwivedi et al., 2021). This database
contains detailed information about the SMILES, PubChem IDs,
EC50, CC50, IC50, and Ki values of 484 compounds which have been
validated as inhibitors against various drug targets of dengue virus
using in vitro studies. From this database, the specific set of
inhibitors against NS3 protease was selected for further studies.
Out of the 365 NS3 protease inhibitors reported in the database,
104 compounds containing 4-Benzyloxy Phenyl Glycine residues
were selected, whose biological assays were performed using
fluorometric assay HPLC-based DENV-protease assay in order to
eliminate false positives (Behnam et al., 2015). The IC50 value is a
measure of the effectiveness of a drug in bringing about the
inhibition of its respective target. Therefore, based on the
availability of IC50 values, 80 compounds were further selected
for the pharmacophore modeling and QSAR study as is
presented in the supplementary information. The IC50 values
were converted to pIC50 values in order to normalize the
variation in concentration units. The structures of these
80 compounds were drawn using ChemSketch, a software
developed by Advanced Chemistry Development, Inc. (Li et al.,
2004).

Identification of standard drugs

There is presently no standard treatment for dengue
infection and therefore there is a need to explore all avenues
that will lead us to potential drugs. In order to carry out a
comparative analysis between the compounds obtained from
DenvInD and standard drugs used to treat other similar viruses,
as well as to check the possibility of drug repurposing, a set of
15FDA-approved standard antiviral drugs have been reported
to inhibit protease in Hepatitis C Virus (HCV) and Human
Immunodeficiency Virus (HIV) was identified, as shown in
Table 1. The SDF files of these compounds were downloaded
from DrugBank for further analysis (Wishart et al., 2018).

Pharmacophore-based screening of ZINC
database

The top 3 compounds with the highest pIC50 values were
selected and their energies were minimized using Avogadro,
using the steepest descent algorithm and MMFF94 force field
(Hanwell et al., 2012). These molecules were converted to

mol2 format and were provided as input to PharmaGist with the
maximum number of output pharmacophores as 5, in order to
develop the pharmacophore model. The pharmacophore feature
output file was then used as input to ZINCPharmer, an open web
server used to screen the ZINC database to identify compounds with
similar pharmacophore features (Koes and Camacho, 2012). The
resultant compound hits were then downloaded as SDF files for
molecular docking analysis.

Quantitative structure-activity studies
(QSAR) studies

Creating training and test set
The 80 final compounds chosen from DenvInD were split

into training set and test set. The range of pIC50 values for the
training set and test set was 5.42–7.74 and 5.01–7.55,
respectively. Based on a randomized process, 64 compounds
were considered in the training set, and the remaining
16 compounds were considered in the test set. The training
set was used to build the QSAR model.

Generation of descriptor
Molecular descriptors refer to structural and

physicochemical properties that define a molecule and usually
include properties like steric parameters, hydrophobic
properties, electrostatic properties, etc., as well as
constitutional properties of the molecule. The descriptors for
the 64 compounds in the training set were calculated using
PaDEL software (Yap, 2011). Significant descriptors were
selected for further analysis based on their correlation with
the pIC50 values of the training compounds.

Building QSAR model-generation and validation
The BuildQSAR tool was used to build the QSAR model using

the 64 training compounds (Singh et al., 2022). A QSAR study
performed First, a systematic search was performed to select a set of
descriptors (maximum 3) on the basis of user-given correlation
criteria with respect to activity (pIC50). Further, the Multiple Linear
Regression (MLR) method was used to build the QSAR model using
multiple combinations of the selected descriptors (Murahari et al.,
2017). The descriptors were selected based on various statistical
parameters like high correlation coefficient (R), high Fischer’s value
(F-Test), low Standard error of estimate (s), statistical significance
(p), high cross-validated square of correlation coefficient (Q2), low
sum of squared error of prediction (SPRESS) and low standard
deviation of error of prediction (SDEP). The models that showed
significant statistical parameters were tested using the
16 compounds in the test set, to check the fitness of the QSAR
model.

Activity prediction of screened ZINC compounds
The pIC50 values of ZINC database compounds obtained as a

result of ZINCPharmerscreening were predicted using the validated
QSAR model that showed highly significant statistical parameters.
The compounds with good pIC50 values in comparison with
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compounds obtained from DenvInD were used for further
computational studies.

