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Tuberculosis (TB) is the leading cause of death among infectious diseases, and the
ratio of cases in which its pathogen Mycobacterium tuberculosis (Mtb) is drug
resistant has been increasing worldwide, whereas latent tuberculosis infection
(LTBI) may develop into active TB. Thus it is important to understand the
mechanism of drug resistance, find new drugs, and find biomarkers for TB
diagnosis. The rapid progress of metabolomics has enabled quantitative
metabolite profiling of both the host and the pathogen. In this context, we
provide recent progress in the application of metabolomics toward biomarker
discovery for tuberculosis. In particular, we first focus on biomarkers based on
blood or other body fluids for diagnosing active TB, identifying LTBI and predicting
the risk of developing active TB, as well as monitoring the effectiveness of anti-TB
drugs. Then we discuss the pathogen-based biomarker research for identifying
drug resistant TB. While there have been many reports of potential candidate
biomarkers, validations and clinical testing as well as improved bioinformatics
analysis are needed to further substantiate and select key biomarkers before they
can be made clinically applicable.
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Introduction

Until the COVID-19 pandemic, tuberculosis (TB) was the leading cause of death globally
among infectious diseases. Its causative pathogen, the bacillus Mycobacterium tuberculosis
(Mtb), can be easily transmitted via airborne aerosols, expelled from people who are sick
with TB. Mtb mainly infect the lungs, causing pulmonary TB, which is characterized by
pathologically necrotizing granulomatous inflammation in the lung. It can also infect other
organs, causing extrapulmonary TB, including the deadlier tuberculous meningitis (TBM).
According to the recent global tuberculosis report of theWorld Health Organization (WHO)
(WHO, 2022), it is estimated that about one quarter of the human population worldwide has
been infected with Mtb, which is about two billion people. A small proportion of the latent
tuberculosis infection (LTBI) will develop into active TB. This proportion is much higher for
people infected with HIV. Other risk factors such as diabetes, smoking and alcohol
consumption, also enhance the probability for LTBI to develop into active TB. The new
incidence of active TB in 2021 was about 10.6 million people. Statistics shows that Mtb can
infect all age groups. About 90% of TB patients are adults, among whom there are more men
than women (56.5% versus 32.5% in 2021). Without treatment, the mortality rate from TB
disease is about 50%. The COVID-19 pandemic has worsened the situation and caused
reduced access to TB diagnosis and treatment (WHO, 2022). This led to an increase of TB
deaths from about 1.4 million in 2019 (the year before the pandemic) to 1.5 million in
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2020 and 1.6 million in 2021, with a worsening trend in terms of TB
deaths and incidence for 2022. According to the latest WHO report,
nearly all TB cases can be cured, if diagnosed early and treated
properly. Therefore, early and accurate diagnosis of TB and effective
treatment are very important, in order to reduce the death rate and
interrupt the transmission.

Given the huge impact of TB on public health, there have been
global efforts from both the government side and the scientific
communities. Since 2014, all member states of the United Nations
(UN) have committed to ending the TB epidemic by 2030, which
lends strong support to fundamental and clinical research on
tuberculosis. There have been a great number of studies in the
literature on biomarker discovery for TB, which is essential for
diagnosis, treatment monitoring, risk analysis and prognosis.
Biomarkers have also played an important role in studies of
mechanism of action, drug resistance and new drug development.
Not including other omics studies, there were tens of new
metabolomics studies on TB every year in the past few years.
Substantial progress has been made in diagnosis and the
understanding of the pathogen-host interaction as well as the
mechanism of drug resistance of Mtb. Here we will review recent
metabolomics-based studies on biomarker discovery in TB in the
past few years, since 2016. While TB is predominantly pulmonary,
we kept TBM and Osteoarticular tuberculosis (OTB) in the
coverage, while leaving out less deadly Mycobacterium smegmatis
(M.smeg) infections and other diseases in the mycobacterium
complex. These biomarkers may be used for diagnosis, therapy
efficacy evaluation and treatment monitoring and outcome
prediction.

Overview of TB and metabolomics-
based biomarker discovery

Diagnosis, treatment and drug resistance
of TB

Mtb is transmitted mainly via aerosols and are engulfed by
alveolar macrophages in the lungs of the infected hosts. Subject to
the immunological defense responses from the host, including
hypoxia, acidification, nutrient starvation, and oxidative stress,
Mtb has exhibited a strong adaptability to deal with these
macrophage antibacterial responses. Studies reveal that Mtb can
utilize multiple carbon and nitrogen sources from the host cells for
its growth and replication, and Mtb’s central carbon metabolism
plays a key role in its physiology and pathogenicity.

Currently, the diagnosis of pulmonary TB mainly relies on the
detection of Mtb in sputum, based on sputum smear microscopy
and bacteriological culture. Albeit a gold standard for TB diagnosis,
this method takes a long time (3–4 weeks) before the result is
available. Obviously, the sputum-based diagnosis is not applicable
for extrapulmonary TB. Furthermore, many active TB patients do
not present with Mtb-positive sputum, including TB patients co-
infected with HIV, and TB patients with diabetes (Bacakoğlu et al.,
2001), as well as children. The more recent positive GeneXpert
MTB/RIF molecular test (Boehme et al., 2010) can provide sensitive
detection of tuberculosis and rifampin resistance directly from
untreated sputum in less than 2 h. However, this rapid test has

not been made widely accessible. In 2020, it was used as the initial
diagnostic test for only 33% of newly diagnosed TB cases. For
extrapulmonary TB, the diagnosis often relies on invasive sample
collection from tissues or biological fluids, e.g., pleural-, cerebral-,
synovial-fluids. Therefore, developing rapid and accessible
diagnostic tests with high sensitivity and specificity would be
extremely important in the combat against TB.

Effective drug treatments of TB were first developed in the
1940s. Currently, there are four first-line drugs: isoniazid [INH],
rifampicin [RIF], ethambutol [EMB], and pyrazinamide [PZA]. The
treatment for drug-susceptible TB (DS-TB) recommended by the
WHO is a 6-month regimen of the four drugs. However, based on
available statistics, the WHO reports that about 15% of the
treatments are not very successful. Globally, about 3%–4% of
first-time TB and 18%–21% of recurring TB have been found to
be rifampicin-resistant (RR) or multidrug-resistant (MDR, which
shows resistance to both INH and RIF). The burden of drug-
resistant TB (DR-TB) has increased between 2020 and 2021, with
450,000 new cases of RR-TB in 2021 (WHO, 2022). In addition,
there are also INH-resistant TB, extensively drug-resistant TB
(XDR-TB), and pre-XDR-TB. Pre-XDR-TB is both MDR and
resistant to any fluoroquinolone, whereas XDR-TB meets the
definition of pre-XDR-TB, plus resistance to at least one
additional Group A drug of the second-line medicines (WHO,
2021). It is the drug resistance that has made it difficult to
eradicate tuberculosis. Both RR and MDR necessitate the
administration of second-line drugs, which may cause more
negative side effects. It is essential to understand the mechanism
of the drug resistance of Mtb, in order to effectively treat the disease
and develop new or alternative drugs. Despite some promising
results, conclusive answers are yet to be found. Furthermore, in
the case of DR-TB, biomarkers that can timely identify drug
resistance may enable proper early adjustment of the regimen
and combined administration of second-line or other potent drugs.

Metabolomics approaches to biomarker
discovery

Biomarkers can play a key role in accurate diagnosis and prognosis
of TB, in identifying LTBI, and in predicting their risk of developing
into active TB. There may also be biomarkers for monitoring the
treatment progress and evaluating the therapeutic efficacy. They can
also be used in the mechanistic investigation of the drug resistance and
development of new drugs. In recent years, biomarker discovery has
been greatly facilitated by the advance of the modern multi-omics
strategies, including metabolomics and lipidomics, based on
quantitative liquid/gas chromatography and mass spectrometry
technology. These omics technologies have been applied in the
various biomedical studies, including studies on TB (Pitaloka et al.,
2022), myocardial infarction (Liu et al., 2022), ischemic stroke
(Montaner et al., 2020), depressive disorders (Sethi and Brietzke,
2015; Yu et al., 2021) and other diseases (Tounta et al., 2021).

Metabolomics is a modern technology developed based on
technological advances in physics and analytical chemistry. It is
capable of quantitative characterization of high-throughput light-
weight metabolite molecules. NMR and mass spectrometry (MS) are
the two main analytical platforms. By measuring the metabolite
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changes, metabolomics can be used to find characteristic differentially
expressed metabolites, which can be used as biomarkers, for diagnosis,
distinguishing between diseases, and monitoring the progress of
medical therapy. Typical samples in metabolomics studies are
biological fluids including blood, urine, sputum, cerebrospinal fluid
(CSF), fecal wastes, and bacterial sources such as culture media.
Lipidomics can be regarded as a branch of metabolomics, focusing
on lipid metabolites. Among different omics strategies, metabolomics
and lipidomics have the advantage that metabolite samples (e.g., blood,
urine, and breath condensates, in the case of pulmonary TB for the
latter) are relatively easier to collect, the metabolomes are relatively
more stable, and thus allow a more complete understanding of cell
functions, dysfunctions, and perturbations. Furthermore, essentially all
diseases necessarily induce changes in metabolites, making quantitative
metabolic profiling a practical way for biomarker discovery.

The typical process of a metabolomics-based approach for
biomarker discovery is shown in Figure 1. Ideally, there should
be enough samples including both discovery cohorts and validation
cohorts, both main research subjects (e.g., TB patients) and controls.
While one can use simple screening criteria such as fold change
(FC), variable importance in projection (VIP) and p-values to select
differentially expressed metabolites, and use principal component
analysis (PCA) and (orthogonal) partial least-squares discriminant
analysis (PLS-DA) to analyze the difference between research

subjects and controls, there are strong correlations or collinearity
among these differential metabolites. Thus it is highly desirable to
use more elaborate machine learning algorithms, especially those
capable of eliminating redundant and uninformative variables and
reducing overfitting, to select key differential metabolites as
potential biomarkers. Both univariate and multivariate logistic
regressions may be performed on these biomarkers. These
biomarkers and the logistic models should then be tested using
the independent validation cohorts. We emphasize that it is
important to narrow the potential biomarkers down to a short
list and have independent cross-validations.

TB research has been a highly active field, as reflected from the
many reviews on this subject over the past decade. These reviews have
different focuses, with each one covering part of the studies in the
literature. While some covered relatively broad aspects of TB research
(Goletti et al., 2016; Goletti et al., 2018; Kumar et al., 2017; du Preez
et al., 2019; Kontsevaya et al., 2021), others addressed more focused
topics, such as diagnostic biomarker (Haas et al., 2016; du Preez et al.,
2017), treatment monitoring (Luies et al., 2017a; Pitaloka et al., 2022),
drug discovery (Jansen and Rhee, 2017; Tuyiringire et al., 2018; Goff
et al., 2020; Xu and Borah, 2022), mechanism of action of drugs
(Awasthi and Freundlich, 2017; Yuan et al., 2021) or anti-TB
compounds (Sakallioglu et al., 2021), drug resistance of Mtb and
drug toxicty (Combrink et al., 2020), as well as HIV/TB co-infection
(Liebenberg et al., 2021). Besides pulmonary TB, there are reviews on
the status of metabolomics studies on tuberculosis meningitis as well
(Zhang et al., 2018; Isaiah et al., 2020; Huynh et al., 2022).

Substantial progress has been made over the past few years, and
more metabolomics studies are available, with more potential
biomarker candidates discovered toward TB diagnosis, treatment
monitoring and predictions, drug development, etc., which will be
discussed below in this review.

Biomarkers based on host responses

Diagnosis of active TB

Upon infection, Mtb invades and grows inside macrophage cells.
Pulmonary TB often results in pathologic lung inflammation that
causes tissue damage, leading to proinflammatory and antimicrobial
responses of macrophages. The metabolites of intracellular Mtb also
affect macrophage functions and their response to pathogens. The
role of host metabolism in regulating the inflammatory response to
TB is still not well understood. Using combined metabolomics,
lipidomics and cytokine profiling, it was recently found [31] that IL-
1β-mediated inflammatory signaling in pulmonary TB was closely
associated with remodeling of tricarboxylic acid (TCA) cycle, which
was characterized by accumulation of the proinflammatory
metabolite succinate and decreased concentrations of the anti-
inflammatory metabolite itaconate, among other differential
metabolites. This inflammatory metabolic response was
particularly active in persons with MDR-TB. These findings
support the concept that host metabolic remodeling is a key
driver of pathologic inflammation in human TB disease.

The majority of metabolomics studies on TB are toward
biomarker discovery for diagnosis of active TB. Recent studies on
diagnostic biomarkers for active TB are listed chronologically in

FIGURE 1
Typical work flow for biomarker discovery via a metabolomics
approach.
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TABLE 1 Metabolomics studies on diagnostic biomarkers for active pulmonary TB.

Study Sample/
biofluids

Discovery
cohorts
(size n)

Metabolome
fraction

Validation
cohorts?

Analytical
apparatus

Statistic
methods

Metabolite
biomarkers
identified

Weiner et al. (2012) serum Active TB (44),
LTBI (46),
HC (46)

Total metabolome Y GC-MS or
UPLC-MS/MS

t-test, Wilcoxon
sum rank test,
RF, SPLS-
DA, HCA

20 metabolites including
histidine, cysteine,
threonine, citrulline, etc.

Che et al. (2013) serum TB (10), HC (10),
TB before and
after treatment (6)

Total metabolome Y (TB 120,
HC 120)

GC/TOF-MS OPLS, t-test 5-oxoproline level lower in
TB patients compared
to HCs.

