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Background: Loss of function mutation in FLG is the major genetic risk factor for
atopic dermatitis (AD) and other allergic manifestations. Presently, little is known
about the cellular turnover and stability of profilaggrin, the protein encoded by
FLG. Since ubiquitination directly regulates the cellular fate of numerous proteins,
their degradation and trafficking, this process could influence the concentration of
filaggrin in the skin.

Objective: To determine the elements mediating the interaction of profilaggrin
with the ubiquitin-proteasome system (i.e., degron motifs and ubiquitination
sites), the features responsible for its stability, and the effect of nonsense and
frameshift mutations on profilaggrin turnover.

Methods: The effect of inhibition of proteasome and deubiquitinases on the level
and modifications of profilaggrin and processed products was assessed by
immunoblotting. Wild-type profilaggrin sequence and its mutated variants were
analysed in silico using the DEGRONOPEDIA and Clustal Omega tool.

Results: Inhibition of proteasome and deubiquitinases stabilizes profilaggrin and
its highmolecular weight of presumably ubiquitinated derivatives. In silico analysis
of the sequence determined that profilaggrin contains 18 known degronmotifs as
well as multiple canonical and non-canonical ubiquitination-prone residues. FLG
mutations generate products with increased stability scores, altered usage of the
ubiquitination marks, and the frequent appearance of novel degrons, including
those promoting C-terminus-mediated degradation routes.

Conclusion: The proteasome is involved in the turnover of profilaggrin, which
contains multiple degrons and ubiquitination-prone residues. FLGmutations alter
those key elements, affecting the degradation routes and the mutated products’
stability.
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Introduction

Atopic dermatitis (AD) is a disease characterized by chronically
relapsing-remitting skin inflammation. The etiology of AD is
multifactorial, involving gene-environment interaction with
strong hereditability (80%) (Larsen, 1993). Recent studies show
that epidermal barrier dysfunction is a central feature in the
pathogenesis of AD (Cork et al., 2009; Luger et al., 2021).
Genetic studies point towards a region that harbours several
genes involved in epidermal barrier maintenance (Cookson et al.,
2001; Paternoster et al., 2011), known as the “epidermal
differentiation complex” (EDC) (Mischke et al., 1996), spanning
1.9 Mbp within chromosome 1q21 and known to be prone to
chromosomal rearrangement (Forus et al., 1998; Itoyama et al.,
2002; Chen et al., 2003;Wong et al., 2003). The genes of the EDC can
be grouped into S100 calcium binding proteins (Eckert et al., 2004;
Marenholz et al., 2004), S100 fused-type protein (SFTP) family (Gan
et al., 1990; Lee et al., 1993; Krieg et al., 1997; Contzler et al., 2005;
Takaishi et al., 2005; Wu et al., 2011; Kypriotou et al., 2012),
cornified envelope precursor family (Backendorf and Hohl,
1992), and small proline-rich proteins (Zhao and Elder, 1997;
Marshall et al., 2001; Jackson et al., 2005). Among the 63 genes
(59 protein coding genes and four pseudogenes) located within the
EDC, null mutations in the gene encoding profilaggrin (FLG), an
SFTP gene, was shown to be the major risk factor for AD (Morar
et al., 2007).

The first suggestion of the involvement of filaggrin in barrier
maintenance was reported by Sybert et al. (Sybert et al., 1985) where
reduction of its expression was correlated with ichthyosis vulgaris
(IV); follow-up studies confirmed reduction or loss of filaggrin
expression with epidermal barrier dysfunction (Fleckman et al.,
1987; Peña Penabad et al., 1998). A breakthrough came with the
discovery that loss of function FLGmutations (R501X and 2282del4)
are highly prevalent in the IV (Smith et al., 2006) and AD patients
(Palmer et al., 2006); this was replicated on different genetic
backgrounds and ethnicities (Marenholz et al., 2006; Ruether
et al., 2006; Sandilands et al., 2006; Weidinger et al., 2006; Barker
et al., 2007; Morar et al., 2007; Nomura et al., 2007; Enomoto et al.,
2008; Rodríguez et al., 2008; Nemoto-Hasebe et al., 2009; Osawa
et al., 2010; Cheng et al., 2012; Pigors et al., 2018; Handa et al., 2019;
Koseki et al., 2019; Jurakic Toncic et al., 2020; Smieszek et al., 2020),
with hundreds of mutations now identified (Karczewski et al., 2020).
Importantly, while filaggrin expression is almost entirely restricted
to the epidermis, FLG mutations have been also shown to be linked
to additional manifestations of atopic march and allergy, including
food (Brown et al., 2011) and contact allergies (Novak et al., 2008),
asthma (van den Oord and Sheikh, 2009; Rodríguez et al., 2009),
allergic rhinitis (van den Oord and Sheikh, 2009) and eosinophilic
esophagitis (Sherrill and Blanchard, 2014).

Composed of approximately 4,061 amino acids (aa), profilaggrin
is the largest protein of the SFTP family; the protein is structurally
complex and composed of 10–12 filaggrin monomer repeats flanked
with truncated filaggrin repeats (Gan et al., 1990) and a S100 domain
at the N-terminus (Kypriotou et al., 2012). Unlike any other SFTP,
profilaggrin contains a “bipartite” nuclear localization signal (Lu
et al., 2021) next to the S100 calcium-binding domain, an indicator
of its nuclear function (Presland et al., 1992; Aho et al., 2012). Upon
expression in keratinocytes, profilaggrin is phosphorylated and

stored within keratohyalin granules (KHGs), mainly present in
the stratum granulosum layer (Resing et al., 2002), from where it
is released by an AKT1-dependent, actin scaffold-driven mechanism
that we have recently described (Gutowska-Owsiak et al., 2018). It is
speculated that dephosphorylation makes the protein accessible to
the pro-protein convertase-mediated cleavage (Resing et al., 1993).
The cleaved N-terminal domain translocates into the nucleus, where
it is involved in denucleation (Ishida-Yamamoto et al., 1998; Pearton
et al., 2002; Yamamoto-Tanaka et al., 2014) and control of epidermal
homeostasis (Aho et al., 2012; Naeem et al., 2015); the remaining
part is cleaved by SASPase (Matsui et al., 2011) and KLK5 (Sakabe
et al., 2013) proteolytic enzymes. Monomeric filaggrin promotes
aggregation and collapse of keratin intermediate filaments (IFs),
resulting in the formation of more squamous flattened cells (Steinert
et al., 1981; Candi et al., 2005). In parallel, further events occur, such
as the conversion of arginine (Arg) residues to citrulline (Nachat
et al., 2005) and covalent cross-linking of monomers by
transglutaminase, which leads to stabilization of the cornified cell
envelope (Takahashi et al., 1996). Finally, the crosslinked filaggrin
undergoes extensive proteolytic cleavage by caspase-14 (Denecker
et al., 2007), calpain-1 (Yamazaki et al., 1997), bleomycin hydrolase
(Kamata et al., 2009), elastase-2 (Bonnart et al., 2010), matripase
(List et al., 2003), prostatin (Leyvraz et al., 2005) and other proteases,
resulting in a pool of hygroscopic aa and derivatives, i.e., urocanic
acid (UCA), a derivative of histidine, highly abundant in the protein,
and pyrrolidone carboxylic acid (PCA), a glutamine derivative.
These constitute the majority of the so-called “natural
moisturizing factor” (NMF) (Rawlings and Harding, 2004),
contributing to stratum corneum (SC) hydration, as well as acidic
pH, with antimicrobial action (Miajlovic et al., 2010). In addition,
trans-UCA may protect cells in deeper layers from UVB-mediated
mutagenesis by absorbing UVB (Tabachnick, 1957). FLGmutations
significantly reduce the amount of NMF in SC compared to the
healthy control (Kezic et al., 2011).

The ubiquitin-proteasome system (UPS) is a major proteolytic
pathway that removes damaged and unwanted proteins. The
selective turnover is initiated by a covalent attachment of a small
ubiquitin (Ub) protein, mainly to the internal lysine (Lys) residues,
which is mediated by an enzymatic cascade orchestrated by E1, E2,
and E3 enzymes (Hershko and Ciechanover, 1992; Komander and
Rape, 2012). However, a single ubiquitination event is usually
insufficient to target a protein for degradation; several kinds of
polyubiquitin chains are formed between the Lys residues of the Ub
subunits and these have specific functions (Hershko and
Ciechanover, 2003; Husnjak and Dikic, 2012; Oh et al., 2018).
The Lys11 and Lys48 linkages, and their combination drive
proteasomal degradation (Chau et al., 1989; Jin et al., 2008;
Meyer and Rape, 2014), whereas Lys6 and Lys63 linkages
mediate the processes of autophagy (Ordureau et al., 2014),
endocytosis-exocytosis (Lauwers et al., 2009), or lysosomal
degradation (Duncan et al., 2006). Interestingly, ubiquitination
can also occur on the free amino group of the N-terminus of a
protein, as well as on serine (Ser), cysteine (Cys), and threonine
(Thr) residues, and can lead to proteasomal turnover of the modified
proteins (Kravtsova-Ivantsiv and Ciechanover, 2012; McClellan
et al., 2019).

