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Gestational diabetes mellitus (GDM) is a disorder which manifests itself for the first
time during pregnancy and is mainly connected with glucose metabolism. It is also
known that fatty acid profile changes in erythrocytemembranes and plasma could be
associated with obesity and insulin resistance. These factors can lead to the
development of diabetes. In the reported study, we applied the untargeted
analysis of plasma in GDM against standard glucose-tolerant (NGT) women to
identify the differences in metabolomic profiles between those groups. We found
higher levels of 2-hydroxybutyric and 3-hydroxybutyric acids. Both secondary
metabolites are associated with impaired glucose metabolism. However, they are
products of differentmetabolic pathways. Additionally, we applied lipidomic profiling
using gas chromatography to examine the fatty acid composition of cholesteryl
esters in the plasma of GDM patients. Among the 14 measured fatty acids
characterizing the representative plasma lipidomic cluster, myristic, oleic,
arachidonic, and α-linoleic acids revealed statistically significant changes.
Concentrations of both myristic acid, one of the saturated fatty acids (SFAs), and
oleic acid, which belong tomonounsaturated fatty acids (MUFAs), tend to decrease in
GDM patients. In the case of polyunsaturated fatty acids (PUFAs), some of them tend
to increase (e.g., arachidonic), and some of them tend to decrease (e.g., α-linolenic).
Based on our results, we postulate the importance of hydroxybutyric acid derivatives,
cholesteryl ester composition, and the oleic acid diminution in the pathophysiology
of GDM. There are some evidence suggests that the oleic acid can have the
protective role in diabetes onset. However, metabolic alterations that lead to the
onset of GDM are complex; therefore, further studies are needed to confirm our
observations.
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Introduction

Gestational diabetes mellitus (GDM) is a glucose-intolerance
disorder diagnosed during pregnancy between 24–27 weeks. It may
significantly affect the mother’s health and that of the developing fetus
and cause metabolic problems that may occur later in life, e.g.,
developing type 2 diabetes (T2DM) cardiovascular diseases (CVD),
obesity, or hyperlipidemia (Nezami et al., 2010; Plows et al., 2018).
Gestational diabetes affects 2%–38% of pregnant women, depending
on several factors, with diagnostic criteria and population studies
being the most significant ones (Alesi et al., 2021). Moreover, the
prevalence of GDM is growing, and 204 million pregnant women were
affected with GDM in 2017 (Mdoe et al., 2021). This number is
projected to rise to 308 million in 2045, mostly in developing countries
(Yahaya et al., 2020).

Currently, the “gold standard” used to diagnose GDM is the
fasting plasma glucose (FPG) concentration and an oral glucose-
tolerance test (OGTT) which is carried out between the second and
the third trimesters (24–28 weeks) of pregnancy. However, some
studies suggest that FPG in early pregnancy is not a promising
biomarker of GDM (Benhalima et al., 2021; Cosson et al., 2021).
On the other hand, OGTT is an inconvenient examination for
pregnant women due to its procedure and duration. Drinking the
required amount of glucose solution may make some patients feel
nauseous (Cosson et al., 2017). Therefore, there is a pressing need to
evaluate a new diagnostic or prognostic marker for early developing
GDM, whichmay contribute to improving care for pregnant women at
risk of gestational diabetes in the early stages of pregnancy and,
subsequently, avoid long-term consequences both for the mother
and her child (Brink et al., 2016). The current literature indicates
several predictive biomarkers of GDM which may be obtained either
as a result of the targeted or untargeted metabolomic analyses of
various biofluids.

Our long-term interest as a team has been in the molecular
etiology of diabetes mellitus, particularly gestational diabetes
mellitus (Wojcik et al., 2014; Wójcik et al., 2015; Wojcik et al.,
2016). On the other hand, we have also developed the
metabolomics approach, including lipidomics, which can serve as a
unique tool that, due to its better perspective, may improve the early
prediction of change characteristics of GDM by detecting the early
dysregulation in metabolism (Sakurai et al., 2019; Mojsak et al., 2021).