Frediani et al. (2014) plasma Pulmonary TB
(17), HHC (17)

Total metabolome N LC-MS,/MS t-test, FET,
Pearson
correlation, FDR,
PCA, HCA, SVM

Upregulated Mtb-derived
gylcolipids (trehalose-6-
mycolate,
phosphatidylinositol) and
resolvins (RvD1, RvD2, AT-
RvD1)

Zhou et al. (2015) plasma TB (38), T2D
(40), malignancy
(40), CAP (30),
HC (39)

Total metabolome N 1H NMR
spectroscopy

PCA, OPLS-DA 26 metabolites between TB
and T2D; ketone bodies,
lactate, and pyruvate
upregulated in TB vs. HC,
but lower than in
malignancy and CAP.

Sun et al. (2016) Plasma of
children

TB (28), RTI (21),
HC (16)

Total metabolome Y (TB 17, RTI
17, HC 14)

1H NMR
spectroscopy

CART,
OPLS-DA

L-valine, pyruvic acid, and
betaine downregulated.

Luier and Loots
(2016)

Urine TB (46), HC (30) MS 50–600 m/z N GCxGC-MS PCA, PLS-DA,
unpaired t-test,
effect sizes

12 urinary metabolite
markers, i.e., phenylacetic
acid, 5-Hydroxyhexanoic
acid, 2-Octenoic acid,
Ribitol, 2-C-Methylglycerol,
5-Hydroxyhydantoin,
Oxalic acid, L-Rhamnulose,
Quinolinic acid, Indole-3-
carboxylic acid, Kynurenic
acid, Glycerol monostearate

Wang et al. (2017) pleural effusion TB (20),
malignant (20),
transudative (18)
pleural effusions

Total metabolome N 1H NMR
spectroscopy

PLS-DA, OPLS-
DA, one-way
ANOVA, SNK
and K-W test

L-Alanine, citric acid,
creatine, low-density
lipoprotein, aspartate,
L-lactic acid, methionine,
acetic acid

Che et al. (2018) pleural effusion TPE (51),
MPE (20)

Total metabolome,
semi-targeted

Y (TPE 13 + 51,
MPE 13 + 8)

LC-MS/MS PCA, OPLS-DA,
t-test, SRC

tryptophan/kynurenine
ratio

Isa et al. (2018) urine TB (107),
asymptomatic
controls (102)

Total metabolome Y (TB 50, non-
TB cough 50)

HPLC-MS Wilcoxon rank
sum test, RF, Gini
importance
index, RRmix,
t-test

diacetylspermine,
neopterin, sialic acid,
N-acetylhexosamine

Vrieling et al. (2018) plasma TB (50), DM (50),
TB-DM (27),
HC (50)

Metabolome,
targeting
225 parameters

N 1H NMR
spectroscopy

PLS-DA, HCA,
χ2 test, 1-way
ANOVA, t-test,
K-W test

ratios of histidine/
phenylalanine and esterified
cholesterol/sphingomyelin

Collins et al. (2018) plasma TB (17),
HHC (16)

lipidome N LC-MS/MS Wilcoxon rank
sum test, FET,
LIMMA, FDR

PG (16:0_18:1), Lyso-PI
(18:0) and Ac1PIM1 (56:1)
upregulated.

Beccaria et al. (2018) human breath TB (17), Mtb-
negative
controls (13)

metabolome Y (TB 15,
controls 5)

GC-MS,
chemometric
techniques

PCA, HCA,
linear SVM, PLS-
DA, RF

Panel of 23 breath
molecules

López-Hernández
et al. (2019)

Serum lipids TB (10), TB-T2D
(10), T2D (9),
control (10)

Lipidome N UPLC-MS/MS PCA, PLS-DA,
RF, SAM, FDR,
χ2 or FET, one-
way ANOVA

14 glycerophospholipids,
including upregulated
LPC(18:1), LPC(18:0),
downregulated PC(18:1/20:
4), PC(18:0/18:1), PC(16:0/
22:6), PC(16:1/22:6), PC(18:
2/18:2), etc.

(Continued on following page)
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TABLE 1 (Continued) Metabolomics studies on diagnostic biomarkers for active pulmonary TB.

Study Sample/
biofluids

Discovery
cohorts
(size n)

Metabolome
fraction

Validation
cohorts?

Analytical
apparatus

Statistic
methods

Metabolite
biomarkers
identified

Huang et al. (2019) Plasma TB (35), CAP
(35), LC (31),
HC (35)

Total metabolome N UPLC-MS/MS PCA, OPLS-DA,
STT, χ2 test

Xanthine, 4-Pyridoxate, and
d-Glu

Vrieling et al. (2019) Plasma TB (49), TB-DM
(19), HC (48)

amine and
acylcarnitine in
plasma (targeted)

N LC-MS/MS PCA, HCA, FDR,
1-way ANOVA,
χ2 test, PLS-DA

ratios of phenylalanine/
histidine, citrulline/
arginine, and kynurenine/
tryptophan; citrulline,
ornithine downregulated in
TB and TB-DM, choline,
serine, glycine, homoserine
threonine lower in TB-DM
than TB.

Cho et al. (2020) Serum TB (21), LTBI
(20), HC (28)

Total metabolome N LC-MS/MS PCA-DA, FDR,
t-test, K-W or
MWUT

glutamate, asparagine,
sulfoxy methionine,
aspartate, glutamine,
methionine, ratios of
glutamate/glutamine,
sulfoxy methionine/
methionine, and aspartate/
asparagine

Luo et al. (2020a) pleural effusion TPE(10), LC (10), Total metabolome,
lipidome

Y (TPE 30,
LC 30)

UPLC-MS/MS PCA, FDR,
PLS-DA

phenylalanine, leucine,
PC(35:0), and SM(44:3)

Collins et al. (2020) plasma DS-TB (89), LTBI
(20), HC (37),
MDR-TB (85) ||
refugees treated
for LTBI (28),
HHC (69),
untreated LTBI
(30), HC (39)

Total Metabolome N MS/MS Wilcoxon rank-
sum test,
Wilcoxon
signed-rank test,

plasma tryptophan
downregulated,
kynurenine/tryptophan
ratio and kynurenine
upregulated.

Ding et al. (2020) human and
mouse blood,
zebrafish larvae

human TB (20),
mice, whole
zebrafsh larvae,
and
respective HCs

Total Metabolome N MS, NMR
spectroscopy

PLS-DA, t-test methionine, asparagine,
cysteine, threonine, serine,
tryptophan, leucine,
citrulline, ethanolamine and
phenylalanine

Han et al. (2021) plasma TB (34), Lung
cancer (25), CAP
(30), HC (30)

lipidome N UPLC-MS/MS PCA, OPLS-DA,
K-mean
clustering,
t-test, FDR

PC(12:0/22:2), PC(16:0/18:
2), CE (20:3), and SM(d18:
0/18:1)

Luo et al. (2020b) serum TB (125),
LTBI (101)

iron metabolism Y (TB 66,
LTBI 53)

ROCHE COBAS
8000

MWUT or χ2 test combination of iron
metabolism indexes and
TBAg/PHA ratio

Albors-Vaquer et al.
(2020)

serum TB (15), HHC
(30), HC (35)

Total Metabolome N 1H NMR
spectroscopy

PCA, OPLS-DA,
t-test, SUS-plots

Amino acids (alanine,
lysine, glutamate and
glutamine), citrate, choline
downregulated in TBs.

Chen et al. (2020) Exhaled breath
particles

TB (19), non-
TB (17)

Total metabolome,
lipidome

N LC-MS PCA, SAM, SVM > 400 features selected

Izquierdo-Garcia
et al. (2020)

urine High field: TB
(19), PnP (25),
LTBI (17),
HC (28)||

Total metabolome Y (TB 66) || 1H NMR
spectroscopy
(high and low-
field)

PCA, PLS-DA 8 metabolites (aminoadipic
acid, citrate, creatine,
creatinine, glucose,
mannitol, phenylalanine,
hippurate)

Low field: TB (39),
PnP (31), LTBI
(53), HC (29)
(TB 88)

(TB 88)

Krishnan et al.
(2021)

Serum of PLWH TB (23),
controls (32)

microRNAs
metabolites,
cytokines/
chemokines

N UPLC-MS/MS PCA,
MWUT, FDR

gamma-glutamylthreonine
and hsa-miR-215-5p

(Continued on following page)
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Table 1, (which included a few prior to 2016). It should be noted,
however, some of these studies included LTBI as a cohort for
comparison, so that they may also provide information of
biomarkers for identification of LTBI. In addition, there were

also studies based on the pathophysiology and the mechanism of
action for the disease, and thus such studies may also be associated
with drug tolerance and monitoring of the treatment progress
discussed in the next section.

TABLE 1 (Continued) Metabolomics studies on diagnostic biomarkers for active pulmonary TB.

Study Sample/
biofluids

Discovery
cohorts
(size n)

Metabolome
fraction

Validation
cohorts?

Analytical
apparatus

Statistic
methods

Metabolite
biomarkers
identified

Deng et al. (2021) urine TB (30), LTBI
(30), HC (30)

Total metabolome Y (LTBI 16, TB
16, HC 16)

HPLC-MS PCA, OPLS-DA,
HCA, t-test

Glutathione and histamine

Comella-del-Barrio
et al. (2021)

Urine of children TB (6),
unconfirmed TB
(52), unlikely TB
(4), HC (55)

Urine metabolites N 1H NMR
spectroscopy

PCA, PLS-DA,
t-test, K-W tests

Differences in urine
metabolic fingerprints
identified

Liu et al. (2021) pleural effusions TB-PE (17),
malignant PE (17)

Total metabolome N GC-MS PCA, OPLS-DA Stearic acid, L-cystine, and
citric acid

Collins et al. (2021) plasma MDR-TB + HIV
(64), MDR-TB
(21), DS-TB (89),
LTBI (20), HC
(37), at different
times of treatment

Total metabolome,
lipidome

N UPLC-MS/MS Wilcoxon Rank
Sum test,
Wilcoxon
Signed-Rank test,
FDR, HCA

Increased succinate,
fumarate, malate, AKG, IL-
1β, LPLs, ARA, succinate/
itaconate ratio, decreased
itaconate, phospholipids

Jiang et al. (2021) serum TB (30), LTBI
(30), HC (30)

Total metabolome,
assisted by
transcriptomics data

N GC-MS,
UPLC-MS

PCA, OPLS-DA,
LASSO, χ2 test or
FET, ANOVA or
t-test, Wilcoxon
signed rank test
or K-W test

5-hydroxyindoleacetic acid,
isoleucyl-isoleucine,
heptadecanoic acid, indole
acetaldehyde, 5-ethyl-2,4-
dimethyloxazole, and 2-
hydroxycaproic acid

Wang et al. (2022) Intestinal flora,
blood

PTB (58), HC (36) Gut microbiome,
fecal metabolome

Y (PTB 25,
HC 16)

GC-MS, gene
sequencing

PCoA, PCA,
OPLS-DA, RF-
based
classification,
FDR

4 genera (Fusobacterium,
fusicatenibacter, tyzzerella
and anaerotruncus),
combination of five
metabolites (1-tetracosanol,
3-hydroxypicolinic acid,
behenic acid,
pyrophosphate and
tromethamine)

Chandra et al. (2022) Mtb strains,
BMDM of mice,
human THP-1
macrophages,
plasma, sputum

TB (40), non-
TB (40)

Total metabolome N UPLC-MS/MS RF, 2-tailed
t-test, MWUT, or
1-way ANOVA
models, Tukey’s
post hoc tests,
χ2 tests, or FET

Accumulation of
cholestenone in sputum
could be a useful biomarker.

Magdalena et al.
(2022)

serum and blood
cultures

TB (15), LTBI
(52), NMP (20),
HC (149)

Total metabolome N LC-MS/MS FDR, elastic-net
model

Leucine in serum,
kynurenine in stimulated
blood cultures

Hu et al. (2022) plasma SPPT (27), SNPT
(37), HC (36)
(90% for training)

Total metabolome Y (10% for
validation)

UPLC-MS PCA, OPLS-DA,
SVM, RF, MLP,
MWUT, K-W
test, 1-Way
ANOVA, χ2 test

4 biomarker combinations
involving, Val-Ser, 9-
OxoODE, enterostatin
human, EHB, MAA, DL-
norvaline, EPA, His-Pro,
PGA, and 1 clinical
indicator (albumin).