E3 ligases, which transfer Ub onto a substrate protein, mainly
recognize substrates through their short linear motif called the
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primary degron, which may be located at the unstructured ends
of the proteins, inducing protein elimination via the N- or
C-degron pathways or internally. In addition, proteolytic
cleavage may lead to the emergence of a degron motif within
the novel N- or C-terminus, subsequently initiating degradation
of the cleavage products (Guharoy et al., 2016; Varshavsky, 2019;
Guharoy et al., 2022). Moreover, post-translational modifications
(PTMs) can also modulate the recognition of the primary
degrons by E3 ligases (van Roey et al., 2013; Guharoy et al.,
2016; Lucas and Ciulli, 2017; Millar et al., 2019; Varshavsky,
2019; Chen and Kashina, 2021; Guharoy et al., 2022). Following
interaction with a degron, E3 mediates ubiquitination in the
proximal position(s) (secondary degron), often found close to the
intrinsically disordered region (IDR) (tertiary degron), which
triggers substrate breakdown by successful activation of the
proteasome. Mutations affecting degron components can
enhance protein stability and disrupt cellular proteostasis,
leading to disease (Tokheim et al., 2021; Guharoy et al., 2022;
Kampmeyer et al., 2022). Accordingly, adequately controlled
profilaggrin turnover is likely crucial for SC functionality since
its reduced expression or instability confers vulnerability and
impacts several epidermal functions, leading to pathological
conditions (Scott et al., 1982; Resing et al., 1984;
Moosbrugger-Martinz et al., 2022). However, despite the
central role of profilaggrin and filaggrin in skin barrier
function, little is known about the regulation of their
degradation, the proteolytic mechanisms involved, and the
influence of FLG mutations on their turnover and stability.

In this study, we investigated proteasome inhibition’s effect on
the intracellular profilaggrin level and its processing products. We
also studied the entire profilaggrin sequence for the presence of
degrons and examined possible ubiquitination sites throughout.
Furthermore, we analysed the effect of recurrent pathogenic and
rare family-specific frameshift and nonsense FLG mutations on the
introduction of possible ubiquitination sites, the appearance of novel
degrons, and protein stability.

Materials and methods

Keratinocyte culture

Human keratinocyte cell line N/TERT1 (Dickson et al., 2000;
Smits et al., 2017), a kind gift from J. Rheinwald laboratory
(Harvard Medical School, Boston, United States), was cultured in
T75 flask or T150 flask in Keratinocyte serum free medium
(K-SFM), with L-glutamine, without CaCl2 (Gibco™, Thermo
Fisher Scientific, Cat#10725018) and supplemented with 0.2 ng
epidermal growth factor (EGF) per ml, 25 μg bovine pituitary
extract (BPE) per ml (Gibco™, Thermo Fisher Scientific,
Cat#13028014), 100 unit penicillin per ml (Sigma Aldrich,
Cat#P4333), 100 μg streptomycin per ml (Sigma Aldrich,
Cat#P4333) and 0.4 mM CaCl2 (VVR, Cat#97062822) up to
40% confluency. Cells were plated in 6-well plates at
300,000 cells per well in K-SFM complete medium and
incubated at 37°C, 5% CO2 for 48 h.

Calcium switch, proteasome inhibition and
deubiquitinase inhibition

After 48 h the medium was replaced with DFK medium
composed of 1:1 of calcium-free Dulbecco’s Modified Eagle
Medium (DMEM) containing 4.5 mg D-glucose per ml, and
Ham’s F12 nutrient mix (Gibco™, Thermo Fisher Scientific,
Cat#11765054), supplemented with 0.2 ng EGF per ml, 25 μg
BPE per ml, 2 mM L-glutamate (Sigma Aldrich, Cat#G7513-
100 ML), 100 unit penicillin, 100 μg streptomycin per ml and
1.5 mM CaCl2 (to trigger calcium induced differentiation;
i.e., “calcium switch”). Upon differentiation (>24 h at 1.5 mM
CaCl2) mediated by calcium switch, keratinocytes were treated
with 10 μM MG132 (Sigma Aldrich, Cat#474790); a potent,
reversible proteasome inhibitor or 10 µM PR-619 (Sigma Aldrich,
Cat#SML0430-1 MG), a broad range deubiquitinase inhibitor;
dissolved in DMSO for 2 h, 4 h, 8 h and 16 h. Protein extraction
was performed after 48 h of calcium switch.

Western blot

The cells were lysed with RIPA buffer (Cell Signalling
Technology, Cat#9806) supplemented with cOmplete™ protease
inhibitor cocktail (Roche, Cat#11836170001). Cell lysates were
harvested by centrifugation at 14,000 g for 15 min at 4°C and
denatured with 4X Bolt™ LDS sample Buffer (Novex®, Life
technology™, Cat#B0007) at 70°C for 10 min. Samples were run
on 4%–12% polyacrylamide gradient gel (Invitrogen™, Thermo
Fisher Scientific, Cat#NP0321BOX). Protein transfer was carried
out onto a nitrocellulose membrane {[iBlot™ 2 Transfer Stacks
(Invitrogen™, Thermo Fisher Scientific, Cat#IB23001)]} on the
iBlot™ 2 dry blotting system (Invitrogen™, Thermo Fisher
Scientific, Cat#IB21001). Membranes were blocked with 5% fat-
free milk in phosphate buffer saline (PBS), followed by overnight
incubation with 1:200 anti-filaggrin monoclonal antibody (FLG01;
raised to recombinant filaggrin) (Invitrogen™, Thermo Fisher
Scientific, Cat#MA513440; FLG01 monoclonal antibody was used
in this study and was validated for its specificity (Supplementary
Figure E1 or 1:5,000 dilution of anti-GAPDH antibody (6C5) (Santa
Cruz Biotechnology, Cat#SC32233) at 4°C. Secondary antibody
incubation was carried out with 1:25,000 PBS diluted
IRDye®800CW donkey anti-mouse (LI-COR®, Cat#92632312) and
imaged with Odyssey® CLx Imaging System (LI-COR® Biosciences).
Membranes were stripped with the Restore™ fluorescence western
blot stripping buffer (Thermo Scientific™, Cat#62300) according to
the manufacturers’ instruction and stained with 1:1,000 dilution of
anti-ubiquitin antibody (Santa Cruz Biotechnology, Cat#sc-8017)
and detected as of the procedure described above. Acquired images
were analysed with ImageJ (Schneider et al., 2012) (v.1.53f51) for
protein quantification as a means of protein band intensity. The
intensity of filaggrin protein bands was expressed as a band intensity
ratio compared to the GAPDH band. One-way or two-way ANOVA
(Tukey’s multiple comparison test) was performed with GraphPad
Prism (v.9.4.1) to compare the variance between different treatment
groups.
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FLG sequence and AD-relevant mutations

The amino acid sequence of profilaggrin (UniProt ID P20930; NP_
002007.1; herein referred as wild-type) was examined for the presence of
Lys, Ser, Thr, and Cys residues as possible ubiquitination sites on
individual domains. To examine if frameshift mutations alter the
number of Lys, Ser, Thr, and Cys residues, all the mutations of FLG
identified to date were retrieved from theGenomeAggregationDatabase
(gnomAD, v2.1.1.) (accessed on 9.02.2022) (Karczewski et al., 2020). In
addition, we cross-checked for additional frameshift mutations in the
Gene4Denove (accessed 26.08.2022) (Zhao et al., 2020) and denovo-db
v.1.6.1 (accessed 28.08.2022) (Seattle, 2022) databases. The mutations
were introduced to the wild-type nucleotide sequence (NM_002016.2)
and translated using the EMBL-EBI nucleotide sequence translation tool
EMBOSS transeq (Madeira et al., 2022). Recurrent pathogenicmutations
located within the coding sequence NM_002016.2: c.1 to c12183 and
rare family-specific mutations located within the coding sequence NM_
002016.2: c. 1 to c.5700 were used for the subsequent analyses.