Molecular docking studies

Preparation of protein
The structure of Dengue Virus NS2B/NS3 Protease was obtained

from RCSB PDB (PDB ID: 2FOM) (Sarwar et al., 2018). SWISS-
MODEL was used to repair the missing atoms (Waterhouse et al.,
2018). Further, the ligands from the protein structure were removed
using BIOVIA Discovery Studio and the protein was prepared for
docking in AutoDock Vina, a part of MGL tools 1.5.7 (Seeliger and
De Groot, 2010; Pawar and Rohane, 2021). Water molecules were
deleted, polar hydrogen atoms and Kollman charges were added.
The prepared protein was saved as a pdbqt file and further used for
docking analysis. The binding site coordinates were obtained as
x = −3.243 y= −9.193 and z = 16.143 based on key amino acid
residues (His 51, Asp 75, and Ser 135) using PyMol version 4.4, a
molecular visualization software (Yuan et al., 2017). The grid box
size of 40 A0 was used for docking.

Docking with ZINC database compounds and
standard drugs

The compounds obtained from the ZINC database after the
pharmacophore-based screening, as well as the 15FDA-approved
antiviral protease inhibitors were converted to pdbqt format and
their energy was minimized using the MMFF94 force field.
AutoDock Vina was used for docking. Docking was performed
using exhaustiveness parameter as 10. Docking scores and binding
interactions at the active pocket of target protein for respective
ligands were inspected and recorded carefully. The output
complexes with high binding affinity and pIC50 were further used
to perform molecular dynamics simulation studies.

Molecular dynamic simulations

The top 2 compounds obtained after docking and QSAR activity
predictions of the selected ZINC database compounds were further
subjected to molecular dynamic simulations using GROMACS version
2018.1 (VanDer Spoel et al., 2005). The receptor topology was obtained
by the “pdb2gmx” script, while the ligand topologies were obtained by
the PRODRG server (Schüttelkopf and Van Aalten, 2004). Each of the
generated ligand topologies was rejoined to the processed receptor
structure to construct the ligand-protein complex. GROMOS96
54a7 force field was used to obtain the energy minimized
conformations of all the processed complexes (Schmid et al., 2011).
Next, a solvation step was performed wherein the structures were

solvated in a cubic periodic box (90 Å, 90 Å, 90 Å) with water extended
simple point charge (SPC) model. In order to neutralise the system,
4 Na ions added. Subsequently, energy minimization of the system was
carried out for 50,000 steps using the steepest descent algorithm
with <10.0 kJ/mol force. Upon energy minimization, equilibration of
the system was performed with two consecutive steps. The NVT
ensemble followed by NPT ensemble was done for 50,000 steps
each. A constant temperature of 300 K and constant pressure of
1 atm were maintained through the entire MD simulation. The
long-range electrostatic interactions were obtained by the particle
mesh Eshwald method with a 12 Å cut-off and 12 Å Fourier
spacing. Finally, the three well-equilibrated systems (one apo protein
and two protein-ligand complexes) was subjected to a final 100 ns
simulation. Root mean square deviation (RMSD), Root Mean Square
Fluctuation (RMSF), Radius of Gyration (R g), Solvent Accessible
Surface Area (SASA) and Number of Hydrogen bonds of the
protein and complxes were calculated using gmx_rms, gmx_rmsf,
gmx_gyrate, gmx_sasa and gmx_hbond tools, respectively. The MM/
PBSA study using g_mmpbsa version 5.1.2 utility was used to analyze
the binding free energy (ΔG binding) of the ligands with protein over
the whole 100 ns simulation time.

Prediction of drug-likeness and ADMET
properties of ZINC compounds

The hit molecules were then studied further investigated for
drug-likeness, toxicity, and ADME properties. Molsoft Drug-
Likeness and molecular property prediction tool were used to
predict drug-likeness (Elsherif et al., 2020) Other chemical
properties like the number of hydrogen bond donors,
hydrogen bond acceptors, BBB score, pKa, etc., were also
analyzed during this step. It is extremely important to
understand the toxicity levels of compounds before
considering it further as a potential drug lead. Hence to
predict the toxicity class of compounds, ProTox-II was used
(Drwal et al., 2014). Further, to elucidate the physicochemical
descriptors, pharmacokinetic properties, ADME parameters, and
drug-like nature, SwissADME tool was used (Daina et al., 2017).