Serum, erythrocytes, and adipose tissue can be tested for fatty
acids. It is well understood that FA levels in the serum reflect short-
term intake (Kohlmeier, 1995) and are more representative of a
subject’s current dietary habits (Bradbury et al., 2011). Recently, we
demonstrated lipid profile changes in the erythrocyte membranes of
women diagnosed with GDM, reflecting the last 60–90 days of their
diet. We demonstrated the changes were mainly related to stearic and
cis-vaccenic acids, which were elevated among women with GDM.We
postulated that these two fatty acids can act as dual biomarkers of
specific saturated fatty acid–monounsaturated fatty acid
(SFA–MUFA) conversion processes, catalyzed by Δ-9-desaturase
and elongase and that this family of fatty acids may be involved in
the pathophysiology of GDM (Bukowiecka-Matusiak et al., 2018). It is
interesting to compare the lipid status both in serum and in the
erythrocytes and their correlation with GDM onset.

Our previous studies revealed the critical role of arginine in the
development of GDM as a potential biomarker used for the early
detection of this disease (Burzynska-Pedziwiatr et al., 2020). On the

other hand, Dudzik et al. (2017) demonstrated a discriminative power
of 2-hydroxybutyrate, 3-hydroxybutyrate, and stearic acid between
women diagnosed with GDM and normoglycemic pregnant women.
Furthermore, lysoglycerophospholipids are closely associated with
pregnant women’s glycemic status. In addition, Dudzik et al.
(2014) identified certain metabolites with a strong discriminative
potential, namely, lysophosphatidylethanolamines,
lysophosphatidylinositols, lysophosphatidic acids, taurine bile acids,
and long-chain polyunsaturated fatty acid derivatives.

The metabolism of carbohydrates is closely connected with lipid
metabolism pathways. The excess carbohydrates is converted into
saturated fatty acids (SFAs) and monounsaturated fatty acids
(MUFAs) by the de novo lipogenesis process (Ameer et al., 2014),
which may play a fundamental role in metabolic regulation and can
affect the pathogenesis of diabetes, including GDM (Schwarz et al.,
2003). For example, palmitic acid induces inflammation, endoplasmic
reticulum stress, and insulin resistance (Schwartz et al., 2010; Sieber
et al., 2010). In turn, stearic acid promotes adiposity and, similar to
palmitic acid, causes insulin resistance (Anderson et al., 2012; Chu
et al., 2013). In contrast, oleic acid prevents palmitate-induced
metabolic defects (Salvadó et al., 2013).

Human plasma contains fatty acid derivatives mainly in the form
of triacylglycerols (TGs), cholesteryl esters (CEs), and phospholipids
(PLs) which are components of lipoproteins. In contrast, adipose
tissue primarily comprises triacylglycerols, whereas the red blood cell
membrane lipidome is composed mainly of phospholipids (Beynen
and Hautvast, 1980; Field et al., 1985; Katan et al., 1991; Katan et al.,
1997; Baylin et al., 2002).

Cholesterol exists in two forms in the blood plasma: free
cholesterol and cholesteryl esters. Both chemical forms are the
constituents of circulating lipoproteins such as low-density
lipoprotein (LDL), very low-density lipoprotein (VLDL), or high-
density lipoprotein (HDL). Cholesteryl esters are the fractions of
plasma lipids involved in lipoprotein metabolism. Most of the
cholesterol in the blood exists in an esterified form (Hodson et al.,
2008). Conjointly with phospholipids, cholesteryl esters can be helpful
as potential lipidomic biomarkers (Ferreri et al., 2016). Sansone et al.
(2016) demonstrated an interesting diversity of the cholesteryl esters
from the plasma and phospholipids from erythrocyte membrane
compositions in a group of morbidly obese people compared to
lean subjects. In this study, some fatty acids presented the same
trends in both classes of lipids; however, some showed the opposite
trend.

The two classes of lipids, namely, phospholipids isolated from the
erythrocyte membrane and cholesteryl esters isolated from plasma, are
connected through the activity of lecithin–cholesterol acyltransferase
(LCAT) which is responsible for the transfer of fatty acids from
phospholipids to cholesteryl esters. More importantly, this is one of
the emerging pathways involved in human pathologies (Jonas, 2000).
Other phospholipids, such as phosphatidylethanolamine, can also
participate in the LCAT reaction (Christiaens et al., 2000). Fatty
acids in phospholipid membranes and cholesteryl esters from the
plasma have a close correlation with the onset of insulin resistance and
diabetes (Maulucci et al., 2019).