Screening for degron motifs and stability of
protein N- and C-termini

In all cases, we used our recently released tool DEGRONOPEDIA
(Szulc et al., 2022) (all presented data in this work comply with the
DEGRONOPEDIA’s version from 19.09.2022) to screen for the known
degron motifs and post-translational modifications (PTMs), simulate
proteolysis, calculate the Gravy hydrophobicity index (GHI) of terminal
15 residues (Kyte and Doolittle, 1982) and report experimental or
predicted Protein Stability Index (PSI) values (Koren et al., 2018; Timms
et al., 2019) for 23 residues at each of the N- and C-termini.
Additionally, the DEGRONOPEDIA server provided experimentally
validated E3s interacting with profilaggrin based on the BioGRID
(Biological General Repository for Interaction Datasets) (Oughtred
et al., 2021) and IntAct (Orchard et al., 2014) databases. Since
sequences shorter than 50 aa are unsuitable input for the
DEGRONOPEDIA, we excluded them from our FLG mutant
variants analysis.

Analysis of amino acid sequence
conservation

To investigate the conservation of profilaggrin ubiquitin-
conjugating amino acids and the degron motifs within SFTPs
and S100 proteins, we utilized EMBL-EMBI multiple sequence
alignment tool Clustal Omega (Madeira et al., 2022).

Results

Inhibition of the proteasome and
deubiquitinases results in the accumulation
of profilaggrin and its processed products of
high molecular weight

To determine if the intracellular levels of profilaggrin could
be, at least partially, controlled by the proteasome-mediated

turnover of the nascent protein, we used 2D-grown N/TERT-1
(Dickson et al., 2000; Smits et al., 2017) keratinocytes as our
model because the expression of FLG mRNA and protein in these
immortalized cells shown to be similar to that of primary human
keratinocytes consisting WT FLG (Smits et al., 2017). Treatment
with the proteasome inhibitor MG132 had no effect on cell
morphology compared to the control (solvent control DMSO),
with shorter treatment times and only a slight reduction in
culture confluence (Supplementary Figure E1). In contrast,
with the late time point (16 h), we noticed a reduction in cell
viability and cells losing contact with the substratum. Proteasome
inhibition increased the accumulation of ubiquitinated protein as
expected (Figure 1A) and this increase was gradual in our time-
point experiment, with the highest intensity measured after 16 h
of 10 µM MG132 incubation (Figure 1B). In line with our
expectations, proteasome inhibition altered the content of
profilaggrin and profilaggrin-processed products; specifically,
we observed an increase in the overall intensity of profilaggrin
and filaggrin-relevant bands (adjusted to GAPDH) in the cells
treated with MG132 (Figures 1C, D). This change was observed as
an increase in high molecular weight products (Figure 1E) and
was apparent after the overnight treatment. Specifically, we
noticed an increase in the adjusted intensity of the bands
corresponding to the products of 110–130 kDa (likely
containing 3-4x filaggrin monomer repeats) and those of over
250 kDa in weight (likely including profilaggrin and a very high
molecular weight processed product) (arrows in Figures 1C, E).
This increase was pronounced despite harvesting fewer cells due
to the reduction in cell viability at the 16 h time point. These
results indicate that the proteasome is involved in profilaggrin
turnover, and its inhibition results in the stabilization of
profilaggrin and high molecular weight derivatives.

To investigate the possibility of profilagrin undergoing
ubiquitination, we utilized a pan-DUB inhibitor, PR-619, as a
proof of concept. Our results indicate that the inhibitor had an
impact on the ubiquitination of profilagrin. Specifically, we
observed accumulation of higher molecular weight products,
presumably ubiquitinated (Figure 1F), although the total
content of all the profilaggrin/filaggrin-relevant products
remained the same in comparison to the solvent control
(Figure 1G). Intensity of the bands >250 kDa in size was
significantly increased at all time points of the deubiquitinase
inhibition, while intensity of the ~200 kDa band was significantly
increased at 8 h time point. At the same time, we could see
disappearance of the lower molecular weight bands upon PR-619
treatment (Figures 1F, H). These data, together with the effect of
proteasome inhibition, highly suggest that profilaggrin is
subjected to significant ubiquitination, which is also likely to
be responsible for its turnover.

The profilaggrin sequence contains multiple
potential degrons

Having confirmed the proteasome involvement in the
turnover of profilaggrin, we next set out to determine degron
components in the protein sequence using our
DEGRONOPEDIA web server, which enables comprehensive
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annotation of degron motifs and potentially related PTMs, with a
particular focus on ubiquitination and phosphorylation. We
noted that native profilaggrin has 18 primary degrons,
relatively evenly distributed within the sequence (Figures 2A,
B; all found primary degron motifs are summarized in Table 1).
Specifically, the N-terminal sequence of profilaggrin contains
potential acetylation sites that could direct it to the Ac/N-end
rule pathway under specific conditions such as proteotoxic stress
or immune response; we also recorded other degron motifs
within the profilaggrin sequence, i.e., the destruction box
(DBOX), KEN box, ABBA (DiFiore et al., 2015; Davey and
Morgan, 2016) and SCFβ−TRCP (Skp1-cullin 1-F-box with β-
transducin repeat-containing protein acting as its substrate
receptor) motifs. In addition, profilaggrin has eight sequences
corresponding to the consensus of motifs recognized by SPOP

(Speckle-type POZ—pox virus and zinc finger protein), an
adaptor protein for cullin 3 (CRL3)-based E3 ligases (Zhuang
et al., 2009). SPOPs typically operate in the nucleus, playing a
critical role in regulating apoptosis and cell proliferation. One of
these, the ADSST motif located in the 4th filaggrin repeat unit of
the FLG (1,689–1,693 aa), is an experimentally confirmed degron
through which SPOP controls the level of hybrid protein BCR-
ABL1 that governs the expression of several differentiation-
related genes (Quintás-Cardama and Cortes, 2009; Liu et al.,
2021). In addition, profilaggrin undergoes phosphorylation at
this motif, at Ser 1,691, which could modulate SPOP binding to
this degron. Molecular interaction databases BioGRID and
IntAct also report on the probable binding of profilaggrin by
other receptors of the cullin E3 ligases: FBXW7 (Xu et al., 2021),
DTL (Huttlin et al., 2021), and VHL (Ewing et al., 2007).

FIGURE 1
UPS is involved in degradation of profilaggrin. (A) Western blot with anti-ubiquitin in the keratinocytes upon treatment with proteasome inhibitor
MG132; (B) Intensity ratio of ubiquitinated protein bands after proteasome inhibition for 2 h, 4 h, 8 h and 16 h; one-way ANOVA followed with Tukey’s
multiple comparison test. (C) Western blot with anti-filaggrin in keratinocytes upon 2 h, 4 h, 8 h and 16 h treatment of proteasome inhibitor MG132,
arrows indicate accumulation of undegraded profilaggrin in proteasome inhibition sample. (D) Intensity ratio of all filaggrin bands detected in
different timepoint treatment of proteasome inhibitor MG132; one-way ANOVA followed by Tukey’s multiple comparison test; (E) Intensity ratio of
different FLG bands upon MG132 treatment; two-way ANOVA followed by Šidák’s multiple comparison test; (F) Western blot with anti-filaggrin in
keratinocytes upon 2 h, 4 h, 8 h and 16 h treatment of deubiquitinase inhibitor PR-619, Top two arrows and top box indicates accumulation of higher
molecular weight filaggrin bands in the deubiquitinase inhibited samples whereas, deubiquitinase inhibition leads to depletion or disappearance of
filaggrin bands of approximately 130, 50 and 15 kDa pointed with bottom box and arrows. (G) Intensity ratio of all filaggrin bands detected in different
timepoint treatment of deubiquitinase inhibitor PR-619; one-way ANOVA followed by Tukey’s multiple comparison test; (H) Intensity ratio of different
FLG bands upon PR-619 treatment; two-way ANOVA followed by Šidák’s multiple comparison test; error bar stands for + SD and p-value < 0.001(***);
p-value ≤0.002(**); p-value ≤ 0.033(*); (n = 4).
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Profilaggrin shows differential stability at the
C- and N-termini

Based on the experimentally measured Protein Stability Index
(PSI), our tool showed that the C-terminus of profilaggrin exhibits a
PSI value of 2.45 (the median C-terminal PSI in human proteome is
2.72), whereas the N-terminus is more stable with a PSI value of 4.05
(the reported experimental PSI value is for profilaggrin N-terminal
sequence with initiator methionine (Met) cleaved, there is no data
on the corresponding variant with initiator Met present; the median
N-terminal PSI in human proteome for termini where initiator
methionine (Met) undergoes cleavage is 3.49) (Figure 2C). In
contrast, the N-terminus has a positive Gravy hydrophobicity

index (GHI) value (Kyte and Doolittle, 1982) (Figure 2D), and
hydrophobic sequences often determine the specificity for
recognition by chaperones and protein quality control E3s (Kats
et al., 2018; Stefanovic-Barrett et al., 2018; Hickey et al., 2021; Culver
et al., 2022).