ARA, arachidonic acid; AKG, α-ketoglutarate; ANOVA, analysis of variance; BMDM, Bone-marrow-derived macrophages, CAP = community-acquired pneumonia; CART = classification and

regression tree (analysis), CE = cholesteryl ester; DM = diabetes mellitus; DS-TB = drug sensitive TB, EHB = ethyl 3-hydroxybutyrate; EPA = eicosapentaenoic acid; FDR = hochberg and

benjamini false discovery rate; FET = Fisher’s exact test, HCA = hierarchical clustering analysis; HHC = asymptomatic household contacts (without active TB), K-W test = Kruskal–Wallis test,

LASSO = least absolute shrinkage and selection operator; LC = lung cancer; LC-MS = liquid chromatography-mass spectrometry; LIMMA = linear model for microarray data analysis; LPC =

lysophosphatidylcholine; LPL = lysophospholipid; LTBI = latent tuberculosis infection; MAA = methoxyacetic acid; MDR =mulit-drug resistant; MLP = multilayer perceptron neural network;

MPE =malignant pleural effusion; MWUT =MannWhitney U test, NMP = non-mycobacterial pneumonia; PC = phosphatidylcholine; PCA = principal component analysis, PCoA = principal

coordinate analysis, PE = pleural effusions; PG = phosphatidylglycerol, PGA = L-Pyroglutamic acid, PLWH = persons living with HIV, PnP = pneumococcal pneumonia, PTB = pulmonary TB,

RF = random forest; RTI = respiratory tract infection; SAM = significant analysis of microarray; SM = sphingomyelin; SNK = student-Newman-Keuls (test), SNPT = smear-negative pulmonary

tuberculosis; SPPT = smear-positive pulmonary tuberculosis; SRC = spearman rank correlation, SUS-plot = shared and unique structures plot, SVM = support vector machine (analysis), SVR =

support vector regression; TPE = tuberculous pleural effusion, T2D = Type-2, diabetes; VM = viral meningitis.
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Diagnostic biomarkers to distinguish active
pulmonary TB patients from non-TB controls

The simplest control study for diagnostic biomarkers would be a
two-cohort design, which includes a cohort of active TB patients versus
healthy or non-TB controls. For pulmonary TB, the dominant form of
TB, an early GC-MS-based study (Che et al., 2013) found the 5-
oxoproline level in serum to be consistently lower in TB patients
compared to HCs, and thus could be a potential diagnostic
biomarker for active TB and an indicator of pathological damage of
the lung. This study used a small training dataset, with a false positive
rate of 22% for the biomarker. A few studies compared themetabolome
in the plasma between active pulmonary TB patients with their
asymptomatic household contacts (HHC). Using a small data set
(17 TB patients + 17 HHCs), Frediani et al. (2014) reported that
61 metabolites, screening by false discovery rate (FDR) q < 0.05,
were upregulated in the plasma of newly diagnosed pulmonary TB
patients, including glutamate, choline derivatives, Mtb-derived cell wall
glycolipids and resolvins, as compared to the HHCs, and proposed
Mtb-derived glycolipids (trehalose-6-mycolate, phosphatidylinositol)
and resolvins (RvD1, RvD2, AT-RvD1) as potential biomarkers.
Also with a small data set (17 TB + 16 HHCs), Collins et al. (2018)
found that threeMtb-associatedmetabolites, phosphatidylglycerol (PG)
(16:0_18:1), lysophosphatidylinositol (Lyso-PI) (18:0) and
acylphosphatidylinositol mannoside (Ac1PIM1) (56:1), were
significantly upregulated in active TB patients, and provided
excellent discrimination between TB patients and HHCs with
AUC = 0.97 (in ROC analysis). These potential biomarkers have to
do with the pathways associated with TB disease pathogenesis or Mtb-
associated lipid metabolites. This latter study used a looser screening
criterion, q < 0.2, which yielded four differential metabolites. With
essentially the same sample size and experimental design but different
data analysis, there were no overlap of the discovered biomarkers
between these two studies.

Recently, a study (Luo Y. et al., 2020) of the iron metabolism in
serum between fairly large cohorts of active TB patients (n = 191)
and LTBI (n = 154) found that the combination of iron metabolism
indexes and TB-specific antigen/phytohemagglutinin (TBAg/PHA)
ratio (>0.22) showed AUC = 0.93 with 89% sensitivity and 90%
specificity in the training data set and AUC = 0.965 with 92%
sensitivity and 91% specificity in the validation set, in distinguishing
active TB from LTBI. There were significantly higher levels of serum
ferritin and soluble transferrin receptor and significantly lower levels
of serum iron, transferrin, total iron binding capacity, and
unsaturated iron binding capacity in the active TB than in the
LTBI group. Different from most other metabolomics studies, this
work used iron metabolism indexes, and thus was likely subject to
weaker statistical fluctuations, than using individual metabolite.
Nevertheless, wide scatters were apparent in these indexes as well.

Pulmonary TBmay lead to pleural effusion (PE), whichmay also
be caused by non-TB malignancy, such as lung cancer, presenting a
challenge in clinic diagnosis. An integrated semi-targeted
metabolomics analysis revealed distinctive metabolic signatures in
PE caused by TB (n = 115) and malignancy (n = 41) (Che et al.,
2018). As a potential biomarker, the ratio of tryptophan/kynurenine
exhibited decent performance in differentiating tuberculous PE
(TPE) from malignant PE (MPE) with sensitivity of 92.7% and
specificity of 86.1%, which could be further improved by the
combination with adenosine deaminase. The result indicated

more activation of the downstream kynurenine metabolism. A
recent non-targeted metabolomics study (Liu et al., 2021) with
relatively small cohorts of TPE (n = 17) and MPE (n = 17)
patients found that stearic acid, L-cystine, and citric acid may be
potential biomarkers for distinguishing between TBPE and MPE,
with decent sensitivity and specificity. The OPLS-DA resulted in a
fairly low Q2 = 0.30, possibly due to the small sample size.

Luo et al (2020a) explored the metabolic characteristics of large
and small extracellular vesicles (EVs) from PE viametabolomics and
lipidomics analysis, and identified in pleural large EVs a panel of
four biomarker candidates, including phenylalanine, leucine,
phosphatidylcholine (PC) 35:0, and sphingomyelin (SM) 44:3,
which exhibited high performance in distinguishing TPE and
MPE, with AUC > 0.95. The discovery set contained only
10 TPE and 10 Lung cancer (LC) samples, the two groups still
overlapped in the PLS-DA plot, which cast doubt on the reliability of
the findings. People living with HIV (PLWH) are more susceptible
to Mtb infection, with disproportionately higher morbidity and
mortality. A recent study (Krishnan et al., 2021) of 23 incident
TB and 32 controls adopted an integrative multi-omics approach,
including miRNAomics and metabolomics, to search for more
sensitive serum biomarkers for TB in advanced HIV.
Differentially expressed miRNA analysis revealed 11 significantly
altered miRNAs. And gamma-glutamylthreonine and hsa-miR-215-
5p were identified as the optimal variables to classify incident TB
cases (AUC = 0.965). However, no differentially abundant
metabolites between the TB cases and controls were found. This
suggested that the metabolome was not significantly different
between TB/HIV co-infected subjects and PLWH controls, which
is an important finding but clearly needs further investigations using
larger samples.

Possible urinary biomarkers for pulmonary TB were also
investigated using metabolomics, as compared to HCs or controls
with non-TB diseases, e.g., cough. In an earlier metabolomic study of
46 TB patients compared to 30 HCs (Luier and Loots, 2016),
12 urinary metabolite markers were identified, which indicated
abnormal host fatty acid and amino acid metabolism induced by
TB infection, particularly changes to tryptophan, phenylalanine and
tyrosine. A close inspection showed that they did not overlap with
the biomarkers from other studies mentioned above. The
performance of these biomarkers was not tested. In a study of
TB patients compared to non-TB controls with cough (Isa et al.,
2018), differential metabolites related to inflammatory
intermediates were detected, as a specific immune response to
tuberculosis. Random forest (RF) algorithm was used to select
key differential metabolites. Diacetylspermine, neopterin, sialic
acid three and N-acetylhexosamine were identified as potential
urine-based biomarkers for TB from two independent patient
cohorts, with AUC = 0.82 in the validation set. In addition, levels
of these intermediate metabolites were found to decrease after
60 days of anti-TB treatment. They were reported to show an
overall sensitivity and specificity of over 95% in discriminating
TB from HCs in an independent cohort of 204 participants. This
study used a larger sample size than most other studies.
Unfortunately, we find no overlap of biomarkers between these
two urine-based studies.

Being another non-invasive approach to diagnosis, exhaled
human breath contains metabolites that can be used as biological
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signatures for diagnosing active pulmonary TB among suspected TB
patients. In a pilot study (Beccaria et al., 2018), a panel of 23 breath
molecules were identified as potential biomarkers to distinguish
active TB from non-TB controls, using GC-MS methodology and
chemometric techniques, as well as machine learning algorithms. In
another study (Chen et al., 2020), exhaled respiratory particles were
collected in liquid, in order to extract lipid molecules in lung fluid
samples of TB patients and controls. Over 400 features with high
segregating capacity were identified using feature selection and
machine learning algorithm. The cohort size, however, in both
studies, was small. The former study had only 17 TB +
13 controls and 15 TB + 5 controls in the training and validation
set, respectively, which could hardly cover the real-life sample
variation. The repeated cross validation could not effectively
increase the sample size, which may instead produce strongly
biased performance (Vabalas et al., 2019). While this study was
indicative the potential of finding biomarkers from exhaled breath,
however, the reported biomarkers need further investigation. For the
latter study, the TB and non-TB cohorts were not separated in the
PCA plots. It would be much more desirable to shrink the large
number of differential metabolites to a small number of biomarkers,
using, e.g., the least absolute shrinkage and selection operator
(LASSO) or RF algorithms.

Recently, the differences in gut microbiome and metabolic
profiles in feces of untreated active pulmonary TB patients (n =
83) and HCs (n = 52) were investigated using GC-MS and V3-V4
16S rRNA gene sequencing (Wang et al., 2022) and RF-based
classification models. Considerable reductions in phylogenetic
alpha diversity and the production of short-chain fatty acids,
dysbiosis of the intestinal flora and alterations were found in the
fecal metabolomics composition of pulmonary TB patients
compared with HCs; four genera had a combined diagnostic
performance with AUC = 0.81, and a combination of five
metabolites demonstrated fair discrimination for pulmonary TB
(AUC = 0.996) and thus could serve as potential diagnostic
biomarkers as well as preventive and therapeutic targets for
pulmonary TB. This was the first study of the fecal metabolic
profile of pulmonary TB patients.

The metabolites of TB patients include not only those of the
host, but also the pathogen. Upon infection, Mtb invades and grows
in macrophages, leading to changes in the metabolome under the
mutual influence of the host and the pathogen. A recent global
metabolic profiling of Mtb–infected macrophages identified
cholestenone, which depended on the Mtb enzyme 3β-
hydroxysteroid dehydrogenase, as a host/pathogen cometabolite
(Chandra et al., 2022). Sputum cholestenone levels distinguished
TB patients (n = 40) from non-TB controls with TB-like symptoms
(n = 40) in two geographically distinct cohorts. These findings
suggested that accumulation of sputum cholestenone could be a
clinically useful biomarker of TB infection. Interestingly, the plasma
cholestenone level showed no discrimination capability. Apart from
the limited sample size, this study did not use a validation set.

A latest study (Hu et al., 2022) subdivided pulmonary TB into
smear-positive TB (SPPT, n = 27) and smear-negative TB (SNPT,
n = 37), both of which were compared with HCs (n = 36). Precise
diagnosis using conventional methods is more difficult with SNPT
cases. Using UPLC-MS, it combined metabolome and clinical
indicators with machine learning algorithms including RF,

support vector machine (SVM) and multilayer perception neural
network (MLP), and found significant enrichment of fatty acid and
amino acid metabolites in the plasma of TB patients, and more
serious dysfunction in fatty acid and amino acid metabolisms in
SPPT than in SNPT samples. Four diagnostic biomarker
combinations including ten features (two lipid/lipid-like
molecules and seven organic acids/derivatives, and one clinical
indicator) were selected by machine learning algorithms for
distinguishing SPPT, SNPT and HC with high accuracy (83%–
93% for RF and 95% for MLP). We note that the validation set
(10% of the samples) was very small. Compared with biomarker
metabolites discussed above, one can barely find overlap with the
differential metabolites involved in the four combinations.

Ding et al. (2020) investigated the common differential
metabolites for diagnosis of TB in human patients, mice and
zebrafish larvae, and found significantly decreased levels of most
circulating small amines in all three groups of infected subjects, as
compared to their respective HCs. Ten common different
metabolites were found, including methionine, asparagine,
cysteine, threonine, serine, tryptophan, leucine, citrulline,
ethanolamine and phenylalanine, which suggested that one can
use both the mice and the zebrafish models for further
investigations of the mechanism of TB in human. We note that
the discrimination capability of these metabolites was not tested,
though there was partial overlap with the biomarkers found in
Weiner et al. (2012).