Results and discussion

Ligand-based pharmacophore modeling

Top 3 compounds with highest pIC50, i.e., DenvInD_285,
DenvInD_265 and DenvInD_266, were submitted to
PharmaGistwebserver to generate the pharmacophore model.
This web server predicts a ligand-based pharmacophore model

TABLE 2 PharmaGist results.

S. No. Score Spatial features Aromatic Hydrophobic Donor Acceptor Molecules

1 29.394 6 2 0 3 1 DenvInD_285, DenvInD_266, DenvInD_265

2 22.780 6 1 1 3 1 DenvInD_285, DenvInD_266, DenvInD_265

3 22.045 4 2 0 1 1 DenvInD_285, DenvInD_266, DenvInD_265
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based on the best alignment of maximum features between the
submitted molecules. Considering a perfect alignment of all the
3 molecules submitted, a pharmacophore model was obtained with a
PharmaGist score of 29.394 having six spatial features. The
pharmacophore model generated includes a total of 6 features-
spatial features, aromatic 2), donors 3), acceptor 1), and the
results of other pharmacophores identified were presented in
Table 2.

Pharmacophore-based screening of ZINC
database

The pharmacophore features obtained from PharmaGist were
downloaded and used to screen the ZINC database through
ZINCPharmer webserver in order to find ligands with similar
pharmacophore features with an assumption of having similarity
in pharmacological properties. The query led to 38 hits from the
ZINC database with optimization of low RMSD and molecular
weight. The structures of these compounds were presented in the
Supplementary Material.

Building QSAR model and activity prediction
of ZINC database compounds

Using PaDEL software 1,444 descriptors were generated for the
training set of 64 compounds. Based on the correlation coefficient
calculated with respect to pIC50 values of the respective compounds,
13 descriptors were identified for further analysis. The training set of
64 compounds was given as input to the BuildQSAR tool to generate
the QSAR models. A variable selection search was performed using
“systematic search” mode using correlation criteria limits of
0.6–0.78 and the variable limit of 3. The influencing parameters

were found to be GATS6e (X1), GATS5i(X2), VE1_DzZ (X3), VE2_
DzZ (X4), VE3_DzZ (X5), SpMAD_Dzp (X6), SpMax3_Bhp(X7),
ETA_Epsilon_5 (X8), IC1(X9), IC2(X10), TIC0(X11), MIC1(X12),
WTPT-3 (X13) and they are further described in Table 3. GATS6e
and GATS5i are autocorrelation descriptors which are essentially
molecular descriptors that encode molecular structure as well as the
physicochemical properties attributed to the atoms in the form of
vectors (Hollas, 2003). VE1_DzZ, VE2_DzZ, VE3_DzZ and
SpMAD_Dzp are Barysz Matrix descriptors. Barysz matrix is a
weighted distance matrix that accounts for the presence of
multiple bonds and heteroatoms in the molecule under
consideration. SpMax3_Bhp is a Burden Modified Eigenvalues
descriptor that reflects the topology of the molecule. ETA_
Epsilon_5 is an Extended Topochemical Atom descriptor that
determines the contributions of specific positions within common
substructures of molecular graphs towards total functionality (Roy
and Ghosh, 2003). IC1, IC2, TIC0, and MIC1 are Information
Content descriptors, and WTPT-3 is a PaDEL Weighted Path
descriptor. The QSAR model was generated using a trial-and-
error method to find the best fitting model that has a high R, R2,
F-test, and Q2 and low s values, SPRESS, and SDEP statistical values.
The top six models were shown in Table 4. These models were
further tested using the test set to verify whether the pIC50 value
predicted by these models was comparable to experimental values.
Upon graphical analysis, it was seen that model 1 exhibited the
highest R2 value of 0.703 between observed and predicted pIC50

values. Hence model 1 was chosen for further studies. The pIC50

predicted using Model 1 ranged from 4.507 to 8.164. Further
information about the model is given in the supplementary file.
The pIC50 of the library compounds ranged from 5.013 to 7.744.
This shows that the validated QSAR model could identify
compounds with better predicted pIC50 values, for which the
objective was partially fulfilled. As the compounds need to be
tested experimentally. The predicted activity for the ZINC

TABLE 3 Details of the descriptors chosen to build the QSAR model (Karthikeyan et al., 2021).