The profilaggrin sequence contains multiple
potential ubiquitination sites

We identified numerous Lys residues after examining the
profilaggrin sequences for the secondary degrons—potential
ubiquitination sites. Intriguingly, these appear to be dispersed

FIGURE 2
Location of degronmotifs, ubiquitination-prone residues, and terminal stability of profilaggrin. (A) Illustration showing location of degron, ubiquitin-
conjugating amino acid residues, intrinsic disorder region, phosphorylation sites and other post-translationalmodification sites in the profilaggrin protein.
(B) Location of degronmotif sequence and degron type in the profilaggrin wild-type sequence (legend as of Figure 3); (C) protein stability index of the N-
and C- terminus of the profilaggrin; (D) Gravy hydrophobicity index of profilaggrin N- and C terminus.
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unevenly throughout the profilaggrin sequence, with the majority
accumulating either in the N-terminal domain (Figure 3A) or at the
C-terminus (Figure 3B). In contrast, Lys residues are comparatively

rare within the filaggrin monomeric repeats: 1st, 2nd 4th and 7th
repeat each contain only one Lys residue; 6th repeat contains two
and 3rd and 5th repeat harbor three Lys residues (Figures 3B, C).

TABLE 1 List of degron motif, type and location in the profilaggrin protein sequence.

Degron motif Sequence Indices Degron
type

Localization Additional
information

Secondary
structure

Mean relative
solvent

accesibility

Mean
pLLDT

M{0,1}[AST]x MST 1–3 Ac/N
degron

N-terminus This motif is recognized by
S. cerevisiae Doa10 and its
mammalian counterpart
Teb4, and also Not4, the
E3 subunit of Ccr4-Not
(Varshavsky, 2019)

--H 0.69 91.4

[FIVL]x[ILMVP]
[FHY]x[DE]x
{0,3}[DEST]

VDVFMDHL 54–62 APC/C
(ABBA)

Internal HHHHHHTT- 0.28 80.82

xKENx RKENL 90–94 APC/
C (KEN)

Internal HHHTS 0.68 61.62

xKENx NKENR 118–122 APC/
C (KEN)

Internal ----- 0.74 33.55

[AVP]x[ST]
[ST][ST]

AETSS 361–365 SPOP Internal ----- 0.86 34.65

D(S)Gx
{2,3}([ST])

DSGHRGS 736–742 SCF-TRCP1 Internal ------- 0.87 30.77

D(S)Gx
{2,3}([ST])

DSGHWGS 1,060–1,066 SCF-TRCP1 Internal ------- 0.83 33.22

[AVP]x[ST]
[ST][ST]

AETSS 1,010–1,014 SPOP Internal ----- 0.86 34.84

D(S)Gx
{2,3}([ST])

DSGHRGS 1,384–1,390 SCF-TRCP1 Internal ------- 0.88 41.18

xRxxLxx[LIVM]x SRSFLYQVS 1,438–1,446 APC/C
(DBOX)

Internal --------- 0.85 33.96

[AVP]x[ST]
[ST][ST]

AETSS 1,658–1,662 SPOP Internal ----- 0.84 39.03

ADSST ADSST 1,689–1,693 SPOP Internal Is an experimentally
validated degron for
human death domain-
associated protein 6

(DAXX) recognized by
BCR E3 ligase (Guharoy

et al., 2016)

----- 0.89 40.22

[AVP]x[ST]
[ST][ST]

D(S)Gx
{2,3}([ST])

DSGNRGS 1708–1714 SCF-TRCP1 Internal ------- 0.9 39.66

D(S)Gx
{2,3}([ST])

DSGHRGS 2,357–2,363 SCF-TRCP1 Internal ------- 0.83 33.6

[AVP]x[ST]
[ST][ST]

PGSSS 2,466–2,470 SPOP Internal ----- 0.95 32.85

[AVP]x[ST]
[ST][ST]

AETSS 3,279–3,283 SPOP Internal ----- 0.86 38.49

D(S)Gx
{2,3}([ST])

DSGHRGS 3,653–3,659 SCF-TRCP1 Internal ----S-- 0.82 37.03

[AVP]x[ST]
[ST][ST]

PHSSS 3,950–3,954 SPOP Internal ----- 0.76 42.85
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Apart from Lys, ubiquitin conjugation can also occur at the Ser, Thr,
and Cys residues (the non-canonical ubiquitination events). In
contrast to the Lys residues, which are localized mainly on the
terminal ends, the majority of Ser and Thr residues are located
within the filaggrin repeat units (Figures 3A–C); i.a., each filaggrin
repeat unit harbors 80 to 85 Ser and 10 to 15 Thr residues. The
N-terminal truncated filaggrin contains 47 Ser and 7 Thr, and
C-terminal truncated filaggrin contains 48 Ser and 7 Thr residues
(Figures 3A–C). Interestingly, profilaggrin contains only two Cys
residues, both located at the C-terminus (Figure 3B). Altogether,
despite the enrichment in the canonical signals (Lys) at the N- and
C-terminus of the sequence, which could be potentially
ubiquitinated, filaggrin monomer repeats contain almost five
times more potential non-canonical ubiquitination sites. The
distribution of Lys residues mainly in the vicinity of the

profilaggrin ends and the presence of a vast inner region devoid
of those (2,460–3,800 aa) may suggest that profilaggrin stability is
regulated by N- and C-terminus-dependent pathways.

Protease action generates filaggrin
monomers with reduced degron potential at
their N-termini

Profilaggrin is cleaved into 10–12 filaggrin monomers by several
endoproteases, including the skin-specific retroviral aspartic
protease (SASPase) and enzymes of the precursor converting
enzyme (PC) family of serine proteases. Using
DEGRONOPEDIA, we simulated cleavage of the profilaggrin
sequence by PC and SASPase (Figure 4A) to analyse the stability

FIGURE 3
Distribution of ubiquitin (Ub)-conjugating residues in the profilaggrin wildtype sequence. (A) Illustration of N terminus of FLG. The N terminal of
profilaggrin consists of a S100 fused type Ca++ Binding domain (92 aa) also known as A domain followed by nuclear localization signal peptide (195 aa)
also known as B domain and a truncated filaggrin repeat (173 aa). Truncated filaggrin repeat is flanked with a PC cleavage site which links it with B domain
and SASPase cleavage site which links it with rest of the filaggrin. Like all the other S100 domain filaggrin S100 domain consists of the Ca++ binding
domain followed by a unique nuclear localization signal. (B) Illustration of the wild-type profilaggrin protein. (C) Number of Ub-conjugating amino acids
in different domains of wild type profilaggrin.

Frontiers in Molecular Biosciences frontiersin.org08

Paul et al. 10.3389/fmolb.2023.1105678

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1105678


and hydrophobicity of the resulting products as well as to uncover
degron motifs in the newly formed termini that may have
physiological significance. PC processing results in an N-terminus
with residues that can be acetylated and targeted via the Ac/
N-degron pathway (Supplementary Table E1). On the other
hand, upon processing by SASPase, most of the resulting
filaggrin monomer repeats feature an N-terminus containing
positively charged (His, Lys, and Arg) and large hydrophobic
residues [tryptophane (Trp), isoleucine (Ile), phenylalanine (Phe),
leucine (Leu), and tyrosine (Tyr)], which can be recognized by
UBR1, UBR2, UBR4, and UER5 E3 ligases or non-E3 autophagy
receptor p62/SQSTM, and targeted for degradation via the Arg/
N-degron pathway (Supplementary Table E2) (Dissmeyer et al.,
2018; Yoo et al., 2018; Varshavsky, 2019). Despite the lower PSI
value (indicating lower stability) of the N-terminus of these
monomer repeats (Figure 4B), their hydrophobicity index (one of
the components used to predict PSI) is also lower overall than that of
the entire profilaggrin (Figure 4C). This may imply that their
potential turnover based on various protein quality control
E3 ligases, such as the C-terminus of HSC70-interacting protein

(CHIP) or March6, which rely on hydrophobic degrons to mediate
the destruction of proteins, will be impeded (Stefanovic-Barrett
et al., 2018; Wang et al., 2020). Therefore, while the predicted
degradation routes for the intact wild-type profilaggrin are shown
in Figure 4D, we speculate that the monomer repeats generated via
PC/SASP cleavage will be regulated via internal degrons or C-degron
pathways (Figure 4E). Accordingly, the relatively low
hydrophobicity of cleavage products at their C-termini can
facilitate their interaction with cullin-RING ligases, which
preferentially act upon non-hydrophobic C-terminal degrons
(Hickey et al., 2021).