Diagnostic biomarkers to distinguish active
pulmonary TB patients fromHCs and LTBI or HHCs

Quite a few studies compared the metabolomic profiles of active
TB patients and HCs as well as LTBI subjects, involving complex
designs of three or more cohorts. In 2012, Weiner et al. (2012)
explored the metabolome of over 400 small molecules in the serum
of HCs (n = 46), LTBI (n = 46), and active TB patients (n = 44), and
found evidence for anti-inflammatory metabolomic changes in TB,
and concluded that 20 metabolites (selected using RF), including
histidine, cysteine, threonine, citrulline, tryptophan, glutamine,
aspartate, and urea, were sufficient for robust discrimination of
TB patients from HCs. Meanwhile, they found increased activity of
indoleamine-2,3-dioxygenase-1 (IDO-1) and decreased activity of
phospholipase, and increased abundance of adenosine metabolism
products, as well as indicators of fibrotic lesions in active TB as
compared to LTBI. No independent validation set was available, nor
was ROC analysis performed to assess the performance of these
metabolites. The reported 69% sensitivity at 75% specificity was not
very high. In a targeted metabolomics study of the serum in smaller
cohorts, including active TB (n = 21), LTBI (20) and HC (28), Cho
et al. (2020) found higher serum levels of glutamate, sulfoxy
methionine, and aspartate and lower serum levels of glutamine,
methionine, and asparagine, as well as increased ratios of glutamate/
glutamine, sulfoxy methionine/methionine, and aspartate/
asparagine in active TB patients compared to LTBI subjects or
HCs, and identified them as potential novel serum biomarkers for
rapid and non-invasive pulmonary TB diagnosis. These metabolites
partially overlap with those of Weiner et al. (2012). Using GC-MS
and UPLC-MS, a more recent untargeted metabolomics study (Jiang
et al., 2021), assisted by transcriptomics analysis, revealed a clear
separation in the OPLS-DA plots for the active TB (n = 30), LTBI
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(n = 30) and HC (n = 30) groups, identified 33, 7 and 49 unique
differential metabolites between TB and HC, between LTBI and HC
and between TB and LTBI, respectively. The LASSO regression
analysis selected seven of the 33 differential metabolites between TB
and HC as potential diagnostic biomarkers for TB, with a combined
high AUC = 0.97. Six out of these seven metabolites were identified
as 5-hydroxyindoleacetic acid, isoleucyl-isoleucine, heptadecanoic
acid, indole acetaldehyde, 5-ethyl-2,4-dimethyloxazole, and 2-
hydroxycaproic acid, which were associated with three
significantly enriched pathways (Phenylalanine, tyrosine, and
tryptophan biosynthesis, Valine, leucine, and isoleucine
biosynthesis, Phenylalanine metabolism). Nevertheless, the low
Q2 = 0.135 from OPLS-DA for HC and LTBI suggested low
reliability of the model. Indeed, HC and LTBI almost completely
overlapped in the 2D PCA plot. We found no overlap between these
six biomarkers and those of Cho et al. (2020) orWeiner et al. (2012).

Furthermore, the difference in the serum metabolomic profiles
among active TB, asymptomatic HHC and HC groups were also
investigated using 1H NMR spectroscopy (Albors-Vaquer et al.,
2020). Here HHC can in some sense be regarded as equivalent to
LTBI. Despite a big overlap in the differential metabolites between
the HC-TB pair and HC-HHC pair, the serum levels of amino acids
(e.g., alanine, lysine, glutamate and glutamine), citrate and choline
were found to be significantly lower in TB patients compared to
HHCs. Nevertheless, the serum levels alone may not provide a
strong discrimination capability as there were still significant
quantitative overlaps between TB and HHC. This study
contained only 15 TB patients, and had no validation cohorts.
Although both this study and Cho et al. (2020) reported a lower
serum level of glutamine in TB compared to HHCs, they reported
opposite trends for glutamate. Such a contradiction needs further
investigation.

Instead of blood samples, Deng et al. (2021) performed a urinary
metabolomics study of active TB patients (n = 30), LTBI (n = 30) and
non-TB controls (n = 30), and found six differential metabolites,
mainly related to pathways of immune regulation and urea cycle.
Based on relative quantitative levels, glutathione and histamine were
identified as potential biomarkers for the diagnosis of both TB and
LTBI, with AUC>0.75. The LTBI and non-TB controls strongly
overlapped in the PCA plots. With AUC = 0.76, the performance of
glutathione in discriminating between LTBI and non-TB controls
was not high. These two metabolites did not overlap with that from
the above urine-based studies. Other differential metabolites
exhibited irregular behavior. Deoxyribose 5-phosphate showed a
high performance in discriminating LTBI from non-TB controls, yet
it essentially had no ability in distinguishing between TB and either
LTBI or controls.

An NMR-based pediatric urinary metabolomics was also
investigated recently for cohorts of presumptive TB in children
(n = 62, including six bacteriologically confirmed, 52 unconfirmed,
and four unlikely) and age-matched HCs (n = 55) (Comella-del-
Barrio et al., 2021). Differences in metabolic fingerprint in the
groups with confirmed and unconfirmed TB were observed,
compared to the unlikely TB and HC groups. However, the PLS-
DA plots for both high-field and low-field NMR data showed partial
overlap between presumptive TB and HCs. No validation set was
used. The reported accuracy (≈0.69) in discriminating between
presumptive TB and controls were low, with AUC = 0.65. The

low Q2 ≈ 0.1 (<< R2 ≈ 0.7) cast doubt about the reliability of the PLS-
DA model (Triba et al., 2015), which could be attributed to the
mixed grouping.

Diagnostic biomarkers to distinguish active
pulmonary TB patients from HCs and other
diseases

Some diseases may exhibit symptoms similar to TB and thus
present a challenge in diagnosis. Wang et al. (2017) did NMR-based
metabolomics profiling of TB (n = 20), malignant (n = 20), and
transudative (n = 18) PE, and obtained 26 differentially expressed
metabolites, predominantly involved in the metabolic pathways of
amino acid metabolism, glycometabolism and lipid metabolism. A
group of eight different metabolites were found to be able to
distinguish between the three different types of PE. It should be
noted, however, that the OPLS-DA plots showed partial inter-group
overlaps, with a low Q2 = 0.27 (<0.5) for the TB and malignant PE
comparison, and no validation set was used. The predictive
performance was not evaluated with ROC curves.

In 2015, Zhou et al. (2015) did an NMR-based metabolomics study
of the plasma profile of 38 TB patients and 39 HCs, as well as
110 patients with other diseases, including 40 with diabetes, 40 with
malignancy, and 30 with community-acquired pneumonia (CAP), in
which 26 differential metabolites were found between TB and diabetes,
27 between TB and CAP, and 24 between TB andmalignancy, based on
OPLS-DA without a validation set. Plasma levels of ketone bodies,
lactate, and pyruvate were found to be upregulated in TB compared to
HC, but still lower than in CAP and malignancy. Also increased in TB
were tyrosine, phenylalanine, succinate and glutamate, while glycine
and formate were downregulated. We note that there was still mild
overlap between TB and malignancy in the OPLS-DA plot. In 2019,
Huang et al. (2019) did plasma metabolic profiling for cohorts of HCs
(n = 35) and patients with TB (n = 35), CAP (n = 35), and lung cancer
(LC) (n = 31), and found three differential plasma metabolites
(Xanthine, 4-Pyridoxate, and D-glutamic acid) as potential
biomarkers for pulmonary TB. Recently this same group (Han et al.,
2021) reported decreased plasma phospholipid levels and increased
cholesteryl ester (CE) levels in patients with TB. Four lipids [PC (12:0/
22:2), PC (16:0/18:2), CE (20:3), and SM (d18:0/18:1)] were identified as
potential biomarkers for early diagnosis of TB, with a combined high
differentiating capability (AUC≥0.91). We note that there was no
overlap between the biomarkers found in these last two studies and
those discussed earlier.

Another NMR-based metabolomics study (Sun et al., 2016)
aimed to identify novel plasma metabolic markers for the
diagnosis of pediatric TB, using a classification and regression
tree (CART) analysis approach. It included 45 TB patients and
non-TB controls consisting of 30 HCs plus 38 respiratory tract
infection (RTI) patients, and identified 17 metabolites that can
distinguish TB from HC and RTI. Three differential metabolites,
L-valine, pyruvic acid, and betaine (downregulated), were chosen as
potential diagnostic biomarkers for pediatric TB, with a decent
performance in an independent validation set (sensitivity 82%,
specificity 84%). Interestingly, a clear separation in the OPLS-DA
plot between HCs < 5 years and HCs > 5 years revealed an age
dependence of the metabolite profiles.

Type 2 diabetes mellitus (DM) is a major risk factor for
developing TB. A recent study (Vrieling et al., 2018) showed that
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concurrent TB and type 2 diabetes (T2D) resulted in a pro-
atherogenic plasma lipid profile. Using NMR-based
metabolomics, plasma samples were studied for HCs (n = 50)
and patients with TB (n = 50), DM (n = 50) or TB-DM (n =
27). TB-DM patients displayed metabolic characteristics of both
wasting and dyslipidemia. These metabolic profile changes reflect
the pathology of both TB and DM. Based on PLS-DA and multiple
linear regression analysis, the ratios of phenylalanine/histidine and
esterified cholesterol/sphingomyelin were identified as markers for
TB classification (with AUC > 0.85) regardless of DM status. Using
targeted LC-MS/MS, the same research group (Vrieling et al., 2019)
compared amine and acylcarnitine levels in plasma of HCs (n = 48)
and patients with TB (n = 49) or TB-DM (n = 19) at the time of
diagnosis and during antibiotic treatment. The ratios of
phenylalanine/histidine, citrulline/arginine, and kynurenine/
tryptophan discriminated TB from HC. The latter two ratios
were different from their previous findings. The levels of
citrulline and ornithine were found low for both TB and TB-
DM, compared to HC, and the levels of choline, glycine, serine,
threonine and homoserine were lower in TB-DM than in TB, and
did not return to normal during antibiotic treatment. Note that in
both studies, partial overlaps existed in pairwise PLS-DA plots of the
metabolic profiles between groups, with no validation set. An
untargeted lipidomic study (López-Hernández et al., 2019)
investigated glycerophospholipid metabolism changes in patients
(n = 10 out of 39 in total) with concurrent TB and DM. It was
reported that TB patients shared a common glycerophospholipid
profile characterized by a decrease in PCs, independent of their DM
status. The observed insensitivity to DM status was consistent with
Vrieling et al. (2018). Altogether, 14 glycerophospholipids,
differentially deregulated in TB and TB-DM patients, could be
potential biomarkers. We found no overlap between these
markers than those discussed above. With only 9 or 10 subjects
in each group, the sample size was small. Furthermore, there was
neither independent validation cohorts nor evaluation of the
performance using ROC analysis.

With an unbiased metabolomics approach, Collins et al. (2020)
recently studied the metabolic profiles of plasma samples of HCs,
HHCs, LTBI, and patients with drug-sensitive (DS)-TB orMDR-TB,
and reported that the tryptophan pathway is highly regulated
throughout the spectrum of TB infection and disease, which was
characterized by increased catabolism of tryptophan to kynurenine
in both active TB and LTBI, along with simultaneous increase in the
expression of IDO-1. Therefore, the levels of plasma kynurenine,
tryptophan, and the ratio of kynurenine/tryptophan could be a
target for biomarker development as well as host-directed therapies.
The analysis was simply based on the absolute metabolite level or FC
and p-values from the Wilcoxon rank-sum test or Wilcoxon signed-
rank test. The ROC curve analysis was calculated using logistic
regression with 2-fold cross validation. Further analysis with OPLS-
DA and other machine learning algorithms would be desirable.

Very recently (Magdalena et al., 2022), a targeted metabolomics
analysis of serum andMtb antigen-stimulated blood cultures of HCs
(n = 149) and pediatric patients with active TB (n = 15), LTBI (n =
52), and non-mycobacterial pneumonia (NMP) (n = 20) found
upregulation of leucine and kynurenine and downregulation of
citrulline and glutamine in serum and blood cultures of TB and
LTBI groups. LTBI also featured downregulation of valine in blood

cultures. In contrast, the NMP metabolite profile featured an
increase in citrulline and glutamine and a decrease in leucine,
kynurenine and valine concentrations. Thus, using an elastic net
model, leucine in serum (AUC = 0.62) and kynurenine in stimulated
blood cultures (AUC = 0.72) were identified with the highest
discriminatory potential for diagnosing Mtb infection (TB +
LTBI vs. HC + NMP). However, we find that these AUC values
were low, with very weak discriminating capability. The small TB
group size did not allow the selection of the most informative
metabolites for the TB versus LTBI + NMP + HC comparison.

A recent NMR-based urinary metabolomics study (Izquierdo-
Garcia et al., 2020) included 40 HCs and patients of TB (n = 189),
pneumococcal pneumonia (PnP, n = 42) and LTBI (n = 61). Eight
differential metabolites (aminoadipic acid, citrate, creatine,
creatinine, glucose, mannitol, phenylalanine, and hippurate) were
identified as potential biomarkers for the diagnosis of TB, with a
high capability in differentiating TB from PnP, LTBI and HC. The
PLS-DA based model correctly classified 84% of the TB patients in
the TB group of the validation set. However, no ROC analysis was
performed to evaluate the performance of the model.

Diagnostic biomarkers to distinguish active
extrapulmonary TB patients from HCs and other
diseases

Compared to pulmonary TB, extrapulmonary TB has a much
lower incidence rate. Here we focus on TBmeningitis (TBM), as listed
in Table 2. Using targeted GC-MS, a metabolomics study (Mason
et al., 2017) of the amino acid profiles in the CSF of children infected
with TBM (n = 33) as well as that of HCs (n = 34) identified five amino
acids (alanine, asparagine, glycine, lysine, and proline), which were
significantly elevated in TBM cases, as potential biomarkers for earlier
diagnosis. Using 1H NMR spectroscopy, metabolomic profiling of
CSF in adult with TBM (n = 18) and viral meningitis (VM) (n = 20)
(Li et al., 2017) identified a total of 25 key differential metabolites as
potential biomarkers that can distinguish between TBM and VM.
Among them, betaine and cyclohexane were rarely reported before in
TBM. Another similar study (Zhang et al., 2019) included bacterial
meningitis (BM) in addition, and found that 23, 6, and 21 metabolites
were able to differentiate TBM fromVM, BMandmeningitis-negative
groups, respectively, albeit with a strong overlap between these
different groups of differential metabolites. The MS-based
metabolomics profiling of adult CSF by Dai et al. (2017) included
further a cohort of cryptococcal meningitis (CM, n = 16), in addition
to TBM (n = 50), VM (n = 17) and BM (n = 17) patients. They
reported 13, 16, and nine potential biomarkers, mainly involved in the
metabolism of amino acid, lipids and nucleotides, which differentiate
between TBM and VM, BM, and CM, respectively. Note that Mason
et al. (2017) targeted amino acid profiles in children between TBM
and HCs, and was not comparable to the rest, untargeted studies,
which had different cohorts (VM, BM, and/or CM) for each study.
The differential metabolites between TBM and VM should be mostly
comparable between Li et al. (2017) and Zhang et al. (2019), as both
used the NMR method. They shared only three differential
metabolites with the same trends: lower levels of glucose and
L-serine and higher level of lactate in TBM, while they had
opposite trends for cyclohexane, acetate, L-valine and choline. The
TBMvs. VM cohorts were only marginally separated in the OPLS-DA
plot in Dai et al. (2017). No common differential metabolites for TBM
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vs. VMwere found between either Li et al. or Zhang et al. andDai et al.
Such different results may reflect the fact that the sample sizes were
too small.