S. No. Descriptor Description Descriptor class

1 GATS6e Geary autocorrelation–lag 6/weighted by Sanderson electronegativities Autocorrelation descriptor

2 GATS5i Geary autocorrelation–lag 5/weighted by first ionization potential

3 VE1_DzZ Coefficient sum of the last eigenvector from Barysz matrix/weighted by atomic number Barysz Matrix descriptor

4 VE2_DzZ Average coefficient sum of the last eigenvector from Barysz matrix/weighted by atomic number

5 VE3_DzZ Logarithmic coefficient sum of the last eigenvector from Barysz matrix/weighted by atomic number

6 SpMAD_Dzp Spectral mean absolute deviation from Barysz matrix/weighted by polarizabilities

7 SpMax3_Bhp Largest absolute eigenvalue of Burden modified matrix–n 3/weighted by relative polarizabilities Burden Modified Eigen values descriptor

8 ETA_Epsilon_5 A measure of electronegative atom count Extended Topochemical Atom
descriptor

9 IC1 Information content index (neighborhood symmetry of 1-order) Information Content descriptor

10 IC2 Information content index (neighborhood symmetry of 2-order)

11 TIC0 Total information content index (neighborhood symmetry of 0-order)

12 MIC1 Modified information content index (neighborhood symmetry of 1-order)

13 WTPT-3 Sum of path lengths starting from heteroatoms PaDEL Weighted Path descriptor
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database compounds were presented in Table 5. These compounds
were then analyzed using docking studies to identify the binding
patterns and interactions at the active pocket of the target protein.

Molecular docking studies

Docking of ZINC database compounds
The selected set of ZINC database compounds was subjected

to docking against dengue protease as stated in the protocol. The
binding energies ranged from −9 kcal/mol to −7.3 kcal/mol as
shown in Table 5. The top 2 compounds identified were
ZINC36596404 and ZINC22973642 with binding
energies −9 kcal/mol and −8.9 kcal/mol, respectively. The
interactions between the protein and the ligand were
summarized in Table 6. Upon observing the interaction
between dengue protease and ZINC36596404, conventional
hydrogen bond, carbon-hydrogen bond, Pi-donor hydrogen
bond, pi-sigma, and pi-alkyl were found to be significant.
Lys74, Trp83 and Trp89 were involved in a conventional
hydrogen bond, Gly148, Glu88 and Glu91 were involved in
carbon-hydrogen bond and pi-donor hydrogen bond,
Leu76 was involved in pi-sigma bond and Ala166 in pi-alkyl
bond. Next, the interaction between dengue protease and
ZINC22973642 was analyzed, revealing that van der Waals,
conventional hydrogen bond, carbon hydrogen bond, alkyl,
and pi-alkyl were noteworthy. The amino acid interactions for
these bonds were seen to involve Thr118. Thr120, Trp89, Glu88,
Asn152, Lys73, Ile165 for van der Waals bonds; Asn167, Leu149,
Val47 contributed to conventional hydrogen bonding; Gly148,
Leu76, Trp83, Gly87, Leu85 for hydrogen bonds; Val154, Ile123,
Ala166, Ala164, Lys74 for alkyl and pi-alkyl. The interactions are
represented in Figure 1.

Docking of standard drugs
The results obtained when the 15 chosen standard drugs were

docked against the Dengue protease were presented in Table 1. The
binding energies fall in the range of −13.5 kcal/mol to −8 kcal/mol.
From this, we can observe that Danoprevir, Glecaprevir, Simeprevir,
Indinavir, Tipranavir, Nelfinavir, Asunaprevir, Darunavir, and
Amprenavir have a better binding affinity with the Dengue
protease compared to the ZINC database compounds screened in
this study. This directs us to conduct an experimental study in order
to formulate a drug that works against dengue protease. Danoprevir
interacts with the receptor using van derWaals forces contributed by
Asn167, Ala166, Ala164, Ile165, Asn152, Leu76, Met49, Leu149,
Gly148 and Val147. Conventional hydrogen bonds made by
Lys74 and carbon hydrogen bonds made by Leu85, Val146 and
Gly87 also take part in the interactions. Glecaprevir interacted with
the receptor through attractive charges of Glu88, conventional
hydrogen bond of Trp83, carbon hydrogen bond of Gly148,
halogen bond by Val147 and pi-cation bond by Glu88. Amino
acids in Simeprevir that interacted with the receptor include Lys74,
Asn167, Lys73, Ala164, Asn152, Ile123, Gly153, Val154, Thr120,
Thr118, Asn119 and Val155 that contribute to van der waals forces,
and Asp71 that is involved in attractive charges. Indinavir was seen
to interact with the receptor throughmainly alkyl and pi-alkyl bonds
formed by Trp83, Leu149, Leu76 and Leu85, attractive charges ofTA
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TABLE 5 Results of docking ZINC database compounds against NS3 protease.