Plasma cholesterol esters consist of relatively high proportions of
n-6 polyunsaturated fatty acids (PUFAs) typically present in
phosphatidylcholines, i.e., linoleic acid and arachidonic acid.
Therefore, cholesterol esters are strongly associated with membrane
turnover via HDL and are further transferred to other lipoprotein
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fractions, LDL and VLDL, in a cholesterol–ester transfer protein
(CETP)-catalyzed reaction (Melchiorre et al., 2011; Ferreri and
Chatgilialoglu, 2012).

In this work, we report the examination of the fatty acid
composition of plasma cholesteryl esters in the second trimester of
pregnant women with diagnosed GDM (n = 32), juxtaposed with
normal glucose-tolerant (NGT) women (n = 11) and the comparison
of the obtained profile with previous results regarding the analysis of
erythrocyte membrane phospholipids in the same group of patients.
Additionally, we demonstrated the results of the untargeted
metabolomic analysis, the purpose of which was to search for
compounds that could constitute potential predictive markers.

Materials and methods

Study design

GDM was diagnosed according to the following WHO diagnostic
criteria (Ferreri et al., 2016): fasting glucose level at 92 mg/dl
(5.1 mmol/L) or 153 mg/dl (8.5 mmol/L) 2 h after 75-g OGTT
between 24 and 28 week of gestation, or later if it was not possible
during this period. After classification, the control group included
11 healthy pregnant women with normal glucose tolerance (NGT),
and the GDM group included 32 women with impaired glycemia
(43 patients in total). Blood samples were collected in EDTA-
containing tubes at 24–28 weeks of gestation (on the day of the
OGTT) for both the NGT and GDM groups as we previously
described (Ferreri et al., 2016; Bukowiecka-Matusiak et al., 2018).

The inclusion criteria were described in our earlier paper
(Burzynska-Pedziwiatr et al., 2020).

Maternal weight and height in the third trimester of pregnancy
were measured using standard equipment, which allowed us to
calculate weight gain and pre-pregnancy body mass index (BMI).
All blood parameters were as follows: total cholesterol, serum
triglyceride (TG), HDL, LDL, glycated hemoglobin (HbA1C),
C-reactive protein (CRP), and insulin concentrations were
measured according to the standard protocols included in our
previous work (Bukowiecka-Matusiak et al., 2018). Indicators of
insulin resistance (HOMA-IR) and beta-cell function (HOMA-B)
for patients were calculated with the use of the homeostasis model
assessment (HOMA) according to the protocol (Matthews et al.,
1985).

The study was conducted according to the guidelines of the
Declaration of Helsinki and was approved by the Ethical
Committee of the Medical University of Lodz (No. K.B./268/
15 from 17 February 2015). Informed consent was obtained from
all participating subjects.

Untargeted plasma metabolomics analysis

Chemicals
Organic solvents used were as follows: acetonitrile, heptane, and 2-

propanol Optima™ LC/MS grade were supplied by Fisher Chemical.
Ultrapure water was produced using the Milli-Q Plus 185 system
(Millipore, Billerica, MA, United States). O-methoxyamine
hydrochloride, sialylation-grade pyridine, BSTFA (N,O-
bis(trimethylsilyl)trifluoroacetamide) with 1% TMCS

(trimethylchlorosilane), C8–C40 alkane calibration standard mix, C:
18 methyl ester, and tricosane analytical standard were purchased
from Sigma-Aldrich (St. Louis, MO, United States).

Untargeted plasma metabolomics analysis
Metabolomic analyses of plasma from control and GDM women

were performed using the GC–MS-based approach. Sample analysis
was carried out randomly, and the system’s stability, performance, and
reproducibility of the sample treatment procedure were checked with
the quality control samples. With the use of quality assurance (QA)
criteria, matrix filtration was achieved (Dudzik et al., 2017), enabling
selection of a total of 33 metabolites for further data processing.