Instead of invasive sample collection of CSF fluid, possible
metabolic biomarkers in urine for TBM have been explored as well.
Mason et al. (2016) investigated the pediatric urinary metabolomics for
infants and children under 13 years, including cohorts of TBM (n = 12),
suspected TBMbut later proved negative (n = 12) andHC (n = 29). The
study identified four differential metabolites (methylcitric, 2-
ketoglutaric, quinolinic and 4-hydroxyhippuric acids) as potential
non-invasive diagnostic biomarkers, with strong diagnostic ability.
These metabolites were different from those found in Mason et al.
(2017).

OTB is another extrapulmonary tuberculosis besides TBM,
mainly caused by direct infection of Mtb or secondary infection
of TB in other parts. Current detection method often leads to a high
misdiagnosis rate. A recent preliminary metabolomics study (Chen
et al., 2022) analyzed metabolites in the serum with 30 OTB patients,
30 disease controls, and 30 HCs. Five differential metabolites, PC[o-
16:1(9Z)/18:0], PC[20:4(8Z,11Z,14Z,17Z)/18:0], PC[18:0/22:
5(4Z,7Z,10Z,13Z,16Z)], SM(d18:1/20:0), and SM[d18:1/18:
1(11Z)], which shared many lipid metabolic signaling pathways,
were identified as potential biomarkers for OTBwith high diagnostic
efficacy (AUC up to 90%).

Identification of LTBI

The investigations of biomarkers for LTBI were mostly included as
part of more complex studies involving the comparison with active TB

and HC. Some of these are thus discussed above. A few works, as listed
in Table 3, however, performed only simple control studies of
asymptomatic HHCs, as compared with HCs, searching for
biosignatures that can predict the progress of the TB infection status.

A predictive biomarker research (Weiner et al., 2018) investigated
the metabolome of serum and plasma from HIV-negative, TB-exposed
individuals in Sub-Saharan Africa. These individuals were classified as
either progressors orHCs, depending onwhether they progressed to TB
3–24 months post-exposure. Prognostic metabolic signatures were
generated, consistent with development of subclinical disease prior
tomanifestation of active TB.While lack of a clear predictive biomarker,
this work suggested that metabolic changes associated with pre-
symptomatic disease may be observed as early as 12 months prior to
TB diagnosis. With six differential metabolites, the model showed a
predictive power with AUC = 0.73–0.92 in discriminating TB from
other respiratory diseases in proximate samples (<5 months to TB
diagnosis) in the validation data set. By integrating blood transcriptional
profiling with serum metabolomic profiling for large cohorts of HHCs
(n = 4,466) and non-human primates (NHPs), it was reported (Duffy
et al., 2019) that the combined application of pre-existing
transcriptome- and metabolome-based signatures more accurately
predicted TB progression in the HHC cohorts and disease severity
in the NHPs, and “further identified novel immunometabolomic
signatures associated with TB progression in HHCs and NHPs”.
Recently, Weiner et al. (2020) investigated the changes in transcript,
metabolite, and antibody reactivity due to the early immune response of
HHCs to Mtb infection, by combining metabolic profiling with
ribonucleic acid sequencing and Mtb proteome arrays. The HHCs
were divided into converter and non-converter groups, depending on
whether their Mtb infection status converted later from negative to

TABLE 2 Metabolomics studies on diagnostic biomarkers for extrapulmonary TB.

Study Sample/
biofluids

Discovery
cohorts (size n)

Metabolome
fraction

Validation
cohorts?

Analytical
apparatus

Statistic
methods

Metabolite
biomarkers identified

Mason
et al.
(2016)

Urine (infants,
children <13 years)

TBM (12) pre- and
after treatment, non-
TBM (12), HC (29),
middle-aged females
with FMS (17)

Total metabolome
in urine

Y GC-MS PCA, PLS-DA,
MWUT,
9 logistic
regression
models

methylcitric, 2-ketoglutaric,
quinolinic and 4-
hydroxyhippuric acids

Mason
et al.
(2017)

CSF of children TBM (33),
controls (34)

amino acid
(targeted)

N GC-MS PCA, PLS-DA,
MWUT

5 amino acids (alanine,
asparagine, glycine, lysine,
and proline)

Li et al.
(2017)

CSF TBM (18), VM (20) Total metabolome N 1H NMR
spectroscopy

PCA, OSC-PLS-
DA, t-test, FET

25 key metabolites

Dai et al.
(2017)

CSF (adult >
18 years)

TBM (50), VM (17),
BM (17), CM (16)

Total metabolome N UPLC-MS PCA, OPLS-DA,
t-test, SVR

13, 16, and 9 biomarkers
between TBM and VM, BM,
and CM, respectively

Zhang
et al.
(2019)

CSF TBM (31), VM (29),
BM (30), HC (30)

Total metabolome N 1H NMR
spectroscopy

PCA, OPLS-DA,
Hotelling’s T2

test, t-test

23, 6, and 21 metabolites to
differentiate TBM from VM,
BM, and HC, respectively

Chen et al.
(2022)

serum Osteoarticular TB
(30), disease control
(30), HC (30)

Total metabolome N LC-MS/MS χ2 test, K-W H
test, OPLS-DA,

PC[o-16:1(9Z)/18:0], PC[20:
4(8Z,11Z,14Z,17Z)/18:0], PC
[18:0/22:
5(4Z,7Z,10Z,13Z,16Z)],
SM(d18:1/20:0), SM[d18:1/
18:1(11Z)]

BM = bacterial meningitis; CSF = cerebrospinal fluid; CM = cryptococcal meningitis; FMS = fibromyalgia syndrome; HC , healthy control; MWUT = Mann Whitney U test, OPLS-DA =

orthoganoal PLS-DA, OSC-PLS-DA = orthogonal signal correction PLS-DA, PC = phosphatidylcholine; PCA = principal component analysis; PLS-DA = partial least-squares discriminant

analysis; SM = sphingomyelin; SVR = support vector regression, TBM = TB, meningitis; VM = viral meningitis.
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positive. Differences in metabolite profiles were identified, including
changes in biomarkers of inflammation, fatty acid metabolism, and bile
acids, between converters and non-converters. Pantothenate (vitamin
B5) was significantly increased in tuberculin skin test (TST) non-
converters compared to converters at baseline.

It should be noted, however, while fairly large cohorts were used,
no strong metabolomics biomarkers were reported in these three
studies.

Monitoring therapeutic efficacy, treatment
progression and prognosis

Biomarkers may be used to evaluate the efficacy of a therapy,
monitor the treatment progression, and predict the treatment
outcome, which aid in proper timely adjustment of the therapy
as needed, and help to avoid premature release of patients. In this
subsection, metabolites derived from anti-TB medicines will usually
be present in the metabolomics data. Studies in this category are
listed in Table 4.

Biomarkers from urine samples
Urine is essentially the most non-invasive sample for TB therapy

efficacy evaluation and treatment monitoring. Through urine
metabolomics, Das et al. (2016) identified 2-aminobutyric acid
(AABA) as a novel metabolite of EMB, one of the four first-line
drugs, in urine samples collected at different times from a cohort of
20 newly diagnosed TB patients after receiving the drugs. In addition,
they found that about 75% of these patients were found to be slow
acetylators of INH. Based simply on FC, p-value, and effect size
screening plus ROC analysis, Luies et al. (2017c) identified 3,5-
dihydroxybenzoic acid and 3-(4-hydroxy-3-methoxyphenyl)
propionic acid, related to gut microbiota imbalance, as two
possible predictors of the treatment outcome for TB, using urine
metabolomics on a small cohort of 31 drug-susceptible TB patients,
with successful (n = 21) and unsuccessful (n = 10) treatment outcome
(using first-line drugs). This same group (Luies et al., 2017b)
performed another study with enlarged cohorts (26 successful vs.
15 unsuccessful), with urine samples taken at different times after the
beginning of treatment; 50 urinary metabolite markers could be

annotated. The treatment failure group featured an imbalanced gut
microbiome, higher levels of metabolites associated with
abnormalities in the long-chain fatty acid β-oxidation pathway,
reduced L-carnitine and short-chain fatty acids, altered amino acid
metabolism, and increased interferon gamma.We find that only six of
the 50 metabolites could pass the combined p-value, VIP and FC
screening. One of the two biomarkers found in (Luies et al., 2017c)
was among the 50 metabolites, but could not pass the FC and p-value
tests. The best discriminating metabolites were only vaguely discussed
(including many that failed the combined screening), without
assessment of their discriminating abilities. Using urine
metabolomics, Fitzgerald et al. (2019) reported that a seryl-leucine
core 1 O-glycosylated peptide (SLC1G) showed a significant
abundance increase in TB patients compared to HHCs and HCs.
In addition, the SLC1G levels by week one decreased much faster for
successful treatment compared to failed treatment, so that SLC1G was
proposed as a potential biomarker for TB treatment response. Its
discriminating performance was not assessed. Further validation with
larger cohorts are needed.

In a pharmacometabolomics study (Combrink et al., 2019),
time-dependent drug-induced host-metabolome variations in
urinary metabolome were observed in a cohort of 23 TB
patients before and after 1, 2, 4 weeks intensive phase
tuberculosis therapy, including reduction in the oxidative
stress levels (aconitase, formylglycine-generating enzyme, α-
ketoglutarate dehydrogenase, and succinate-semialdehyde
dehydrogenase), upregulated urea cycle, and altered insulin
production, as well as time-dependent induction and
inhibition of several enzymes in response to the drugs.
Altogether, 39 metabolite biomarkers were identified, which
may be applied toward treatment monitoring. No further
selection from these metabolites was done. Through a targeted
metabolomics approach (Opperman et al., 2021), urinary
acylcarnitine and amino acid profiles were analyzed for TB
patients with a cured and failed treatment outcome, and at
different times of the treatment process, including pre-
treatment diagnosis. A group of significant differential
metabolites were identified, including histidine, isoleucine,
leucine, methionine, valine, proline, tyrosine, alanine, serine,
and γ-aminobutyric acid. The time-dependent fluctuations of

TABLE 3 Metabolomics studies on biomarkers for identification of LTBI.

Study Sample/
biofluids

Discovery
cohorts (size n)

Metabolome
fraction

Validation
cohorts

Analytical
apparatus

Statistic
methods

Metabolite biomarkers
identified

Weiner
et al. (2018)

serum or
plasma

TB-exposed
progressors (66),
HC (211)

Total metabolome Y (progressors
31, HC 116)

UPLC-MS/MS,
GC-MS

CERNO test, RF,
GBM NNet,
GLMNet

prognostic metabolic
signatures, including cortisol,
mannose, cotinine, glutamine,
histidine, kynurenine

Duffy et al.
(2019)

Plasma or
serum

HHCs (4,466),
(including
progressors),
controls

Total metabolome N UPLC-MS/MS,
GC/MS

Wald test, χ2 test,
FDR, Spearman’s
test, RF

25 immunometabolomic
signatures implicating cortisol,
tryptophan, glutathione, and
tRNA acylation networks

Weiner
et al. (2020)

serum or
plasma

HHCs (converters,
non-converters)

Total metabolome N UPLC-MS/MS,
GC-MS

Multiple testing Metabolite biomarkers of
inflammation, fatty acid
metabolism, bile acids,
pantothenate

CERNO = coincident extreme ranks in numerical observations; FDR = hochberg and benjamini false discovery rate; GBM , generalized boosted models; NNet = neural networks; GLMNet =

elasticnet logistic regression; HC = healthy control; HHC = asymptomatic household contacts (without active TB), RF = random forest; ROC = receiver operating characteristics.
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TABLE 4 Metabolomics studies on biomarkers for monitoring therapy efficacy and progress.

Study Sample/
biofluids

Discovery
cohorts
(size n)

Metabolome
fraction

Validation
cohorts

Analytical
apparatus

Statistic
methods

Metabolite
biomarkers
identified

Das et al.
(2016)

urine TB (20) (2h, 6h,
12h, 24h, 36h, 48h
postdose)

Total metabolome N GC-MS PCA 2-aminobutyric acid
identified as novel drug
metabolite of EMB.

Luies et al.
(2017c)

urine TB with successful
(21) and
unsuccessful (10)
treatment

Total metabolome N GCxGC-MS MWUT, fold change,
effect size

3,5-dihydroxybenzoic
acid, 3-(4-hydroxy-3-
methoxyphenyl)
propionic acid

Luies et al.
(2017b)

urine successful (26) and
unsuccessful (15)
treatment

Total metabolome N GCxGC-MS PCA, PLS-DA,
MWUT, fold change

50 differential urinary
metabolites identified at
time of diagnosis (only
6 could pass joint
screening)

van Laarhoven
et al. (2018)

CSF, serum TBM survivors
(15), TBM non-
survivors (17),
controls (22)

Total metabolome Y (Tryptophan:
TBM 101, genetic:
TBM 285)

LC-MS Spearman’s test, Cox
regression, PCA

CSF tryptophan higher in
TBM than in controls but
lowest in survivors;
glucose, leukotriene B4

Wood et al.
(2018)

plasma TB (30) HC (30) UPLC-MS N High
resolution MS

two-tailed t-test LPCs (16:0, 18:0)
downregulated, PCs (34:
1, 34:2, 34:4, 36:3, 36:4,
38:4), PGs (34:0, 34:1)
upregulated.