Degrons and ubiquitination sites are conserved within the
S100 fused-type protein (SFTP) family, including filaggrin. We
examined whether the SFTP have similar degron motifs and
residue pattern of Lys, Ser, Thr, and Cys. Enrichment of Lys
residues at the N-termini is conserved within the S100 domain
(aa 1 to 100; Supplementary Figure E3). Additionally, we analysed
the conservation of Lys residues among all S100 calcium-binding
proteins and the S100 domain of SFTP (Supplementary Figure E4).
Interestingly, the filaggrin S100 domain contains the highest number

FIGURE 4
Effect of profilaggrin processing on the stability and degron content. (A) PC and SASPase clevage sites in the profilaggrin sequence. (B) terminal
protein stability index of newly generated SASPase cleaved FLG products in comparison to the wild-type FLG terminus. (C) terminal Gravy hydrophobicity
index of newly generated SASPase cleaved FLG products in comparison to the wild-type FLG terminus. (D) Proposed degradation routes of wild-type
profilaggrin. (E) Proposed degradation routes of PC- and SASPase-cleaved profilaggrin products (legends as of Figure 3).
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of Lys (14 residues) compared to the S100 proteins and the
S100 domains of the SFTP (Supplementary Figure E5;
Supplementary Table E5). In contrast, Ser residues are well
conserved between filaggrin, hornerin, and filaggrin 2 in the
filaggrin repeat units. Degrons also exhibit a degree of
conservation within the family (Supplementary Table E6); e.g.,
cornulin, trichohyalin, and trichohyalin-like protein 1 contain
DBOX motifs that can be recognized by the APC/C E3 complex.
Trichohyalin, in addition, contains the KEN motif, which can also
interact with APC/C. All the SFTPs have N-termini that can
function through the Ac/N-degron pathway. Moreover, hornerin
contains a sequence that can bind to E3 SPOP, and filaggrin-2
contains a degron recognized by the SCF-TRCP1. These properties
imply that multiple proteins in the SFTP family may be subject to
degradation by similar UPS pathways.

Clinically relevant FLG null mutations affect
the number of predicted ubiquitination sites

Given the likely importance of ubiquitination affecting (pro)
filaggrin turnover in the skin, we also investigated if known genetic
predisposition for AD, i.e., FLG null mutations, may impact this
process. To this end, we searched for any additions or removals of
Lys, Ser, Thr, and Cys residues from the protein sequence resulting
from FLG frameshift mutations and compared the number of those
residues in the frameshift product with the same length span in the
wild-type sequence. We retrieved all the mutations of FLG registered
to date in the Genome Aggregation Database (gnomAD, v2.1.1.).
We found that out of 23 recurrent and pathogenic frameshifts
analysed, 13 (57%) generated products with a greater number of
Lys residues compared to the corresponding wild-type amino acid
span (Supplementary Figure E5). The highest Lys residue
enrichment of eight residues was encountered in
p.Ser1235HisfsTer211. Overall, these mutations introduce an
additional one to eight Lys residues in the frameshift product.
Lys residues remain consistent for the remaining 10 pathogenic
frameshift mutations. Six of those (p.His3951ProfsTer4,
p.Gln2423ValfsTer2, p.Ser2317Ter, p.Ser417ValfsTer2 or
c.1248dupG, p.Gly221GlufsTer3 and p.Asn186LysfsTer4)
terminate immediately, yielding products shorter than three
amino acids in length, without the introduction of any Lys
residues. Similarly, frameshift mutations p.Ser1171GlnfsTer15 or
c.3510delG, p.Gly1109GlufsTer13 or c.3321delA,
p.Gln1084ValfsTer21 or c.3250_3251delCA and
p.Asp433HisfsTer43 or c.1297_1298delGA do not introduce any
Lys residues despite generating a moderate length of frameshift
products (Supplementary Figure E6; Supplementary Table E4).

A similar trend was observed for Thr and Cys residues—out of
the 23 mutations, 14 (61%) generate a frameshift product with an
increased number of Thr residues (1–23 additional Thr residues).
Only one mutation (p.Asn186LysfsTer4 or c.557dupA) reduces the
number of Thr (reduction of one residue) in the frameshift product
(Supplementary Figure E7), whereas six of the pathogenic frameshift
mutations introduce additional Cys (1–3 residues) in the frameshift
products (Supplementary Figure E7). In contrast, out of the
23 pathogenic frameshift mutations, 17 (74%) reduce the number
of Ser residues in the frameshift products compared to the wild-type

of the same length span; the range of reduction found is by
1–30 residues (Supplementary Figure E9). We have summarized
these findings in Figure 5A, showing that 17 out of 23 mutations
increase the content of the potential ubiquitination sites (compared
to the wild-type of the same length span) and highlights substantial
differences between different mutations.

Because none of the recurrent frameshift mutations’ products
reduced the number of Lys residues, and the vast majority led to the
introduction of Thr and/or Cys and a reduction of Ser residues, we
wanted to check if this is also the case for the non-recurrent rare
family-specific frameshifts. To this end, we selected all the
frameshifts located within the coding DNA reference sequence
NM_002016.2: c. 1 to c.5700. Out of 101 rare frameshift
mutations analysed, 70 (70%) introduced additional Lys residues
in the frameshift products, introducing 1 to 8 additional Lys residues
compared to the same length span in the wild-type sequence; the
number of Lys remained the same in 28 frameshifts. In contrast, we
only encountered a reduction in the number of Lys residues on three
occasions (3%), namely, in the frameshift mutation
p.Ser798ArgfsTer19 or c.2394delC, p.Lys801SerfsTer15 or c.2402_
2405delAACA and p.Lys255IlefsTer2 or c.762_766delCAAAA; in
all those cases, one Lys residue was lost compared to the same length
wild-type sequence span (Supplementary Table E3). Out of the
101 rare frameshift mutations analysed, 66 introduced additional
Thr residues (ranging from 1 to 25) in the frameshift product,
whereas seven reduced the number of Thr residues in the frameshift
product (reduction range 1–3 residues). Similarly, 45 of those
introduced Cys (one to three residues) in the frameshift product.
In contrast, 82 generated a frameshift product with a reduction of
Ser (ranging from 1 to 57 residues). Only two frameshifts introduced
additional Ser in the frameshift product (one to two additional
residues) (Supplementary Table E3). Regardless of their position, all
frameshifts translate into products shorter than the wild-type, with
their product length varying between 1 and 260 aa.

A higher number of ubiquitination-prone residues in a protein
sequence may promote its ubiquitination (Mattiroli and Sixma,
2014). Thus, we also determined the ratio of those to the full
product length, nonsense, and frameshift FLG mutations. We
found that irrespective of the kind of mutation, all have an
increased ratio of Lys residues vs. the product length compared
to the respective ratio calculated for the wild-type profilaggrin
(Figure 5B), probably due to a high density of Lys residues in the
N-terminal domain. As for the residues that may undergo non-
canonical ubiquitination, a decreased ratio of Ser residues
(Figure 5C) and an increased ratio of Thr residues (Figure 5D)
was found as a general rule, while the relative content of the Cys
residues was different for the two types of FLG mutations; with a
reduction of the ratio for the nonsense mutations and a spectrum of
the ratio values for the frameshift mutations, spanning the value
obtained for the wild-type (Figure 5E).

Filaggrin mutations change C-terminal
stability and introduce degron motifs

Some pathogenic mutations in FLG lead to changes in the aa
sequence and the appearance of an altered C-terminus. Interestingly,
we found that almost all these mutations are predicted to lead to
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increased C-terminus stability compared to the wild-type
(Figure 6A), and this was similar for nonsense and frameshift
mutations (Figures 6B, C); albeit the PSI scores were significantly
lower for the latter (Figure 6D). Here, we noted that the common
nonsense mutation R501X (p.Arg501Ter or c.1501C>T) had higher
PSI in comparison to the common frameshift mutation 2282del4
(p.Ser761CysfsTer36), despite generating mutant proteins of
relatively similar lengths. Interestingly, we found the median GHI
for all the mutations analysed to be in a similar range to the wild-
type protein (−1.547 vs. −1.533, respectively) (Figure 6E), and their
negative value points out that their nature is hydrophilic and
potentially less prone to regulation by the C-degron pathway.
However, we observed a difference in the median GHI between
the nonsense and frameshift mutations; again, we observed a
discrepancy between the most common European variants
(Figures 6F–H). Several pathogenic frameshift mutations
additionally introduce degron motifs absent in the profilaggrin
(Supplementary Table E4), which may have a reducing impact
on the stability of the mutant product, including R501X
(Figure 6I). E.g., p.Thr2496AsnfsTer104, which is the only
variant with a hydrophobic C-terminus and predicted as
destabilizing (Figure 6J), yields two novel primary degron sites.
The APC/C (DBOX) motif occurs internally at 2,580–2,588, while
the C-terminus carries a sequence corresponding to two known

C-degron motifs, both carrying Arg at the antepenultimate position.
Importantly, over 25% of the proteins carrying these C-degron
motifs are substrates of the cullin-RING E3 ligases (Koren et al.,
2018). These results point to the potentially destabilizing character
of this frameshift variant, whereas other frameshift mutations
moderately improve the stability of their C-termini. Data
summarizing predicted C-terminal PSI, GHI, and found degron
motifs in the analysed pathogenic frameshift and nonsense variants
are available in Supplementary Table E4, and the predicted
degradation pathways are shown in Tables 2, 3.