Derivatization protocol
An aliquot of 40 µl plasma was mixed with 120 µl cold acetonitrile

(−20°C) and centrifuged (15,400 xg, 4°C, 10 min). An aliquot of 100 µl
of the supernatant was transferred to a gas chromatography (GC) vial,
evaporated to dryness under vacuum (SP Genevac miVac Sample
Concentrators—S.P. Scientific, Genevac Ltd., Ipswich, Suffolk,
United Kingdom), and derivatized as previously described (Rey-
Stolle et al., 2021). In brief, 10 µl O-methoxyamine hydrochloride
in pyridine (15 mg/ml) was added to each sample to protect the
aldehyde and ketone groups. After 16 h of incubation, 10 µl BSTFA
with 1% TMCS was used for silylation (1 h, 70°C). Finally, 100 μl
heptane containing 20 ppm tricosane (IS) was added to each vial.
Quality control (QC) samples were independently prepared by
pooling equal volumes of each sample and following the same
extraction procedure applied to the experimental samples. Analyte-
free extraction blank and reagent blank were also processed (Dudzik
et al., 2018).

GC-Q-MS analysis

The samples (2 μl) were injected in split mode with a 1:10 flow into
an Agilent Technologies 8860 gas chromatography system coupled
with an Agilent Technologies 5977B mass spectrometer (Agilent
Technologies, Waldbronn, Germany). Separation of the metabolites
was performed on an HP-5MS capillary column DB5–MS (30 m
length, .25 mm i.d., and .25 μm film 95% dimethyl/5% diphenyl
polysiloxanes) with an integrated pre-column (10 m J&W, Agilent).
The carrier gas (He) flow rate through the column was set at .674 ml/
min. The injector port was maintained at 250°C. The temperature
gradient was programmed as follows: The initial oven temperature was
set at 60°C (held for 1 min) with a ramping rate of 10°C/min up to
325°C and maintained for 10 min before cooling down with the total
run time of 37.5 min per sample. The detector transfer line, the
filament source, and the quadrupole temperature were set to 280°C,
250°C, and 150°C, respectively. MS detection was performed in the
electron impact (EI) mode at a fragmentation voltage of 70 eV. The
mass spectrometer was operated in the scanmode with a mass range of
m/z 50–600 at a rate of 2.7 scans/s. A C:18 methyl ester,
C8–C40 alkane calibration standard mix, blanks, and QCs for
system equilibration were injected at the beginning of the analytical
batch, following QC injections for every six experimental samples.

Data processing and compound identification
Acquired data were inspected to assess the data quality with

Agilent MassHunter Qualitative Analysis Ver. B.08.00 (Agilent
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Technologies, Santa Clara, CA, United States). Spectral de-
convolution was performed with the Agilent Unknown Analysis
tool (Ver. B.08.00. Agilent Technologies, Santa Clara, CA,
United States). Alignment of the retention time drift was
performed with Mass Profiler Professional ver. B.12.1 (Agilent
Technologies, Santa Clara, CA, United States) software. Assignment
of the target ion and the qualifiers, entire batch pre-processing, and
manual inspection of the data, including the peak area and RT
integration, were performed using Agilent MassHunter
Quantitative Analysis (Ver. B.08.00, Agilent Technologies, Santa
Clara, CA, United States). Compound identification was performed
with the NIST (National Institute of Standards and Technology,
Gaithersburg, MD, United States) mass spectra library (Ver. 2017).
Raw data have been cleared of unrelated features and contaminants.