Fitzgerald et al.
(2019)

urine TB (10), HHC
(TST− 14, TST+
12) | TB
(recurrence 12,
cure 15, failure 8),
HC (14)

Targeted
metabolome

N LC-MS/MS 2-tailed t-test, one-
way ANOVA with
Tukey’s multiple
comparison test

SLC1G abundance
decreased much faster by
week 1 for successful
treatments compared to
failed ones.

Yi et al. (2019) Plasma PTB (untreated 35,
two-month
treatment 31,
cured 29), HC (35)

Total lipidome N UPLC-MS/MS PCA, OPLS-DA,
one-way ANOVA,
χ2 test

L-histidine, arachidonic
acid, biliverdin,
L-cysteine-glutathione
disulfide

Combrink et al.
(2019)

urine TB (23, before and
after 1, 2, 4 weeks
treatment)

Total metabolome N GCxGC-MS PCA, ANOVA, RM-
ANOVA, ASCA

39 metabolites identified
via MS, altered stress
levels, several enzymes,
urea cycle, insulin level

Dutta et al.
(2020)

plasma TB (n = 16,
baseline, month 1,
6), HHCs (n = 32)

Total metabolome N UPLC-MS/MS RF, t-tests, ANOVA,
SRC, multi-omics
factor analysis

N-acetylneuraminate,
quinolinate, pyridoxate;
4 metabolite panel (γ-
glutamylalanine, γ-
glutamylglycine,
glutamine, and
pyridoxate)

Chen et al.
(2021)

plasma TB (30, untreated,
2, 6 months
treatment),
HC (30)

lipidome N UPLC-MS/MS OPLS-DA, MWUT,
χ2 test, K-mean
clustering

LPA (0:0/16:0), LPA (0:0/
18:0)

Opperman
et al. (2021)

urine TB (40, untreated,
1,2, 4 weeks
treatment)
(28 cured,
12 failed)

acylcarnitine, amino
acids (targeted)

N GC-MS FDR, unfolded PCA,
ANOVA, t tests,
ASCA

histidine, isoleucine,
leucine, methionine,
valine, proline, tyrosine,
alanine, serine, and γ-
aminobutyric acid

Parihar et al.
(2022)

CSF TBM (36, definite
or probable;
severity grade I, II,
III, and outcome at
3 months),
HC (18)

Total metabolome N 1H NMR PCA, χ2 test,
MWUT, PLS-DA

lactate, glutamate,
alanine, arginine, 2-
hydroxyisobutyrate,
formate, and cis-
aconitate were
upregulated, glucose,
fructose, glutamine, and
myo-inositol
downregulated.

(Continued on following page)
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most metabolites, related to vitamin B6 deficiency and other
alterations (Combrink et al., 2019), were found to exhibit a
delayed onset or shift of the pattern in the successfully treated
group. In comparison, the earlier onset in the failed patients was
proposed to be related to genotypic and phenotypic variations in
drug metabolizing enzymes, which led to poor treatment
efficiency. We find that the levels of the majority of these
metabolites did not evolve monotonically with time. Further
systematic studies with larger cohorts are needed.

Biomarkers from CSF samples for TBM
A comparison (van Laarhoven et al., 2018) of metabolomes of

both CSF and serum of TBM patients (n = 32) with controls (n = 22)
showed that the levels of the majority of CSFmetabolites were higher
in TBM than in controls, especially in those who died during follow-
up, and only five serum metabolites differed between TBM and

controls. In contrast, CSF tryptophan concentrations were the
lowest in patients who survived, compared with patients who
died and with controls. The association of low CSF tryptophan
with patient survival was validated using a much larger cohort (n =
101). The unusual pattern of tryptophan compared to other CSF
metabolites suggested that cerebral tryptophan metabolism is
important for the outcome of TBM, and can be a therapeutic target.

Lately, an NMR-based CSF metabolomics study (Parihar et al.,
2022) for cohorts of 36 TBM patients and 18 HCs found
11 differential metabolites that could distinguish TBM from HC,
among which 7 (lactate, glutamate, alanine, arginine, 2-
hydroxyisobutyrate, formate, and cis-aconitate) were upregulated,
and 4 (glucose, fructose, glutamine, myo-inositol) downregulated in
the TBM, compared to HCs. These differential metabolites were able
to classify the 3 months treatment result with good sensitivity and
specificity (AUC = 0.99). Meanwhile, the lactate concentration in

TABLE 4 (Continued) Metabolomics studies on biomarkers for monitoring therapy efficacy and progress.

Study Sample/
biofluids

Discovery
cohorts
(size n)

Metabolome
fraction

Validation
cohorts

Analytical
apparatus

Statistic
methods

Metabolite
biomarkers
identified

Jiang et al.
(2022)

Plasma standard therapy
(15, controls), plus
Lactobacillus casei
(16 low-dose,
16 high-dose)

inflammatory
cytokines and
metabolomics

N UPLC-MS/MS χ2 test, K-W test,
ANOVA,
Spearman’s test,
FDR, OPLS-DA

pyridoxamine,
L-saccharopine, PS (19:0/
22:6), MaR1, PC(16:0/20:
4), PC(16:0/18:1), PC(16:
0/16:0) upregulated.
Phenylalanine,
Nacetylmethionine,
PE(16:0/20:1), and
L-tryptophan
downregulated in high-
dose group.

Biadglegne
et al. (2022)

plasma HC (9), PTB (13),
TBL (13), and
Rx (6)

Total lipidome,
proteins

N TEM, SEC,
HPTLC,
MS/MS

One-way ANOVA 37 Mtb-originating
proteins, sphingomyelins
and sphingomyelins,

Brandenburg
et al. (2022)

MTBC
Strains,
blood

PTB (23), HC (39) TSA-containing PIs
of PBMC (targeted)

N LC-MS/MS TBnet, MWUT,
Wilcoxon matched-
pair signed rank test,
One-way ANOVA

TSA-containing PIs, PI
35:0 (PI 16:0_19:0 (TSA))

Meng et al.
(2022)

Fecal
samples

HC (49), LTBI
(30), TB (41), TB
(28, 2mon HRZE),
TB (20, 2mon
HRZE +
4mon HR)

gut microbiome and
fecal metabolome

N LC-MS/MS t-test, PCA,PLS-DA,
PCoA,
Hypergeometric
distribution test

gut Clostridium,
Bacteroides and
Prevotella and fecal
Trans-4-Hydroxy-
L-proline and Genistein
increased during
chemotherapy.

Shivakoti et al.
(2022)

plasma PTB (failure 46,
cure 146) (75% of
the samples)

Total lipidome Y (test sets, 25% of
the samples)

LC-MS Adjusted least-square
regression, FDR, RF

Two CE lipids: CE (16:0)
and CE (18:2), as
prognostic markers.

Diboun et al.
(2022)

serum SARS-CoV-
2 infected (Post-TB
23, non-TB 132)

Total lipidome N LC-MS/MS FDR, PCA,
OPLS-DA

betaine and BCAAs for
post-TB, serum alanine as
prognostic biomarkers.

ANOVA = analysis of variance, ASCA = ANOVA simultaneous component analysis, BCAA = branched chains amino acids, CE = cholesteryl ester, CSF = cerebrospinal fluid, EMB =

ethambutol, FDR = hochberg and benjamini false discovery rate, HHC = asymptomatic household contacts (without active TB), HPTLC = high-performance thin-layer chromatography, HR =

isoniazid + rifampin, HRZE = all four first-line drugs, K-W test = Kruskal–Wallis test, LPA = lysophosphatidic acid, LPC = lysophosphatidylcholine, LTBI = latent TB infection, MaR1 =

maresin 1, MTBC =mtb complex, MWUT =MannWhitney U test, OPLS-DA = orthogonal PLS-DA, PBMC = peripheral blood mononuclear cells, PC = phosphatidylcholine, PCA = principal

component analysis, PCoA = principal coordinate analysis, PE = phosphatidylethanolamine, PI = phosphatidylinositols, PLS-DA = partial least-squares discriminant analysis, PS =

phosphatidylserine, PTB = Pulmonary TB, RF = random forest, RM-ANOVA = repeated-measures ANOVA, Rx = pulmonary TB patients after anti-TB treatment, SARS-CoV-2 = severe acute

respiratory syndrome coronavirus 2, SEC = size exclusion chromatography, SLC1G = seryl-leucine core 1 O-glycosylated peptide, SRC = spearman rank correlation, TBL = TB lymphadenitis,

TBM = TB meningitis, TEM = transmission electron microscope, TSA = tuberculostearic acid, TST = tuberculin skin test.
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CSF was found to be correlated with clinical indices and MRI
findings, including hemoglobin, CSF glucose, and infarction. We
note that this study found a much smaller number of differential
metabolites than van Laarhoven et al. (2018) but identified a small
number of biomarkers that exhibited good discriminating ability.

Biomarkers from blood samples
Through a controlled plasma lipidomics study of 30 TB patients and

30HCs, Wood et al. (2018) found decreased circulating levels of
lysophosphatidylcholines (LPCs) and increased levels of PCs and PGs
in the plasma of TB patients compared to HCs, suggesting an altered
glycerophosphocholine remodeling involving deacylation–reacylation
reactions at sn-2 of the glycerol backbone. It was proposed that these
structural lipids with alteredmetabolismmay be potential biomarkers for
monitoring treatment efficacy. We note that the FCs were not far from
1.0, and only t-test was used to select differential metabolites. Lately, Jiang
et al. (2022) found that Lactobacillus casei supplementation during the
intensive phase of TB treatment significantly modulated inflammatory
cytokines and metabolites; it lowered the concentrations of tumor
necrosis factor-α, interleukin (IL)-6, IL-10, and IL-12. Plasma levels of
phosphatidylserine (PS), maresin 1, PC, L-saccharopine, and
pyridoxamine were significantly upregulated, while
N-acetylmethionine, L-tryptophan, phosphatidylethanolamine, and
phenylalanine were downregulated in the high-dose group, compared
to the low-dose group and controls. The discriminating capability of these
metabolites were not assessed, and there was no validation data set.

In a recent study using UPLC-MS based lipid profiling, Yi et al.
(2019) identified four differential metabolites (L-histidine, arachidonic
acid, biliverdin, and L-cysteine-glutathione disulfide) in plasma as
potential biomarkers for cured pulmonary TB, which is important in
avoiding premature discharge of a pulmonary TB patient. These lipid
metabolites also exhibited time sensitivity during treatment, and thus can
be applied toward treatment monitoring and efficacy evaluation.
Recently, this group (Chen et al., 2021) identified plasma lipid
metabolites, lysophosphatidic acid (LPA) (0:0/16:0) and LPA (0:0/18:
0), as potential novel biomarkers for therapeutic efficacy evaluation of TB
treatment (as well as early diagnosis of pulmonaryTB), with 100%of both
sensitivity and specificity (and AUC = 1.0). Comparing the treated with
untreated TB patients, the discriminating performance of these markers
increased with increasing treatment time.

By integrating metabolomics and transcriptomics, Dutta et al. (2020)
explored the plasma metabolite profiles of children with active drug-
susceptible TB (n = 16) and age- and sex-matched uninfected HHCs (n =
32), and identified three metabolites (N-acetylneuraminate, quinolinate,
pyridoxate) that could distinguish TB status at different times during
treatment. In addition, a set of four metabolites (γ-glutamylalanine, γ-
glutamylglycine, glutamine, and pyridoxate) were identified as treatment
response biomarkers, distinguishing post-treatment from pre-treatment
samples with AUC = 0.86. There metabolites were found to be associated
with immunoregulatory interactions between lymphoid and non-
lymphoid cells, and p53-regulated metabolic genes and mitochondrial
translation. Apparently, the sample size (n = 16) for the TBwas somewhat
too small.

A lipidomics-based study (Brandenburg et al., 2022) identified
tuberculostearic acid (TSA)-containing phosphatidylinositols (PIs) as
biomarkers for infection with clinically relevant Mtb complex
(MTBC) strains. These marker lipids were found to have higher
levels in peripheral blood mononuclear cells of TB patients compared

to HCs, and decline to normal levels after successful treatment. This
suggested that the levels of TSA-containing PIs can be used as a
correlate for the mycobacterial burden and may potentially provide a
clinically relevant tool for monitoring TB severity. PI 16:0_19:0 (TSA)
differentiated pre-treatment TB from HCs with AUC = 0.78,
sensitivity 70% and specificity 79%. Its abundance levels decreased
significantly after the WHO-defined therapy completed or after being
cured. Similar changes were observed for FA 19:0-containing PIs in
PBMCs. Using unbiased LC-MS based lipidomics, host lipids in
plasma of pulmonary TB patients were investigated and compared
between treatment failure (n = 46) and success (n = 146, controls)
groups (Shivakoti et al., 2022). It was found that treatment failure was
associated with lower baseline levels of CEs and oxylipin and higher
baseline levels of ceramides and triglycerides, compared to controls.
Using RF algorithm, CE (16:0) and CE (18:2) were identified as
potential prognostic biomarkers for prediction of TB treatment
failure; they exhibited the best classification accuracy between cases
and controls, with moderate AUC = 0.70 and 0.79 in the training and
test sets, respectively.