Discussion

Expression of profilaggrin and its processing into filaggrin
monomer units, as well as their further breakdown into the
components of the NMF, is essential for the functionality of the
epidermal barrier; disturbances at any point of this intricate process
are detrimental and lead to pathology. Given their role in the
collapse of the keratin-based cytoskeleton and the striking effect
on nuclear integrity, it is apparent why the accumulation of free
filaggrin monomers into the cytosol of a keratinocyte is toxic to the
cell and initiates its programmed death (Dale et al., 1997; Kuechle
et al., 2000; Presland et al., 2001). Hence, both the released filaggrin

FIGURE 5
Altered content of ubiquitin-conjugating residues in FLG mutation products. (A) Number of ubiquitin-conjugating residues in the frameshift
products in comparison to the corresponding wild-type same length span. (B) Ratio of lysine in the nonsense and frameshift mutant protein. (C) Ratio of
serine (Ser) in the nonsense and frameshift mutant protein. (D) Ratio of threonine (Thr) in the nonsense and frameshift mutant protein. (E) Ratio of cysteine
in the nonsense and frameshift mutant protein.
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monomers and any free profilaggrin molecules that could be
processed must be under rigorous control in the cytosol to
prevent premature cell death and allow for keratinocyte
differentiation and stratification, critical for the formation of the
functional skin barrier. Such control may be executed by different
means, including protein sequestration, removal of the excess from
the cytosol, and re-direction for turnover by the UPS.

We have previously described two separate mechanisms that
control intracellular filaggrin levels during keratinocyte
differentiation; the actin-based Akt-1/HspB1-dependent
mechanism governing profilaggrin sequestration in KHGs
(Gutowska-Owsiak et al., 2018) as well as the small extracellular
vesicle (sEV)-mediated removal of excess free-floating profilaggrin/
filaggrin from the cytosol (Gutowska-Owsiak, 2022). As for the
latter, we also determined that Staphylococcus aureus, a skin
pathogen with high prevalence and significant contribution to the
pathology in AD patients, enhances filaggrin loading into the sEV
cargo, facilitating its removal from the skin. Modeling protein
networks indicated that the link between TLR2 signaling,
profilaggrin processing, and cargo loading into the sEVS might

include proteins involved in ubiquitination, pointing to protein
degradation and intracellular trafficking. Indeed, the importance
of protein turnover has been shown previously to be critical for
controlling cellular protein abundance (Yen et al., 2008; Cambridge
et al., 2011), and we envisage that both subcellular localization and
propensity for degradation are key for homeostasis within the
profilaggrin/filaggrin system. Ubiquitination is important for
protein trafficking to diverse cellular localizations, including the
compartments of the endocytic system, as well as nuclear
localization aiding gene regulation. These pathways are also
exploited by pathogenic bacteria and viruses for their successful
transmission and immune evasion (Millar et al., 2019; Tokheim
et al., 2021; Kampmeyer et al., 2022; Moosbrugger-Martinz et al.,
2022).

The importance of the proteasome in profilaggrin turnover
and control of its intracellular fate can be speculated already
based on the appearance of greatly enlarged KHGs
(hypergranulosis) in the skin of patients with an autosomal
recessive epidermal abnormality known as keratosis linearis
with ichthyosis congenita and sclerosing keratoderma (KLICK)

FIGURE 6
Alterations in profilaggrin stability in FLG null mutation carriers. (A–D) C-terminal PSI of recurrent pathogenic frameshift (C), nonsense mutation (B)
and combined (A) here wild type is shown as pink and two most common European mutations 2282del4 and R500X are marked in red and blue; (D)
estimation plot and comparison between PSI scores; Student’s t-test; p < 0.01 (**); (E–H)C terminal Gravy hydrophobicity index of recurrent pathogenic
frameshift (G), nonsense mutation (F) and combined (E) here wild type is shown as pink and twomost renownedmutation 2282del4 and R500X are
marked in red and blue; (H) estimation plot and comparison between PSI scores; Student’s t-test; p < 0.001 (***); (I) Location of C-terminal degron in
p.Arg501Ter and Lysine residue. (J) Location of C terminal degrons and lysine residues in the p.Thr2496AsnfsTer104.
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TABLE 2 List of recurrent pathogenic nonsense mutation and their degrons in comparison to the wild-type profilaggrin.

E3 ligase-binding motifs Mutation

N-terminus Internal C-terminus

Ac/N degron; motif recognized by Teb4 and
Not4 E3 ligases

SPOP, APC/C (ABBA, KEN, DBOX), SCF-TRCP1
recognition motifs

— Full-length WT

Motif -G end, likely CRL substrate p.Lys4022Ter

— p.Arg3879Ter

Motif -R end, likely CRL substrate p.Gln3859Ter

Motif -EE end, likely CRL substrate p.Gln3818Ter

— p.Ser3749Ter

Motif -A end, likely CRL substrate p.Arg3743Ter

Motif -G end, likely CRL substrate p.Gln3684Ter

— p.Arg3657Ter

Motif R at -3, likely CRL substrate p.Gln3520Ter

— p.Arg3442Ter

Motif -A end, likely CRL substrate p.Arg3419Ter

Motif -G end, likely CRL substrate p.Arg3409Ter

p.Ser3316Ter

Motif A at -2, likely CRL substrate p.Ser3296Ter

— p.Ser3247Ter

— p.Gln3029Ter

— p.Arg3009Ter

Motif -A end, likely CRL substrate p.Arg2971Ter

— p.Trp2907Ter

— p.Ser2706Ter

— p.Arg2685Ter

— p.Arg2613Ter

— p.Ser2554Ter

— p.Ser2544Ter

— p.Ser2453Ter

Motif -A end, likely CRL substrate p.Arg2447Ter

— p.Glu2422Ter

— p.Gln2417Ter

— p.Gln2397Ter

— p.Arg2361Ter

— p.Ser2344Ter

Motif -A end, likely CRL substrate p.Ser2317Ter

— p.Gly2228Ter

— p.Tyr2092Ter

Motif R at -3, likely CRL substrate p.Ser2080Ter

— p.Gln2070Ter

(Continued on following page)
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syndrome (Vahlquist et al., 1997), (Dahlqvist et al., 2010),

(Takeichi and Akiyama, 2020). Those patients have a deletion
of a single nucleotide at the 5’ untranslated region of the
proteasomal maturation protein (POMP), a chaperon that

mediates stabilization of the proteasome complex; thus, loss of
function leads to insufficiency of the proteasome in
differentiating keratinocytes (Dahlqvist et al., 2010; Morice-
Picard et al., 2017; Onnis et al., 2018). KLICK patients also

TABLE 2 (Continued) List of recurrent pathogenic nonsense mutation and their degrons in comparison to the wild-type profilaggrin.

E3 ligase-binding motifs Mutation

N-terminus Internal C-terminus

— p.Arg2037Ter

— p.Ser1977Ter

— p.Trp1947Ter

— p.Ser1906Ter

— p.Gly1826Ter

— p.Arg1798Ter

— p.Glu1795Ter

— p.Gln1790Ter

— p.Ser1733Ter

Motif -EE end, likely CRL substrate p.Ser1729Ter

— p.Gly1724Ter

— p.Arg1712Ter

— p.Gln1701Ter

— p.Ser1695Ter

— p.Ser1515Ter

Motif -A end, likely CRL substrate p.Arg1474Ter

SPOP, APC/C (ABBA, KEN), SCF-TRCP1 recognition
motifs

Motif R at -3, likely CRL substrate p.Ser1302Ter

— p.Gln1256Ter

— p.Gly1253Ter

Motif -G end, likely CRL substrate p.Arg1140Ter

— p.Gly1139Ter

— p.Ser1040Ter

Motif -A end, likely CRL substrate p.Ser1020Ter

— p.Gln977Ter

Motif -A end, likely CRL substrate p.Arg826Ter

— p.Arg788Ter

SPOP, APC/C (ABBA, KEN) recognition motifs — p.Arg740Ter

— p.Ser609Ter

Motif -A end, likely CRL substrate p.Arg501Ter

APC/C (ABBA, KEN) recognition motifs — p.Gln355Ter

— p.Trp326Ter

— p.Ser260Ter

— p.Lys182Ter

Sequence too short for analysis p.Glu32Ter
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demonstrate thickened SC and aberrant filaggrin staining with an
antibody directed against filaggrin monomer (Dahlqvist et al.,
2010).