S. No. ZINC compound Binding energy (kcal/mol) Predicted pIC50

1 ZINC36596404 −9 6.477

2 ZINC22973642 −8.9 7.872

3 ZINC09789323 −8.7 6.399

4 ZINC16699623 −8.7 4.507

5 ZINC19143967 −8.5 7.047

6 ZINC09833225 −8.3 6.907

7 ZINC02458390 −8.2 6.189

8 ZINC06148003 −8.2 6.869

9 ZINC27672080 −8.2 7.086

10 ZINC14028064 −8.1 6.700

11 ZINC14037170 −8.1 7.188

12 ZINC35025967 −8 6.584

13 ZINC14036276 −8 6.860

14 ZINC67678868 −7.9 6.473

15 ZINC36656172 −7.9 7.474

16 ZINC02563681 −7.8 6.434

17 ZINC01155209 −7.8 6.743

18 ZINC15634648 −7.7 6.628

19 ZINC17795,206 −7.7 7.198

20 ZINC23080510 −7.7 8.050

21 ZINC32477936 −7.6 7.121

22 ZINC23327308 −7.6 7.414

23 ZINC32042479 −7.6 7.702

24 ZINC32908224 −7.6 7.391

25 ZINC14664807 −7.5 7.170

26 ZINC33242299 −7.5 7.713

27 ZINC69504947 −7.5 6.964

28 ZINC09826328 −7.5 6.728

29 ZINC23114768 −7.5 7.242

30 ZINC06445998 −7.4 5.955

31 ZINC37514943 −7.4 6.332

32 ZINC22755327 −7.4 7.666

33 ZINC32485749 −7.4 7.466

34 ZINC78464608 −7.4 8.164

35 ZINC32908634 −7.3 7.931

36 ZINC64718088 −7.3 6.723

37 ZINC23114770 −7.3 7.242

38 ZINC93765844 −7.3 6.838
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Glu88, and carbon hydrogen bond formed by Gly148 and Ala164.
The amino acid interactions seen among other standard drugs
studies are elaborated in the Supplementary Information. The
binding interactions of Danoprevir and Glecaprevir, the top
2 compounds were further examined and compared with the
binding interactions of the top hit ZINC compounds
ZINC36596404 and ZINC22973642. Comparing the amino acid
interaction of ZINC compounds and standard drugs with the
receptor, we get interesting inferences. The results show that
Ala166, Leu76, and Gly148 seem to play an important role in
interaction with the receptor as they are involved in interactions
with the receptor in Danoprevir, ZINC36596404, and
ZINC22973642. While Ala166 is involved in van der Waals
forces in Danoprevir interaction, it is involved in pi-alkyl and
alkyl bonding in ZINC36596404 and ZINC22973642 interactions,
but we can conclude that they are important residues in
hydrophobic interactions. Leu76 and Gly148 seem to be
contributing significantly to different types of hydrogen bonding.
Glu88 and Trp83 were identified as another set of important amino
acid residues interacting with the receptor in Glecaprevir,
ZINC36596404, and ZINC22973642. Glu88 can be said to be
necessary for hydrophobic interactions like pi-cation interaction
and van der Waals interactions as well as hydrogen bonding.
Trp83 has shown to be contributing to various hydrogen bonds
in Glecaprevir, ZINC36596404, and ZINC22973642. Gly148 can be
pointed out as a major key residue as it is involved in hydrogen
bonding in all the compounds discussed above. From this, we can
understand that by preserving these key interactions in the ZINC
compounds and modifying other groups, we can develop the
identified ZINC compounds into effective inhibitors of Dengue
Protease.