The influence of pre-existing pulmonary TB case on the
outcome of infection with SARS-CoV-2 were recently
investigated using serum metabolomics analysis (Diboun et al.,
2022). The metabolomic profiles of 23 COVID-19 patients with
existing diagnosis of TB were compared with those without TB (n =
132). The vast majority (~92%) of post-TB individuals showed
severe SARS-CoV-2 infection, with a significantly high mortality
rate (52%). Betaine and branched chains amino acids (BCAAs) were
identified as potential prognostic metabolic biomarkers of severity
and mortality, respectively, in COVID-19 patients with existing TB.
We note, however, the two groups could not be clearly separated in
OPLS-DA plots, suggesting that part of the severity and mortality in
the post-TB group was not related to TB.

Biomarkers from other samples
A recent study (Biadglegne et al., 2022) using lipidomics and

proteomics approaches showed that the protein and lipid content of
circulating exosomes in Mtb-infected patients exhibited TB disease
and treatment status specific molecular features, suggesting the
possibility of utilizing exosomes in TB diagnostics and treatment
monitoring. Exosomes are mostly composed of SMs, PCs, PIs, free
fatty acids, triacylglycerols, and CEs. Their relative proportions vary
with the disease or treatment state. The treatment of pulmonary TB
patients influenced the overall chain lengths as well as double-bond
content of these metabolites. No specific metabolites had been
identified as potential biomarkers yet.

Using 16S rRNA sequencing and an untargeted LC-MS-based
metabolomics approach, Meng et al. (2022) analyzed the changes of
gut microbiome and the alteration in fecal metabolome of active TB
patients without and with treatment of different length of time, as
well as LTBI and HC cohorts. Clostridium, Bacteroides and
Prevotella were identified as biomarkers associated with fecal
metabolites 4-hydroxy-L-proline and genistein in active
pulmonary TB patients during the therapy with first-line drugs.
The diversity of intestinal flora and their taxonomic composition
changed in response to the chemotherapy, and Mtb infection
dynamically regulated fecal metabolism in active TB patients
during anti-TB chemotherapy. Thus, the correlation between gut
microbiome and anti-TB chemotherapy may provide potential
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biomarkers for evaluating the therapeutic efficacy. These findings
had not been tested with validation cohorts.

Note that the treatment progress or efficacy can be both
categorical and quantitatively continuous. Thus the biomarkers
can be either category classifier or quantitative indicator for the
treatment status.

Monitoring the drug toxicity

The first-line anti-TB drugs have been associated with
toxicity, e.g., liver injury, for which the second-line drugs are
presumably more severe. It is important to understand and
monitor the drug toxicity, especially when long-term use is
necessitated due to drug resistance of the pathogen. A
biomarker for drug toxicity can be a quantitative indicator
that measures the degree of damage to, say, the liver. This
should be an important part of therapeutic monitoring. A
limited few works are given in Table 5.

The first-line drugs usually induce hepatotoxicity. Indeed, PZA-
induced hepatotoxicity was recently studied (Zhao et al., 2017) in
rats via an NMR-based metabolomics approach complemented with
histopathological analysis and clinical chemistry. PZA decreased the
weights of dosed rats and induced dose-dependent liver injury, to
which female rats were found more sensitive. It produced a status of
oxidative stress and disturbances in purine, energy and nicotinamide
adenine dinucleotide metabolisms in a gender-specific and dose-
dependent manner. High dose of PZA caused increase of low-
density lipoprotein/very low-density lipoprotein and lactate and
decrease of glutamate, glycine, BCAAs, glucose, and taurine.
Long-term or high-dose treatment with RIF can also induce
severe liver injury. Using targeted bile acid (BA) metabolomics
for four groups of mice, treated with different doses of INH and
RIF, it was found (Deng et al., 2022) that RIF caused notable liver
injury and increased serum cholic acid (CA) levels. Decline in the
serum secondary BA levels led to liver injury in mice. CA,
deoxycholic acid (DCA), lithocholic acid (LCA), taurodeoxycholic
acid (TDCA), and tauroursodeoxycholic acid (TUDCA) were
identified as potential biomarkers for early detection of RIF-
induced liver injury. Furthermore, high dose RIF reduced hepatic
BA levels and elevated serum BA levels.

Via urine metabolite profiling using UPLC-MS, the tricarboxylic
acid circulation, arginine and proline metabolism and purine
metabolic pathways were found to be affected by anti-TB drugs
(Cao et al., 2018). The levels of pyroglutamate, isocitrate, citrate, and
xanthine decreased significantly after drug treatment. In comparison
between drug-induced liver injury (DILI) and non-DILI patients,
urate and cis-4-octenedioic acid levels increased whereas the cis-
aconitate and hypoxanthine levels decreased significantly,
highlighting that superoxide generation can aggravate the
hepatotoxic effects of the first drug regimen.

Pathogen-based biomarkers

In this section the samples are mostly bacterial cultures and
various Mtb strains as well as macrophages, rather than blood
samples. The biomarkers in this section are associated with the

pathogen, while in previous section, they are mainly associated with
the host.

Biomarkers for diagnosis and efficacy
evaluation

The initial host-pathogen interaction, especially the capability of
Mtb to utilize the carbon and nitrogen sources from the host to
replicate, is crucial for the establishment of infection. Through the
host-pathogen interaction, the metabolites of the pathogen enter the
metabolic system of the hosts, which can become biomarkers for
diagnosis and treatment monitoring as well as efficacy evaluation.
Relevant works are listed in Table 6.

Recently, Mtb curli pili (MTP) deficiency were found to be
associated with alterations in cell wall biogenesis, fatty acid
metabolism and amino acid synthesis (Ashokcoomar et al., 2020).
Using untargeted GCxGC-MS, 28, 10, and 16 biologically significant
differential metabolites were found between the mtp gene-knockout
(Δmtp) mutants and the wild type (WT), between WT and mtp-
complement, and between Δmtp to mtp-complemented strains,
respectively. This finding demonstrated that MTP can serve as a
potential diagnostic biomarker. Another study (Reedoy et al., 2020)
compared the metabolite profiles of A549 epithelial cells (with which
MTP is associated with the host metabolism) between infected and
uninfected, and between different strains of Mtb, and revealed
significantly lower concentrations of 46 differential metabolites in
the Δmtp-infected cells, compared to WT-infected cells. In a THP-1
macrophage infection model (Ashokcoomar et al., 2021), MTP was
found to be associated with alterations in carbon, fatty acid and amino
acid metabolism. Metabolite profiling of THP-1 macrophages infected
with the three types of strains revealed 9 and 10 significantly different
metabolites in the Δmtp and complement strains, respectively,
compared to the WT. The absence of the MTP adhesin resulted in
reduced virulence of Mtb, suggesting the important role of MTP
adhesin in modulating the host metabolic activity and as a
promising biomarker for diagnosis and therapeutic evaluation.

Note that the numbers of differential metabolites could be
reduced by other machine learning algorithms, e.g., RF and
LASSO.

Biomarkers for identifying drug resistance

Mtb displays a high degree of metabolic plasticity to adapt to the
host environments. Genetic evidence suggests that Mtb relies mainly
on fatty acid catabolism in the host. Thus, biomarkers could play an
important role in discriminating drug resistant and drug sensitive
Mtb (de Carvalho et al., 2010), as can be seen from the studies listed
in Table 7.

Differential fatty acyls and glycerophospholipids (GPLs) were
observed in the lipidome profiles in a comparative lipidomics study
(Pal et al., 2017) between drug sensitive (DS) and DR strains of Mtb.
GPLs, glucose monomycolates (alpha mycolic acid, methoxy
mycolic acid) and dimycocerosate B were found enhanced in DR
Mtb while methoxy mycolic acid was present only in DS Mtb. These
different lipids may serve as a resource for identifying biomarkers
aimed at disrupting the functions of Mtb lipids associated with drug
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resistance. Using UPLC-MS-based metabolomics, Rêgo et al. (2021)
reported that DS, MDR and XDRMtb strains had distinct metabolic
profiles, which could be used to predict drug susceptibility and
resistance. It was found that levels of isoleucine and proline, as well
as ions presumptively identified as hercynine, betaine, and
pantothenic acid, varied significantly between these strains. In
particular, the levels of isoleucine and proline were significantly
higher in DS strains compared to MDR and XDR strains, and thus
may serve as distinguishing biomarkers.

A few studies focused on the resistance to specific drugs. via a 2D
GC-MS metabolomics approach, Loots (2016) reported that
22 biomarkers could be used to characterize RR Mtb. These
biomarkers indicated an instability in mRNA of RR Mtb and a
total depletion of aconitic acid and a subsequently increased
dependency on alternative energy sources. Other metabolic
changes were associated with a survival response for maintaining/
remodeling the cell wall. An unbiased MS-based organism-wide
lipidomic profiling (Lahiri et al., 2016) revealed that RR mutations
led to altered concentrations of mycobactin siderophores and acylated
sulfoglycolipids, providing direct evidence for characteristic
remodeling of cell wall lipids in RR strains of Mtb, as well as

evidence that the RR RpoB mutations were associated with a
reduction in sulfoglycolipids. A recent proteomics and lipidomics-
based study (Nieto et al., 2018) focused on biochemical
characterization of INH resistant Mtb using clonal pairs of clinical
and laboratory-generated strains, and found 26 Mtb proteins with
altered abundances and lipidome changes after acquisition of INH
resistance across both Mtb genetic lineages studied. It was recently
shown that genetic mutations of Mtb induced by anti-TB treatment
led tometabolism changes and elevation of EMB resistance (Sun et al.,
2019). A total of 175 differential metabolites were identified, caused by
six genetic mutations after anti-TB treatment. They were mainly
involved in amino sugar and nucleotide sugar metabolism, β-alanine
metabolism, sulfurmetabolism, and galactosemetabolism. It would be
highly desirable to dramatically reduce the number of key differential
metabolites.

Discussion

Owing to its huge negative impact, TB has been under intensive
and extensive studies, to which the modern omics technologies have

TABLE 5 Metabolomics biomarkers for drug toxicity.

Study Sample/
biofluids

Cohorts (size n) Metabolome
fraction

Analytical
apparatus

Statistic
methods

Metabolite biomarkers

Zhao et al.
(2017)

Rat liver and
serum

Rats (zero, low, high PZA
dose) x (male, female),
10 each group

Total metobolome 1H NMR
spectroscopy

PCA, OSC-PLS-DA,
STT, non-parametric
MWT, FDR

Increased LDL/VLDL, lactate,
decreased BCAAs, glucose, taurine
(high dose vs. zero dose)

Cao et al.
(2018)

urine TB pre-dose (25), TB-DILI
(11, post-dose), non-DILI
(49, post-dose)

total metobolome UPLC-MS/MS PCA, OPLS-DA,
ANOVA test

pyroglutamate, isocitrate, citrate,
xanthine; urate, cis-4-octenedioic
acid, cis-aconitate, hypoxanthine

Deng et al.
(2022)

Liver and serum
bile acids, liver
tissues

4 groups of mice (n =
8 each), treated with INH
and/or RIF for 21 days

metabolome LC-MS/MS PLS-DA, one-way
analysis of variance,
Pearson’s test

CA, DCA, LCA, TDCA, TUDCA
were potential biomarkers for early
detection of RIF-induced liver injury

ANOVA = analysis of variance, BCAA = branched chains amino acids, CA = cholic acid, DCA = deoxycholic acid, FDR = hochberg and benjamini false discovery rate, INH = isoniazid, LCA =

lithocholic acid, MWT =Mann–Whitney test, OPLS-DA = orthogonal PLS-DA, OSC-PLS-DA = orthogonal signal correction PLS-DA, PCA = principal component analysis, PLS-DA = partial

least-squares discriminant analysis, PZA = pyrazinamide, (V) LDL = (very) low-density lipoprotein, STT = Student’s t-test, TDCA = taurodeoxycholic acid, TUDCA = tauroursodeoxycholic

acid.

TABLE 6 Pathogen-based biomarkers for diagnosis and efficacy evaluation.

Study Sample/
biofluids

Cohorts (size n) Metabolome
fraction

Analytical
apparatus

Statistic
methods

Metabolite biomarkers

Ashokcoomar
et al. (2020)

metabolites of
bacterial strains

Wild type (10), Δmtp mutant
(10), mtp-complemented
strains (10)

Metabolome, gene
expression

GCxGC-MS PCA, PLS-DA,
t-test,
Spearman’s test

28, 10, 16 significant differential
metabolites were identified for
each pair of strains.

Reedoy et al.
(2020)

A549 epithelial
cells

5 models comparing uninfected
and infected WT, Δmtp, mtp-
complemented strains, and
between strains.

Metabolome GCxGC-MS PCA, PLS-DA,
t-test

Significant differential
metabolomic profiles between
WT- and Δmtp infected
A549 epithelial cell models of
infection.

Ashokcoomar
et al. (2021)

bacterial strains,
THP-1 cells

WT- (9), Δmtp- (8),
complement-infected (8),
Δmtp- (9), complement-
uninfected (9)

whole metabolome GC×GC-MS PCA, PLS-DA,
FDR, t-test

MTP adhesin as a biomarker for
diagnosis and therapeutic
evaluation

FDR = hochberg and benjamini false discovery rate, MTP = mtb curli pili, PCA = principal component analysis, PLS-DA = partial least-squares discriminant analysis, WT = wild type.
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been widely applied. Over the past few years, significant progress has
been made in terms of biomarker discovery using metabolomics and
lipidomics. Various potential biomarkers have been identified,
especially diagnostic biomarkers. Many issues and limitations
remain, however. In particular, the clinical potentiality of these
biomarkers requires future validation.

