AUTHOR=Morosky Pearl , Comyns Cody , Nunes Lance G. A. , Chung Christina Z. , Hoffmann Peter R. , Söll Dieter , Vargas-Rodriguez Oscar , Krahn Natalie TITLE=Dual incorporation of non-canonical amino acids enables production of post-translationally modified selenoproteins JOURNAL=Frontiers in Molecular Biosciences VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2023.1096261 DOI=10.3389/fmolb.2023.1096261 ISSN=2296-889X ABSTRACT=

Post-translational modifications (PTMs) can occur on almost all amino acids in eukaryotes as a key mechanism for regulating protein function. The ability to study the role of these modifications in various biological processes requires techniques to modify proteins site-specifically. One strategy for this is genetic code expansion (GCE) in bacteria. The low frequency of post-translational modifications in bacteria makes it a preferred host to study whether the presence of a post-translational modification influences a protein’s function. Genetic code expansion employs orthogonal translation systems engineered to incorporate a modified amino acid at a designated protein position. Selenoproteins, proteins containing selenocysteine, are also known to be post-translationally modified. Selenoproteins have essential roles in oxidative stress, immune response, cell maintenance, and skeletal muscle regeneration. Their complicated biosynthesis mechanism has been a hurdle in our understanding of selenoprotein functions. As technologies for selenocysteine insertion have recently improved, we wanted to create a genetic system that would allow the study of post-translational modifications in selenoproteins. By combining genetic code expansion techniques and selenocysteine insertion technologies, we were able to recode stop codons for insertion of Nε-acetyl-l-lysine and selenocysteine, respectively, into multiple proteins. The specificity of these amino acids for their assigned position and the simplicity of reverting the modified amino acid via mutagenesis of the codon sequence demonstrates the capacity of this method to study selenoproteins and the role of their post-translational modifications. Moreover, the evidence that Sec insertion technology can be combined with genetic code expansion tools further expands the chemical biology applications.