Molecular dynamic simulation

Root mean square deviation analysis
ZINC36596404 and ZINC22973642 with the lowest binding

energies were subjected to molecular dynamics simulation in
order to analyze the flexibility and stability of the protein-ligand
complexes in a cellular atmosphere. The changes in the complex
structure and conformation were assessed for a simulation time
frame of 100 ns through MD simulations. Differentparameters
like RMSD, RMSF, Rg, SASA were determined to understand the
stability of the molecular trajectory, flexibility, ligand-receptor
affinity and the extent of compactness and folding behavior.
Figure 2 shows the pose of respective ligand during MD
simulations in the active pocket at 25, 50, 75 and 100 ns,
respectively. Supplementary Figure S3 summarizes the results
obtained. RMSD evaluates whether the complex system has
equilibrated and attained stability over the time duration of
the simulation. In the case of apo-protein, the RMSD values
showed a general increasing trend from 0 to 1.6 ns with RMSD
values from 0 to 0.194 nm. Thereafter, the values showed slight
variations of small magnitude. Towards the end of the
simulation, particularly after 50 ns, a fairly constant value
that remained between 0.2 and 0.24 nm was obtained.
Considering the ZINC22973642 compound, the RMSD values
showed a general increasing trend till 19.68 ns, with RMSDTA

B
LE

6
Su

m
m
ar
y
of

p
ro
te
in
-l
ig
an

d
in
te
ra
ct
io
n
s.

S.
N
o.

C
om

po
un

d
Re

si
du

es
in
vo

lv
ed

in
pr
ot
ei
n-
lig

an
d
in
te
ra
ct
io
ns

C
on

ve
nt
io
na

l
hy

dr
og

en
bo

nd
C
ar
bo

n
hy

dr
og

en
bo

nd
Pi
-d
on

or
hy

dr
og

en
bo

nd

Pi
-

si
gm

a
Pi
-

al
ky
l

A
lk
yl

bo
nd

s
Va

n
de

r
w
aa
ls

H
yd

ro
ge

n
bo

nd

1
Z
IN

C
36
59
64
04

Ly
s7
4,

T
rp
83

an
d
T
rp

89
G
ly
14
8
an
d
G
lu
88

an
d
G
lu
91

Le
u7
6

A
la
16
6

-
-

-

2
Z
IN

C
22
97
36
42

A
sn
16
7,
Le
u1
49
,V
al
47

-
-

-
V
al
15
4,

Il
e1
23
,
A
la
16
6,

A
la
16
4,

Ly
s7
4

T
hr
11
8,
T
hr
12
0,
T
rp
89
,G

lu
88
,A

sn
15
2,
Ly
s7
3,

Il
e1
65

G
ly
14
8,

Le
u7
6,

T
rp

83
,G

ly
87
,

Le
u8
5

3
Z
IN

C
09
78
93
23

A
SN

15
2

-
-

-
Ly
s9
0,

A
la
16
6,

Le
u7
6

Le
u1
15
,G

lu
91
,T

rp
89
,L

ys
74
,A

la
16
4,

Le
u1
49
,

gl
y1
48
,M

et
49

-

Frontiers in Molecular Biosciences frontiersin.org10

Poola et al. 10.3389/fmolb.2023.1106128

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1106128


values ranging from 0 to 0.27 nm. From this point ahead, the
values remained fairly constant in the range between 0.2 and
0.24 nm. The compound ZINC36596404 showed relatively
better stability, as the results show an increase followed by
decreasing trend until around 30 ns and thereafter remains at an
almost constant value of 0.23 nm with only slight variations.

Root mean square fluctuation analysis
RMSF values for Cα atoms were calculated and comparatively

analyzed for the ligand-bound complexes along with that of the
apo-protein in order to look into the mean residual fluctuations,
motion, and flexibility of the amino acid residues of particular
regions of the ligand binding during the simulation time.
Supplementary Figure S4 shows the results obtained. It was
observed that about seven amino acids (Gly62, Val72, Lys104,
Gly114, Gly121, Pro132, Gly153) are directly involving in the
complex formation via interactions like conventional hydrogen
bonds, carbon hydrogen bonds, Pi-donor hydrogen bond,Pi-
sigma,Pi-alkyl, Van der Waals, etc. From the figure we can see that
these residues are decreased in the complex due to the ligand binding
properties when compared to their free dynamics in the apoprotein.
From this, it is understood that the apo-protein, ZINC22973642, and
ZINC36596404 show a very similar pattern where maximum residues

show fluctuations, however, the vacillation was less than 0.3 nm for a
majority of these residues.