Data treatment
Quality control and quality assurance procedures were applied

according to the published guidelines (Broadhurst et al., 2018; Dudzik
et al., 2018). The principal component analysis (PCA-X) examined the
acquired data for signal drift, variation in QC samples, and possible
outliers. Tight QC clustering was observed (Figure 2), indicating the
reproducibility of the samples’ treatment and high precision of the
analytical procedure. Two outlying observations on the PCA-X model
evaluated by Hotelling’s T2 range plot were removed from further
calculations. Variations within measurements were calculated for QCs
and expressed as relative standard deviation (% RSD) with the cut-off
value RSD >30%. Data were normalized according to tricosane (CAS
Registry Number: 638-75-5, IUPAC Standard InChIKey:
FIGVVZUWCLSUEI-UHFFFAOYSA-N). The calculations were
performed using MATLAB scripts (Matlab R2015, Mathworks) and
Excel (Microsoft). Multivariate analysis was performed using SIMCA-
P + 16.0 software (Umetrics, Umea, Sweden). A combination of VIP-p
(corr.) (correlation coefficient combined with VIP, variable influence
on the projection) based on the orthogonal partial least squares
discriminant analysis (OPLS-DA) model was applied for specified
interpretations with the threshold for the variable selection set to
VIP >1.0 and p(corr.) > .4. The Kolmogorov–Smirnov–Lillefors test
verified data normality and the variance ratio, by Levene’s test. The
Student t-test statistical significance level was 95% (p < .05), and the
false discovery rate was .05. Univariate statistical analyses were
performed with MATLAB scripts (Matlab R2015, Mathworks).

Fatty acid analysis

The plasma cholesteryl esters were isolated as described previously
(Astarita et al., 2014; Laiakis et al., 2014). Fatty acids were identified as
the corresponding fatty acid methyl esters (FAMEs) and analyzed by
gas chromatography as described earlier (Bukowiecka-Matusiak et al.,
2018).

Statistical analysis

The Shapiro–Wilk test was used to test for data normality.
Continuous variables were presented as medians with
corresponding interquartile ranges (IQRs). We used the
Mann–Whitney rank test to compare the GDM patients and the
healthy control group. The Benjamini–Hochberg procedure was

applied to calculate the false discovery rate (FDR). In all analyses,
p-values equal to or less than 0.05 were considered statistically
significant. Furthermore, patients’ obtained biochemical and
anthropometric characteristics were subjected to Spearman’s rank
correlation analysis.

All statistical analyses were carried out using Statistica 13.1
(TIBCO Software, Palo Alto, CA) and the additional analytical
extensions (StatSoft, Polska Sp. z.o.o., Poland).

Results

The clinical and biochemical characteristics of the groups are
given in Table 1. These results indicate that the studied groups did not
differ significantly in age, insulin concentration, HOMA-IR, QUICKI,
and LDL levels.

The following parameters achieved concentrations significantly
higher in the GDM group in comparison to the control group: FPG
(85 mg/dl vs. 75.8 mg/dl; p = .0067), OGTT 60’ (178 mg/dl vs.
115.25 mg/dl, p = .0075), OGTT 120’ (160 mg/dl vs. 99.6 mg/dl,
p < .0001), CRP (3.4 mg/L vs. 1.5 mg/L, p = .0366), and total
cholesterol (256.1 mg/dl vs. 219.5 mg/dl, p = .0259). The
concentrations of triglyceride and HDL were higher in the GDM
group. However, these differences were at a borderline of significance
(205.8 mg/dl vs. 157.6, p = .0618; 74.1 mg/dl vs. 61.4 mg/dl, p = .0692;
287.3 vs. 203.3, p = .0506, respectively). HOMA presented the opposite
trend-β, but this change was also at a borderline of significance
(203.3 vs. 287.3, p = .0506). We observed notable differences
between the medians for both HDL and HOMA-β, but they were
not statistically significant, which may be explained by a difference in
the number of subjects in the groups (GDM = 32 versus NGT = 11).

Multivariate statistical analysis

The orthogonal partial least squares discriminant analysis was
performed to screen for significantly differential metabolites,
indicating the control and GDM groups’ separation (Figure 1)
with an R2 value of .76 and a predictive Q2-value of .68. CV-
ANOVA (p-value 5.12 E-09) demonstrated that the OPLS-DA
model was highly significant. Additionally, internal cross-
validation was conducted to test whether the OPLS-DA model
was valid. A 200-step random pre-mutation was carried out,
indicating no existed overfitting (Figure 2C). Six metabolites,
namely, 2-hydroxybutyric acid, 3-hydroxybutyric acid, oxalic acid,
glycerol, tryptophan, and aldohexose, were identified as significantly
altered following the established multivariate VIP (>1.0) and p(corr)
(> .05) criteria (Figure 1; Table 2). Subsequently, these metabolites
were found to be statistically relevant in the independent t-test and
false discovery rate (fdr)-adjusted p-value. The detailed results are
shown in Table 2.