We have discussed recent studies in pulmonary and
extrapulmonary TB, active TB and LTBI, using different types of
samples for metabolomics, including breath condensate, sputum,
pleural effusion, blood, CSF, urine, and fecal samples (Figure 2). In
particular, CSF is used for TBM only, and breath condensate and
sputum are relevant mostly for pulmonary TB, even though they may
carry metabolites of extrapulmonary TB as well. Although both host
response to Mtb infection and pathogen metabolism cause changes in
the metabolome, pro- and anti-inflammatory responses are associated
with the immune system of mainly active TB patients, leading to
dysregulation of cytokines and associate metabolites involved in
relevant metabolic pathways. Despite of being asymptomatic, LTBI
may also to certain degrees lead to immunological response and hence
associated metabolic dysregulation, even though the symptom is not
apparent. Apart from the inflammatory response, the main host
metabolic changes are associated with glycolysis and
glyconeogenesis, TCA cycle, urea cycle, pentose phosphate pathways,
lipids and amino acids metabolism, iron metabolism, and cerebral
tryptophan metabolism (for TBM), tryptophan/kynurenine pathway,
etc. The central carbon metabolism of Mtb involves glycolysis, TCA
cycle, glyoxylate shunt, methylcitrate cycle, pentose phosphate pathway,
bile acid biosynthesis, etc. The identified biomarker metabolites
participate in various biological processes. For example, pyruvate
and lactate are involved in glycolysis, itaconate, aconitic acid and
succinate are involved in the TCA cycle, arginine, citruline,
tryptophan, kynurenine, glutamine and various PCs, PEs, PIs, SMs,
etc., are involved in lipid and amino acidmetabolism. Somemetabolites,

e.g., amino acids, are involved in multiple pathways, resulting in a
complex metabolic pathway network. Also some metabolites, e.g.,
betaine, are involved in the pathogens−host interaction during Mtb
infection.

A great number of potential biomarker metabolites have been
discovered either for diagnosis of TB, or for distinguishing TB
patients from non-TB controls, including HCs, LTBI/HHCs and
other diseases that may have similar symptoms. Most of these
studies focused on pulmonary TB, which is the prevalent form of
tuberculosis, while a few others studied TBM, mostly based on
CSF or urine samples. In the meantime, limited studies focused
on biomarkers for identifying LTBI, since most studies would
naturally include TB patients in the cohorts.

Monitoring the efficacy of medical therapy and the progress of
treatment is an important aspect of the entire treatment process,
especially when therapy adjustment is needed for long-term
treatments. It is also important to avoid premature release of TB
patients. To avoid the month-long waiting time for sputum
culturing, blood, urine and/or fecal samples are usually used for
all TB types, pleural effusions and exhaled breath condensate for
pulmonary TB, and CSF samples for TBM. These studies usually
involve humans as the subjects, with occasional use of non-human
animal models. A large number of differential metabolites are
associated with altered energy metabolism, immunophysiology,
pathogen cell wall disruption and repair.

A few works identified biomarkers for drug toxicity, which is in
fact a very important issue, as it can prevent long-term or high-dose
administration of a drug that causes severe side effect damages, and
thus should be part of therapeutic monitoring.

The experimental subjects were switched mostly from human to
pathogen strains and host macrophages in the metabolomic studies
on drug resistance. The laboratory strain, Mtb H37Rv and its mutant
variations as well as clinical isolates are the most commonly used

TABLE 7 Pathogen-based biomarkers for drug resistance of Mtb.

Study Sample/
biofluids

Cohorts Metabolome
fraction

Analytical
apparatus

Statistic
methods

Metabolite biomarkers

Loots
(2016)

Mtb strains,
bacterial
cultures

WT parent strain and
mutants

MS from 50 to
800 m/z

GCxGC-MS PCA, PLS-DA 22 biomarkers identified, including
uridine, ribonic adic, aconitic acid, etc.

Lahiri et al.
(2016)

Mtb strains,
mutant cultures

Mtb mutants
CDC1551and W-Beijing

lipidome HPLC-MS paired Student’s t test
with multiple testing
correction

mycobactin siderophores,
carboxymycobactins, acylated
sulfoglycolipids

Pal et al.
(2017)

Mtb strains Drug sensitive and
resistant Mtb strains

lipidome UPLC-MS N/A GPL, GMM (alpha-MA), GMM
(methoxy-MA), DIM-B enhanced in DR,
methoxy MA present only in DS Mtb

Nieto et al.
(2018)

Mtb strains, Clinical and laboratory
clonal pair of Mtb strains,
INHs and INHr

total metobolome,
proteome

LC-MS/MS, TLC Scaffold Local FDR
algorithm, 2-tailed
t-test

proteomic rearrangement and lipidomic
changes after acquisition of INHr

Sun et al.
(2019)

Mtb strains MDR TB isolates before
and 1 year after
treatment, and H37Rv

total metobolome LC-MS/MS PCA, PLS-DA 175 differential metabolites, caused by
6 genetic mutations

Rêgo et al.
(2021)

Mtb strains 53 Mtb strains (DS,
MDR, XDR)

Total metabolome, UPLC-MS,
DI-MS

t-test, HCA Isoleucine and proline levels higher in DS
than DR strains

DI-MS = direct infusion mass spectrometry, DIM-B = dimycocerosate B, DR = drug resistant, DS = drug sensitive, FDR = hochberg and benjamini false discovery rate, GMM = glucose

monomycolates, GPL = glycerophospholipids, HCA = hierarchical clustering analysis, INHr = isoniazid resistant, INHs = isoniazid susceptible, MA =mycolic acid, MDR =mulit-drug resistant,

PCA = principal component analysis, PLS-DA = partial least-squares discriminant analysis, TLC = thin-layer chromatography, XDR = extensively drug resistant, WT = wild type.
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samples. However, supervised machine learning was rarely used in
these studies to further select biomarkers from a large number of
differential metabolites.

There have been many studies on the drug resistance of the
pathogen. Anti-TB drugs normally act by inhibiting various
enzymes associated with central carbon and nitrogen metabolism
and biosynthesis for cell wall growth. In reaction, the pathogen can
adapt to the micro environment inside the macrophage to shunt
antibiotics. It can adaptively remodel its metabolic network for
repair of the cell wall and DNA damages. Furthermore, it may
develop drug resistance in response to various types of stress mostly
by entering a dormant state with very low level of metabolic activity
and/or by cell wall lipid reorganization. As a result, there are distinct
differences in metabolic profile between DS and DR, especially MDR
and XDR, strains of Mtb.

Despite the great progress that has been made, there are apparent
limitations in these studies. 1)Most studies were based on small cohorts,
which impaired the statistical reliability of the findings; some typical
bioinformatics or machine learning algorithms require a minimum of
30 samples to yield a meaningful result. 2) Lacking a uniform standard,
the experimental conditions and analytical apparatuses differ from one
study to another. (This is a roadblock that can be removed via
technological upgrade.) 3) Most biomarkers were not independently

validated. 4) Many studies found a large number of biomarkers, only
based on PCA or PLS-DA, or simply FC and p-value screening. More
elaborated selections based on better supervised machine learning
algorithms, such as LASSO and RF, are needed, in order to identify
key differential metabolites with the best performance and clinical
applicability. 5) The statistical differentiation in the metabolome
between different cohorts was only marginal in some of the studies,
as revealed by the overlap in PCA and/or PLS-DAplots. 6) The reported
potential biomarkers differ greatly from one study to another. Only a
very limited number of potential diagnostic biomarkers appeared inmore
than one studies, including glutamate, glutamine, methionine, creatine,
cysteine, tryptophan, threonine, citrate, citrulline, and citric acid. 7) Due
to the large disparity in experimental design (and experimental
conditions), it is, at present, hard to compare (and select) the
biomarkers between different studies. Therefore, there is still a long
way to go before these biomarkers are fully validated for clinical
application.

We emphasize that machine learning has become increasingly
more important in biomarker discovery. It has been widely used
across different disciplines and fields, from fundamental basic
science (Chmiela et al., 2020) to industrial applications (Datta and
Davim, 2022). While the usual statistical methods of PCA, HCA and K
mean clustering have been used in unsupervised machine learning,
what is particularly useful for biomarker discovery is supervised
machine learning. The widely used (O)PLS-DA is a supervised
dimension-reduction procedure that finds new features that not only
captures most of the information in the original variables, but also are
related to the response (Boehmke and Greenwell, 2020). However, a
study (Westerhuis et al., 2008) showed that PLS-DA score plots often
present an overoptimistic view of the class separation. In general,
supervised machine learning takes labeled data as input to train the
model, using certain algorithms, such as LASSO, RF, SVM, and artificial
neural network, and then test the model with new data and adjust the
model as needed (Jung, 2022) (Figure 3). It is particularly useful in
feature selection and classification, and thus suitable for biomarker
discovery as the typical data labels are categorical. In comparison with
(O)PLS-DA, LASSO and RF, for example, are capable of avoiding the
over-fitting and multi-collinearity issues that are often present in the
omics data, thus can select among a large number of differential
metabolites (features) the most important ones as the biomarkers.
However, machine learning often takes a large amount of data to
train the model (Beleites et al., 2013). For example, it was reported that
modern modeling techniques such as SVM, neural network and RF
may need over 200 events (TB patients) per variable (biomarker) (van
der Ploeg et al., 2014). A manifestation of small sample size effect is the
presence of step jumps in the ROC curves. As the threshold varies, the
false positive changes one by one, leading to such jumps when the
sample size is small.

A few studies discussed above involved a fairly large number of
samples, especially those for the identification of LTBI. Possibly because
the metabolic dysregulations in HHCs were intrinsically not strong
enough, these studies did not find very strongmetabolomic biomarkers.
A couple of studies involved over 100 samples in each cohorts. Isa et al.
(2018) used 107 TB patients with 102 asymptomatic controls, and
identified four potential biomarkers using RF. Luo Y. et al (2020) had
125 TB patients and 101 LTBI, however, the differences were
investigated only with the Mann–Whitney U test or Chi-square test.
Among all studies discussed above, a small percentage used both

FIGURE 2
The relation of host-based metabolomics and lipidomics branch
with various types of TB and associated samples. Here the
inflammatory response are associated with host immune system of
mostly active TB patients. Both the host and pathogen
metabolisms cause dysregulation and metabolomic changes, which
are reflected in various body fluids. Breath condensate and sputum are
for pulmonary TB only, and CSF is for TBM only. Lipidomics usually
uses blood samples. All types of body fluids can be samples for
metabolomics in general.
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discovery and validation cohorts, but most of them used only PCA,
HCA, and PLS-DA analysis. Non-etheless, a small fraction did usemore
sophisticated machine learning algorithms, such as LASSO, RF, SVM,
and elastic netmodel. It will be highly desirable to combine large sample
size with advanced machine learning algorithms.

One important issue is why the biomarkers from different
studies seldom overlap, even when the groups to be compared
are the same, say, TB versus HCs? This happens between
different research teams and also between different studies of the
same teams. One can in part blame the small sample size and
statistical fluctuations in individual systemic biological state.
However, a fundamental question is, are different untargeted
metabolomic studies supposed to yield the same set of
biomarkers in ideal conditions? Alternatively, if one manages to
have an infinitely large data set, say, of TB vs. HCs, spanning all
other possible experimental parameters, should there be at least one
metabolite that is consistently upregulated (or downregulated) in all
TB samples as compared to HCs? An implicit guiding principle
behind all the biomarker research is that the answer is Yes. However,
one must consider the possibility that there are multiple possible
independent systemic metabolic states that manifest the same typical
TB symptoms, yet none of the metabolites is consistently up- or
down-regulated across different states, even though there are
consistent biomarkers for each of these pathological states as
compared with HCs. Just as for a non-linear complex equation,
there often exist multiple solutions. This is certainly possible given
the potentially huge individual disparity, and should be kept in mind
in future researches.

Looking forward, there are two obvious research directions. One is
to design new studies to find more biomarkers. The other is to re-
examine the already discovered potential biomarkers with new
experiments. This makes sense in that these biomarkers already
cover basically all major metabolic pathways. Only when a
biomarker (or a panel of biomarkers) is validated by multi-studies
can it be applied for clinical application. There is also a third direction.
Given the data sharing service in open scientific data repositories, it is
possible to (re) do data analysis with possibly combined data usingmore
advanced machine learning algorithms. In fact, some biomarkers from
different studies are associated with same metabolic pathways. These
studies have a high potential to find common biomarkers once the
sample sets are enlarged. With machine learning plus big data, it is
hopeful that commonly recognized biomarkers will be found.

Finally, we mention that it helps to integrate metabolomics with
other omics approaches, including proteomics, transcriptomics and
genomics, as already done in some of the studies discussed above, in
order to find better biomarkers for TB.

Conclusion

In summary, great progress has been made in biomarker
discovery for diagnosis and treatment monitoring of TB based on
metabolomics over the past several years. Further validation are of
utmost importance prior to application of these metabolome-based
biomarkers in the clinical setting. Overall, a large number of
differential metabolites or biomarker candidates have been found.
However, improved bioinformatics data analyses are needed, to pin
down key biomarkers from a large number of differential
metabolites. This warrants more intensive and extensive future
research effort in this area, with the help of machine learning, in
the hope that clinically applicable biomarkers will be made available
in the near future.
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Schematic flow diagram of typical supervised machine learning
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