In this study we were able to confirm the involvement of the UPS
in profilaggrin degradation using a proteasome inhibitor
MG132 and deubiquitinases inhibitor PR-619. Treatment with
these compounds allowed us to observe the accumulation of
profilaggrin and high molecular weight processed products in the
lysates, suggesting reduced profilaggrin turnover likely underlying
hypergranulosis in the KLICK syndrome. At the same time, the
reduction in keratinocyte viability after the overnight treatment
could result from the accumulation of the free unsequestered/
uncontrolled monomer filaggrin units (Presland et al., 2001).
Unfortunately, dead cells where this could be potentially
detectable were not evaluated in this study.

Our findings are in a sharp contrast to just published short
communication by Briot et al. who failed to observe a difference
upon proteasome inhibition and speculated that filaggrin monomer
is not degraded via proteasome (Briot et al., 2023). We believe that
this discrepancy results from the use of different models. Specifically,

we used cells growing in monolayers, where many cells present with
low, but detectable profilaggrin expression in relatively
undifferentiated cells (Gutowska-Owsiak, 2022). This is where the
greatest control over free profilaggrin must be exerted and where it
could undergo the UPS-mediated turnover. With increased
profilaggrin expression in the 3D epidermal equivalent used by
Briot et al., the vast majority of the protein is already sequestered
within KGHs, therefore the risk of keratin aggregation by free
cytosolic filaggrin is reduced. Importantly, such containment of
the protein within KHGs prevents its access to the proteasome,
which is not able to sample from those insoluble organelles. The
importance of UPS-mediated control over profilaggrin is also
supported by the biological pattern of the proteasome expression,
which functions primarily in the undifferentiated keratinocytes,
corresponding to basal and suprabasal epidermal layers (Zieba
et al., 2017); proteasome gets disassembled in the cells at the late
stages of differentiation, which results from regulation of POMP
expression.

To get a global picture of features important from the
perspective of regulation by the UPS, it is important to consider

TABLE 3 List of recurrent pathogenic frameshift mutation and their degron motif.

E3 ligase-binding motifs Mutation

N-terminus Internal C-terminus

Ac/N degron; motif recognized by
Teb4 and Not4 E3 ligases

SPOP, APC/C (ABBA, KEN, DBOX),
SCF-TRCP1 recognition motifs

— p.His3951ProfsTer4

— p.Arg3272AsnfsTer118

APC/C motif p.Ala3094HisfsTer37

— p.Ser2649ValfsTer94

Motif R at -3, likely CRL substrate p.Thr2496AsnfsTer104

— p.Gln2423ValfsTer2

— p.Ser2366ArgfsTer52

— p.His1897ProfsTer198

— p.Glu1605ThrfsTer103

— p.Ser1595ArgfsTer110

— p.Ser1235HisfsTer211

SPOP, APC/C (ABBA, KEN), SCF-TRCP1 recognition
motifs

— p.Ser1171GlnfsTer15

— p.Gly1109GlufsTer13

Destabilizing motif VxT p.Gln1084ValfsTer21

— p.Ser761CysfsTer36

SPOP, APC/C (ABBA, KEN)
recognition motifs

— p.Asp433HisfsTer43

Motif R at −3, likely CRL substrate p.Ser417ValfsTer2

APC/C (ABBA, KEN)
recognition motifs

— p.Ser249LysfsTer10

Motif -EE end, likely CRL substrate p.Gly221GlufsTer3

— p.Asn186LysfsTer4

— p.Glu160ArgfsTer10

— p.Arg130GlufsTer6
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multiple factors, i.e., internal degron motifs, different properties of
the N-/C-termini, such as their stability and hydrophobicity,
structural features of the protein with regards to the solvent
accessibility and IDRs, and residues that may undergo
ubiquitination. Here, we determined sequence characteristics by
identifying the degron sequences with the DEGRONOPEDIA web
server, complemented with the detailed analysis of PTMs,
i.e., ubiquitination and phosphorylation with the potential to
govern profilaggrin/filaggrin degradation and cellular trafficking,
allowing us to propose likely degradation pathways. Protein
degradation via the UPS often requires the formation of the Lys-
linked polyubiquitin chains, while the nuclear re-directing depends
on the Lys monoubiquitination (Trotman et al., 2007). Apart from
the Lys residues, the profilaggrin sequence contains multiple Cys,
Ser, and Thr residues; such residues have been shown to undergo
ubiquitination at these marks. Furthermore, it has been shown that
such non-canonical ubiquitination is less thermodynamically stable
(McDowell and Philpott, 2013; McClellan et al., 2019; Squair and
Virdee, 2022) than the canonical Lys ubiquitination and
predominantly drives proteasomal degradation over protein
sorting (McClellan et al., 2019). The high enrichment of the
canonical ubiquitination sites in the N-terminal domains of
profilaggrin and the accumulation of the non-canonical
ubiquitination sites within the monomer repeats are interesting
observations and suggest potential differences in the degradation
pathways between the domains. The N-terminal domain is involved
in nuclear signaling events that initiate a positive feedback loop for
profilaggrin expression and keratinocyte differentiation. Proteasome
activity is considered high in the nucleus, thus, increased predicted
stability values could potentially indicate relative resistance of the
profilaggrin N-terminal domain.

Furthermore, we found that the entire profilaggrin sequence
contains 18 putative primary degron sites. Our screening suggests
that the unprocessed profilaggrin protein is likely degraded upon
recognition of the Ac/N-degron motif as the second N-terminal
residue is Ser and Nα-terminal acetylation (Nt-acetylation) of
nascent proteins, whose N-terminus contains Met or a small
uncharged residue alanine, Cys, Val, Ser or Thr as these become
N-terminal after co-translational removal of Met by Met-
aminopeptidase), is one of the most significant and common
protein modifications occurring on ~80% of all human proteins
(van Damme et al., 2012; Aksnes et al., 2016). Nt-acetylation can
serve as a degron motif for the two E3 ligases: March6/TEB4, a
Really Interesting New Gene (RING)-type E3 ligase located in the
endoplasmic reticulum membrane, and NOT4, a component of the
CCR4-NOT multi-subunit complex, which induces substrate
protein degradation via the Ac/N-degron pathway (Varshavsky,
2011; Shemorry et al., 2013; Park et al., 2015; Lee et al., 2016).

The presence of 17 internal degrons in wild-type profilaggrin
indicates the possibility of its N-/C-terminus-independent
degradation. Among these degrons, the destruction box (DBOX),
KEN box, and ABBAmotifs are found and substrates containing one
or more of these sequences typically undergo polyubiquitylation by
the anaphase-promoting complex (APC/C) (Brown et al., 2014).
APC/C is a large, multi-subunit E3 ligase that regulates cell cycle
progression in eukaryotes. Importantly, it is also involved in
proliferation and differentiation regulation in human primary
keratinocytes (Quek et al., 2018). Hence, it is probable that APC/

C could influence the keratinocyte life cycle and contribute to the
disruption in epidermal homeostasis, such as that seen in AD, at
least partly through its effect on profilaggrin degradation.

SCFβ-TRCP E3 ligase complex regulates proteasome-dependent
degradation of various substrates, including early mitotic inhibitor 1
(EMI1) (Margottin-Goguet et al., 2003), cell cycle homolog 25
(CDC25A) (Busino et al., 2003; Jin et al., 2006) and vascular
endothelial growth factor receptor 2 (VEGFR2) (Shaik et al.,
2012). Profilaggrin also contains the consensus degron sequence
(D(S)Gx{2,3}([ST]) of SCFβ−TRCP where Ser/Thr residues should be
phosphorylated for proper motif recognition (x—any aa) (Winston
et al., 1999; Guharoy et al., 2016). Interestingly, this motif was shown
to be phosphorylated in rat profilaggrin (Resing et al., 1995) but
neither the iPTMNet (Huang et al., 2018) nor PhoshoSitePlus
(Hornbeck et al., 2015) databases, incorporated into the
DEGRONOPEDIA, record any phosphorylation within them.