We performed a correlation analysis between significantly
changed metabolites and biochemical and anthropometrical data.
The results are presented in Figure 2. Out of all analyzed
metabolites, a moderate correlation of 2-hydroxybutyrate, 3-
hydroxybutyrate, and oxalic acid, with OGTT-120’, was observed.

The results concerning the profile of cholesteryl esters are collected
in Table 3. Among the 14 measured fatty acids treated as a
representative fatty acid cluster contained in cholesteryl esters,
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myristic, oleic, arachidonic, and α-linoleic acids were significantly
changed.

Among SFAs, only the concentration of myristic acid tends to
decrease in GDM patients with a statistical significance (Δ = −37%. p =
.0121). The relative content of MUFAs tends to decrease with oleic
acid significantly lowered (Δ = −5%. p = .0056), whereas vaccenic acid
(C18:1) is increased in the plasma of the GDM group in comparison
with the control group with borderline significance (Δ = 6%. p =
.0596). In the case of PUFAs, n-6 arachidonic acid increases (Δ = 29%.
p = .0001) and n-3 α-linolenic acid decreases (Δ = −19%. p = .0138),
which was statistically significant (Table 3).

In this analysis, both myristic acid and oleic acid contents were
negatively correlated with OGTT 60’ (R = −.38. p = .0202 and R = −.42.
p = .0058, respectively, Table 4; Figure 3). OGTT 120’ (R = −.39. p =
.0088 and R = −.34. p = .0248) and the latter parameter having negative
correlation with α-linolenic acid were reported (R = -0.39. p = .0090).
Among all the measured cholesteryl esters, only arachidonic acid
showed a positive correlation with OGTT 60’ (R = .39, p = .0157),
OGTT 120’ (R = .50, p = .0005), and CRP (R = .32, p = .0198).

Discussion

Here, we report the untargeted and targeted analyses of the plasma
of pregnant women in the third trimester of pregnancy diagnosed with
GDM against normoglycemic pregnant women as a control
group (NGT).

In our study, among the identified plasma metabolites, the
contents of 2-hydroxybutyric acid and 3-hydroxybutyric acid
increased in GDM women compared with those in the NGT group

(135%–505%, respectively; Table 2). We also observed higher levels of
oxalic acid (133%), glycerol (77%), D-glucopyranoside (549%), and
aldohexose (44%) and a lower level of tryptophan (−37%) in the GDM
group.

2-hydroxybutyric acid could be derived from α-ketobutyrate, the
product of amino acid catabolism (threonine and methionine) (Bui
et al., 2019) or as the product of glutathione (GSH) anabolism
obtained through the cysteine-formation pathway (Lord and
Bralley, 2008). 2-hydroxybutyric acid is catabolized into propionyl-
CoA, an essential product of the citric acid cycle responsible for energy
supply in the form of ATP and carbon dioxide (Landaas, 1975). The
higher concentration of 2-hydroxybutyric acid is associated with
increasing oxidative stress, which can be connected with β-cell
dysfunctions and an increase in free fatty acid (FFA)
concentrations. All these factors are connected with hyperglycemia
and insulin resistance (Varvel et al., 2014). Due to surplus oxidative
stress, more GSH is produced through the cysteine anabolism, leading
to the synthesis of α-ketobutyrate, which is converted to 2-
hydroxybutyric acid.

On the other hand, FFAs, synthesized in excess under IR
conditions, are oxidized in the tricarboxylic acid (TCA) cycle,
leading to an excess of glutamate, alanine, and α-ketobutyrate
production (Cobb et al., 2013; Ferrannini et al., 2013). In our
study, the higher content of 2-hydroxybutyric acid was positively
correlated with the OGTT test, as reported earlier (Dudzik et al., 2017).
Our results corroborate previosly established role of 2-hydroxybutyric
acid as a potential biomarker of glycaemic changes both, in GDM and
T2DM (Xu et al., 2013; Padberg et al., 2014; Salek et al., 2020).