Radius of gyration (Rg)
The radius of gyration refers to the root mean square distance of

the atoms from their rotational axis. It helps to gatherdetails about
the compactness, rigidity, and folding behavior of the receptor
during the time frame of the simulation. Lower Rg valuesshow
that minimal fluctuations indicate a stable protein-ligand
complex. Higher Rg values along with variation suggests
instability of the complex. The values of Rg obtained are
pictorially represented in Supplementary Figure S5.
ZINC22973642 and ZINC36596404 happen to show a similar Rg

pattern where the value remains fairly constant at 1.65 nm with very
minor variations. From these results, we can conclude that the
protein attained a compact state and does not show abrupt
fluctuations indicating that a stably folded protein is formed
upon binding of ligands to the ZINC database compounds.

Solvent accessible surface area
The binding of small molecules to receptor protein induces

certain structural and conformational changes which have an impact
on the protein volume. This change can indirectly give an insight

FIGURE 1
Visual representation of the docked complexes and the amino acid interactions of (A) ZINC36596404 (B) ZINC22973642.
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into the protein-ligand complex during the simulation. SASA was
calculated to look into the solvent behavior of the dengue protease
upon binding to the ligands and it was comparatively analyzed to the
changes in surface area of the apo-protein. Hydrophobic residues
contribute to SASA values. The exposure of these residues from their
hydrophobic core region leads to complex instability by
decompressing the receptor. Similar to Rg, lower and minimal
fluctuations in the values indicated stabilized, compressed and
correctly folded target protein. The SASA values were calculated
and plotted against time in Supplementary Figure S6. The apo-
protein exhibited minimal fluctuations in SASA values until around
50,000 ps from where it started increasing up until 60,000 ps and
further decreased until the values stabilized. Both the ZINC database
compounds showed a closely similar pattern of minimal fluctuations
in the SASA values throughout the simulation period.

Hydrogen bonds
The binding affinity of identified small molecules with the

target protein can be ascertained by hydrogen bond formation.
The number of hydrogen bonds formed between ligand and
dengue protease revealed the binding affinity. Graphical
results were presented in Supplementary Figure S7.
ZINC22973642 showed an average binding affinity with the
protein and formed a maximum of 7 hydrogen bonds
throughout the simulation period. ZINC36596404 had higher

binding energy with the protein and this is clearly explained by
the consistent hydrogen bond formation with the protein. From
the figure, we can see that the ZINC compounds consistently
maintain at least 5 hydrogen bonds throughout the simulation
period. The residues involved in hydrogen bonding in
ZINC36596404 were Lys74, Trp83 and Trp89 which were
involved in a conventional hydrogen bond, Gly148, Glu88 and
Glu91 which were involved in carbon-hydrogen bond and pi-
donor hydrogen bond. Similarly, for ZINC22973642, Asn167,
Leu149, Val47 contributed to conventional hydrogen bonding,
and, Gly148, Leu76, Trp83, Gly87, Leu85 for hydrogen bonds.
The complexes eventually stabilized, as it can be interpreted from
the structural parameters.

MM-PBSA binding free energy
One of the widely accepted methods for estimation of binding

free energy of small ligands with biological macromolecules is
Molecular Mechanics Poisson Boltzmann Surface Area
continuum solvation (MM-PBSA). The energy values obtained
were summarized in Table 7. For both the ZINC database
compounds, SASA energy contributed more significantly towards
the binding as compared to Electrostatic energy and van der Waal
energy. In both cases, polar solvation energy seems to be positively
influencing the binding and hence we can say that it does not
favorably benefit the binding. In conclusion, the results of the

FIGURE 2
RMSD study of top 2 ligands for 100 ns MD Simulation.
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molecular dynamics simulation show that both ZINC36596404 and
ZINC22973642 have a good affinity and binding stability towards
the targeted dengue protease.

Prediction of drug likeliness and ADMET
properties

The drug-likeness of ZINC36596404 predicted using Molsoft
showed a score of 0.43. From the results, 5 hydrogen bond acceptors
and 3 hydrogen bond donors were also identified. The BBB score
was reported as 2.22 which is on the lower side. The drug-likeness of
ZINC22973642 analyzed by Molsoft had a score of 1.10. This drug-
likeness score is predicted Molsoft’s chemical fingerprints made
using a dataset containing 5,000 marketed drugs and 10,000 non-
drug compounds. The drug-likeness value ranges from −1 to +1,
where values equal to or less than 0 indicates that the compound
does not seem to be a likely drug, whereas values greater than