Profilaggrin has also been proposed as a binding partner of
receptors of the cullin E3 ligases: FBXW7 (Xu et al., 2021), DTL
(Huttlin et al., 2021), and VHL (Ewing et al., 2007). Present in
proliferating cells, FBXW7 (F-Box and WD Repeat Domain
Containing 7) is a member of the F-box family of proteins and
functions as a substrate recognition element of the SCF E3 ligase.
FBXW7 isoforms recognize their substrates through the
CDC4 phosphodegron (CPD) motif so that they can be
ubiquitinated and targeted for degradation by the proteasome
along with the substrate. Substrates of FBXW7 containing CPD
variants include MYC, Cyclin E/cyclin-dependent kinase CDK2,
JUN, Myeloid cell leukemia-1 (MCL-1), mammalian target of
rapamycin (mTOR), and NOTCH1 (Koepp et al., 2001; Wei
et al., 2005; Mo et al., 2007; Mao et al., 2008; Inuzuka et al.,
2011; King et al., 2013; Yeh et al., 2018). Analysis of the
profilaggrin sequence did not reveal the occurrence of CPD
motifs, which may suggest a profilaggrin-specific degron/
phosphodegron that requires further identification. DTL is
another receptor likely to bind to profilaggrin; it associates with
CRL4A (cullin 4A-RING ubiquitin ligase) and regulates DNA
replication and the cell cycle by regulating proteins such as
CDT1, PR-Set7/Set8/KMT5A and p21 (Jin et al., 2006; Abbas
and Dutta, 2009; Centore et al., 2010; Shibata et al., 2011; Cui
et al., 2019). Since DTL prevents DNA damage after UV irradiation
(Ishii et al., 2010), we hypothesize its involvement in skin function,
possibly through modulation of profilaggrin or filaggrin monomer
levels. In addition, profilaggrin was detected as an interactor of
cullin-2 (CUL2)-based E3 ligases (Bennett et al., 2010) and VHL
(von Hippel-Lindau). CUL2 is a platform for the Elongin B and
Elongin C adaptor protein complex, which interact with various
substrate receptors, such as the VHL tumor suppressor protein
(Gossage et al., 2014; Cai and Yang, 2016). Since VHL plays a role in
skin inflammation, CUL2 and VHL may regulate profilaggrin in
psoriasis (Martínez-Torres et al., 2022).

Our analysis indicated that the monomers generated by SASPase
cleavage are relatively stable, given their minor decrease in the
N-terminal PSI, but a significant increase in the C-terminal PSI
and a drop in GHI value; this likely permits their long-lasting
functionality required for cross-linking of the proteins within the
cornified envelope, and aggregation and collapse of the IF-based
cytoskeleton. Intriguingly, the UPS system has been previously
implicated in the degradation and turnover of keratins (Yamazaki
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et al., 2012); increased keratin turnover is observed in a subtype of
epidermolysis bullosa simplex (EBS) patients, resulting in shortened
lifespan, replicative senescence, and decreased cellular resistance in
keratinocytes (Logli et al., 2022).

It is important to note that the UPS-mediated degradation is a
pathway separate from the pathway of profilaggrin processing to
monomers and subsequently into the compounds of the NMF,
which occurs predominantly in the SC containing no living cells.
UPS components primarily function in the intracellular
environment; however, both the ubiquitinating enzymes and
proteasome are also present and active in the extracellular spaces
and body fluids (Takada et al., 1997; Sixt and Dahlmann, 2008;
Majetschak, 2011; Ben-Nissan et al., 2022), potentially also within
the SC. However, the difference in pH could affect the efficiency of
the degradation process, given the impact of the acidic environment. All
three hydrolytic activities (chymotrypsin-like, trypsin-like, and caspase-
like) of the 26S proteasome decreased when the pH was lowered from
7.5 to 7.0 (Ugai et al., 1993; Klinkradt et al., 1997). At the same time, the
20S proteasome from human platelets displayed chymotrypsin-like
activity with an optimum pH of 5.0–5.5 (Ostrowska et al., 2009). It
can be speculated that similar 20S activitymay bemaintainedwithin the
SC, enabling partial degradation of targeted proteins. Changes in
pH may also affect the ubiquitination process, e.g., pH lower than
7.5 destabilized the APC/C complex (Passmore et al., 2005), and we
identified potential APC/C degrons in profilaggrin. These observations
may suggest that profilaggrin and its derivatives do not undergo intense
turnover in the SC.

For this study, we assumed that profilaggrin processing may
coincide with the UPS-mediated degradation, at least to some extent.
On the other hand, while the majority of profilaggrin processing to
monomers can be localized to the SC, i.e., after keratinocyte death, it
is unclear howmuch processing may take place in the live epidermal
layers. However, small but detectable amounts of the filaggrin
monomer have been observed by Western blot in keratinocytes
grown in 2D cultures which were not stratified (Dang et al., 2016), so
we could envisage that the process likely begins much earlier, albeit
probably at a reduced rate, since the highest expression of the
processing enzymes was demonstrated for the top epidermal
layers (Miyachi et al., 1986; Pearton et al., 2001; Bernard et al., 2005).

Here we also determined that the common FLG mutations
predisposing to AD result in the generation of new products with
a different propensity for degradation, supported by changes in
stability and ubiquitination-prone residues as well as the emergence
of novel degrons. This may suggest that both the filaggrin turnover
and organellar distribution in the skin of the patients are affected,
and the generated products may undergo altered cellular fates.
Indeed, in the case of several mutations, we noted the
accumulation of all those pro-degradation motifs. At the same
time, while introducing several new ubiquitination-prone residues
compared to the wild-type of the same length, one of the most
common pathological FLGmutations, 2282del4, does not introduce
any novel known degrons. However, it is important to note that it is
not clear to what extent profilaggrin could undergo modification at
all these potentially ubiquitinated residues; since the protein is
known to undergo many different modifications at Lys residues.

FLGmutations resulting in the loss of the C-terminal domain led to
practically nonfunctional monomers generated from this allele
(Presland et al., 2000; Sandilands et al., 2007); hence, it has been

long assumed that the profilaggrin C-terminal domain is critical for
processing of the protein. However, it is not clear whether this is of
crucial importance, as no experimental data on theC-terminal domain’s
involvement in the processing has yet been published. Here, we
determined that the C-terminal sequence of the wild-type filaggrin
has a stability score in the range that is typical for most human proteins,
therefore not allowing us to consider this to be a highly stabilizing part
for the entire profilaggrin molecule.

Interestingly, we found the C-terminal PSI scores to be increased
for nearly all the mutated products, complicating the picture further.
It could be speculated that the increased stability of the mutated
product would result in the accumulation of such protein
intracellularly, albeit likely not in the form of granules (Sybert
et al., 1985). However, there is no evidence in the samples from
the patients, and certainly, no evidence indicating increased
processing of the protein as this would result in high amounts of
NMF being generated and barrier function maintenance. It is
possible that in this scenario, the remaining routes (proteasomal
degradation, vesicular export) would be enhanced to control the
profilaggrin/filaggrin levels in the cytosol. Indeed, we have
previously made a very unexpected observation of the increased
amount of the profilaggrin/filaggrin protein cargo in the sEVs
fractions isolated from the blood of AD patients compared to the
healthy controls (Gutowska-Owsiak, 2022), and this would perfectly
align with such a scenario. Thus, it is conceivable that keratinocytes
could expel the excess profilaggrin/filaggrin-related products to
prevent the toxic consequences in the event of a diminished
capacity to generate KHGs (Sybert et al., 1985). It would require
additional experimental work beyond the scope of this study to
determine if the mutated products can indeed be detected in the
sEVs found in the blood of the patients.

In summary, we determined that proteasome-mediated
profilaggrin degradation is one of the means of controlling
intracellular levels of the protein in keratinocytes, and we identified
critical components regulating UPS-mediated processing
(ubiquitination-prone residues and degrons) within its sequence.
Furthermore, we also described how FLG mutations might affect the
stability of mutant proteins and potential degradation routes in the cell.
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Glossary

AA amino acid

AD atopic dermatitis

APC/C anaphase-promoting complex

CE cornified envelope

CPD CDC4 phosphodegron

CUL cullin

CHIP C-terminus of HSC70-interacting protein

DBOX destruction box motif

E1 ubiquitin-activating enzyme

E2 ubiquitin-conjugating enzyme

E3 ubiquitin-ligase enzyme

EBS epidermolysis bullosa simplex

EDC epidermal differentiation complex

EMI1 early mitotic inhibitor

GHI gravy hydrophobicity index

IDR intrinsically disordered region

IF intermediate filament

IV ichthyosis vulgaris

KHG keratohyalin granule

KMT Lysine methyltransferase

LOF loss of function

MCL1 myeloid cell leukemia 1

mTOR mammalian target of rapamycin

NMF natural moisturizing factor

PC precursor converting enzyme

FLG profilaggrin gene

PSI protein stability index

PCA pyrrolidone carboxylic acid

PTM post-translational modification

RING really Interesting New Gene

SASPase skin specific retroviral aspartic protease

SFTP S100 fused-type protein

SC stratum corneum

SCFβ-TRCP Skp1-cullin 1-F-box with β-transducin repeat-containing protein
acting as its substrate receptor

sEV small extracellular vesicle

SPOP speckle-type POZ protein

TLR toll-like receptor

Ub ubiquitin

UCA urocanic acid

UPS ubiquitin-proteasome system

VEGFR2 vascular endothelial growth factor receptor 2
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