As mentioned previously, the elevated level of 2-hydroxybutyric
acid among GDM women could be explained by the redox imbalance,

TABLE 1 Biochemical and clinical parameters of the GDM and NGT groups.

GDM (n = 32)a NGT (n = 11)a p

Age 31.0 (28.5–34.0) 29.0 (28.0–30.0) 0.2003

BMI [kg/m2] 23.7 (21.6–27.5) 20.64 (19.6–21.6) 0.0044

FPG—OGTT 0’ [mg/dL] 85.0 (80.0–97.0) 75.80 (70.8–84.0) 0.0067

OGTT 60’ [mg/dl] 178 (150.0–190) 115.25 (113.3–162.3) 0.0075

OGTT 120’ [mg/dL] 160.0 (153.0–173.0) 99.6 (88.8–100.9) <0.0001

CRP [mg/L] 3.4 (1.7–6.28)) 1.5 (1.1–2.5) 0.0366

Insulin [µU/mL] 10.8 (7.8–17.4) 13.9 (7.0–15.5) 0.7710

HOMA-IR 2.2 (1.6–3.6) 2.3 (1.3–3.2) 0.5306

HOMA-ß 203.3 (147.3–241.9)(147.3–241.9) 287.3 (208.5–344.0) 0.0506

QUICKI .34 (0.32–0.35) .34 (0.32–0.37) 0.5306

Total cholesterol [mg/dL] 256.1 (217.8–283.3) 219.5 (191.5–242.0) 0.0259

HDL [mg/dL] 74.1 (58.7–87.3) 61.4 (53.9–67.1) 0.0692

LDL [mg/dL] 135 (108.0–169) 119.0 (105.0–139.0) 0.3272

TG [mg/dL] 205.8 (161.0–249.2) 157.6 (116.5–203.9) 0.0618

aMedian with IQR.

IQR, interquartile range; BMI, bodymass indexmeasured during the first visit; FPG, fasting plasma glucose; OGTT, oral glucose tolerance test; CRP, C-reactive protein; HOMA-IR, homeostasis model

assessment of insulin resistance; HOMA-B, homeostasis model assessment of beta cells; QUICKI, quantitative insulin sensitivity check index; HDL, high-density lipoprotein; LDL, low-density

lipoprotein; TG, triglycerides.

Bold values are statistically significant.
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leading to impairment in glutathione synthesis and increase in fatty
acid oxidation. This status can result in a higher level of 3-
hydroxybutyric acid, synthesized from fatty acids that circulate in
the bloodstream during fasting, prolonged exercise, or carbohydrate
restriction as one of the ketone bodies. 3-hydroxybutyric acid is also a
partial degradation product of the branched-chain amino acids such as
valine, isoleucine, and leucine, which are released from muscles for
gluconeogenesis (Montelongo et al., 1992; Klein and Shearer, 2016). In
our study, a higher concentration of 3-hydroxybutyric acid positively
correlated with OGTT after 2 h.

Oxalic acid is engaged in the glycolytic pathway as a competitive
inhibitor of lactate dehydrogenase (LH). This enzyme catalyzes the
conversion of pyruvate to lactic acid. In our study, the level of oxalic
acid is increased. Some studies in the literature suggest the association
of elevated levels of these metabolites with kidney diseases (Mydlík
and Derzsiová, 2008); however, such cases were not reported in our
cohort.

One of the more interesting metabolites in our study is
tryptophan, whose concentration in the GDM group was
decreased. This amino acid is metabolized by the kynurenine
pathway, which is the primary way for tryptophan degradation and
leads to xanthurenic acid as one of the metabolites. This compound is

one of the factors responsible for insulin resistance (Favennec et al.,
2015). The study by Chen et al. (2016) reported that the concentration
of tryptophan increased in obese people and can start to fall after
nutrition intervention and when the weight returns to normal.
Tryptophan is an essential amino acid, meaning the human body
cannot synthesize it; therefore, tryptophan must be delivered with
food. In pregnant women, this amino acid is also necessary for the
developing fetus, which may explain the decreased level of this
metabolite in our study group. Additionally, GDM women from
the studied cohort were not obese, which may also cause
differences between our results and those of the literature
(Oxenkrug, 2013; Oxenkrug, 2015).