0 indicate good drug-likeness of the compound. Since both the
compounds discussed here have positive drug-likeness scores, we
can say that they seem to be drug-like. The results also identified
5 hydrogen bond acceptors and 2 hydrogen bond donors. The BBB
score was 2.85 and is on the lower side, similar to the previous
compound. ZINC36596404 belongs to toxicity class 5 indicating that
it may be harmful if swallowed (2000 < LD50 ≤ 5,000) and
ZINC22973642 to class 4 signifying that it may be harmful if
swallowed (300 < LD50 ≤ 2000) as per predictions made by
ProtoxII. The ADME results obtained from SwissADME are
shown in Table 8. ZINC22973642 shows no violation of
Lipinski’s rule of five. It is seen to have good GI absorption,
good solubility, and low BBB permeability indicating that it does
not cross the blood-brain barrier. It is seen to inhibit CYP1A2,
CYP2C19, CYP2C9, CYP2D6, and CYP3A4 which are cytochrome
enzymes involved in the detoxification and metabolism of drugs.
The skin permeation parameter for this compound indicates that it
is moderately good for topical applications. Its bioavailability score

TABLE 8 Drug-likeness and ADMET properties of top 2 compounds.

S.No. Parameter ZINC22973642 ZINC36596404

1 Number of Hydrogen Bond Acceptors 5 5

2 Number of Hydrogen Bond Donors 2 3

3 BBB Score 2.85 2.22

4 Drug-likeness model score 1.1 0.43

5 Solubility 3.44e-05 4.09e-05

6 GI absorption High High

7 CYP1A2 inhibitor Yes No

8 CYP2C19 inhibitor Yes Yes

9 CYP2C9 inhibitor Yes Yes

10 CYP2D6 inhibitor Yes Yes

11 CYP3A4 inhibitor Yes Yes

12 Log Kp (skin permeation) −6.42 cm/s −6.67 cm/s

13 Bioavailability score 0.55 0.55

14 LD50 586 mg/Kg 3000 mg/kg

15 Toxicity class 4 5

TABLE 7 MM-PBSA values of the two complexes after 100 ns simulation.

S. No. Energy terms (KJ/mol) ZINC22973642 ZINC36596404

1 Van der Waal −241.848 ± 0.791 −250.309 ± 1.106

2 Electrostatic −87.760 ± 1.045 −104.692 ± 1.163

3 Polar solvation 220.611 ± 16.207 261.191 ± 22.538

4 SASA −23.200 ± 0.055 −23.788 ± 0.072

5 Binding energy −132.196 ± 16.764 −116.651 ± 21.635
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shows that it is sufficiently absorbable and available throughout the
body when administered via the oral route. The predicted LD50 is
also sufficiently high. This, coupled with a good drug-likeness score,
makes this compound a very potent lead that can be further explored
and developed into an efficient drug against dengue protease.
ZINC36596404 also shows similar properties as that of
ZINC22973642, but only differs in that it does not inhibit
CYP1A2. The fact that these two ZINC compounds showed good
binding stability and affinity to Dengue Protease, combined with
their positive drug-likeness, show that these compounds can be
studied further in vitro in order to develop them into effective anti-
Dengue drugs.

Conclusion

In this study, a ligand-based QSAR and pharmacophore model of
Dengue protease inhibitors was developed using 4-Benzyloxy Phenyl
Glycine derivatives. TheGATS6e, GATS5i, VE1_DzZ, VE2_DzZ, VE3_
DzZ, SpMAD_Dzp, SpMax3_Bhp, ETA_Epsilon_5, IC1, IC2, TIC0,
MIC1, WTPT-3 descriptors were seen to have an effect on the anti-
dengue protease activity. The validatedQSARmodel showed significant
statistical parameters and can be used to predict the activity of unknown
compounds for anti-dengue protease activity. Using this QSAR model
and the pharmacophore features presented above, other 4-Benzyloxy
Phenyl Glycine derivatives can be modified to enhance their activities.
This model can be a helpful tool to reduce the time and expense
involved in dengue protease antagonist synthesis and activity
determination. Further, the molecular docking and dynamics
simulation studies performed using the compounds identified from
the ZINC database have indicated that ZINC36596404 and
ZINC22973642 show excellent binding with the dengue protease.
The complexes also show structural stability. They also have good
drug-likeness and compatible ADMET properties. It can be inferred
that these two compounds form promising candidates in the
development of dengue protease antagonists. Further work that aims
to test the in vitro and in vivo effects of these two compounds is required
in order to validate these results. Thus, our findings, coupled with
laboratory testing of the identified potential leads can help to develop
strong antagonists for dengue protease.
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