Glycerol and free fatty acids are the products of triacylglycerol
lipolysis. The insulin-resistant state increases lipolysis and
overproduction of these two metabolites (Hagen et al., 1963; Eckel
et al., 2010). After lipolysis, glycerol is engaged as a gluconeogenic
substrate in gluconeogenesis. In our cohort, we observed an increased
level of this metabolite, which is typical in the presence of
hyperinsulinemia. However, studies by Karpe et al. suggested that
the levels of free fatty acids and glycerol are usually increased in the
plasma of diabetes patients, despite only slightly affecting insulin
resistance (Karpe et al., 2011).

FIGURE 1
Multivariate OPLS-DA plots of plasma metabolomic profiles of GDM and NGT patients. (A) Principal component analysis (PCA) score plot of the
metabolic profile of the NGT and GDM groups after mean-centering and not (Ctr) scaling. (B) OPLS-DA score plot of the lipid profile of the NGT and GDM
groups after unit variance (UV) scaling. (C) Score plot of the OPLS-DA model obtained from (B). The resulting R2 and Q2 values were plotted. The green dots
represent the R2Y values obtained from the displacement test, the blue square dots represent theQ2 values obtained from the displacement test, and the
two dashed lines represent the regression lines of R2Y and Q, respectively.
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In the reported study, among the 14 measured fatty acids, which
were earlier considered representative of the most common types of
fatty acids contained in this lipid class (Ferreri et al., 2016)
(Bukowiecka-Matusiak et al., 2018), only the concentration of
myristic acid tended to decrease in GDM patients with statistical
significance (Table 2). There is growing evidence that fatty acids with
different degrees of saturation affect insulin sensitivity and lipid/
glucose metabolism in diverse ways (Palomer et al., 2018). The
human LCAT has an affinity for fatty acids in the following order:
18:2n-6 > 18:1n-9 > 20:4n-6 > SFA, which can explain a higher
proportion of 18:2 n-6 than 18:1n-9 in cholesteryl esters (CE) as a
result of LCAT rather than acyl-CoA-cholesterol acyltransferase
activity.

Two enzymatic pathways lead to cholesteryl ester synthesis
(Figure 4). Within the cells, the acyl-CoA-cholesterol

acyltransferase (ACAT), specific for 18:1 n-9, catalyzes the
conversion of cholesterol and acyl-CoA into cholesteryl esters. In
the second pathway, which occurs in the plasma, the esters of
cholesterol and fatty acids are obtained mainly due to the transfer
of fatty acids from position 2 of the glyceryl moiety of
phosphatidylcholine to cholesterol reaction is catalyzed by the LCAT.

The mechanism of action of LCAT takes place in two steps. LCAT
binds to the lipoprotein, cleaves the fatty acid in the sn-2 position in
phosphatidylcholine, and transfers it onto Ser181. In the next step, the
fatty acid is trans-esterified to the 3-β-hydroxyl group on the A ring of
cholesterol to form cholesteryl ester and lysophosphatidylcholine
(Glomset, 1968). This reaction occurs for HDL; therefore, this
process is essential in HDL maturation and reverses cholesterol
transport to the liver. Because of the higher hydrophobicity of
cholesteryl esters than cholesterol, the LCAT promotes the cellular

FIGURE 2
Spearman’s correlation heatmap for metabolites in plasma significantly changed in pregnant GDM versus NGT women.
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removal of cholesterol (Tosheska Trajkovska and Topuzovska, 2017).
In our cohort, the significant enrichment of arachidonic acid in
cholesteryl esters gives information on a lipid class that has been
considered with high attention for the relevance in lipoprotein
formation during pregnancy, which is affected in GDM conditions
(Herrera and Desoye, 2016). More work is needed to explain this
increase in GDM, since it would be very interesting to deepen the
significance of the metabolic shift of arachidonic acid between
cholesteryl and membrane phospholipid structures, also in view of
trimester-specific ranges of fatty acid contents in plasma lipids
determined as the benchmark for the evaluation of the health of
pregnant women (Martín-Grau et al., 2021).

Earlier, Takato et al. demonstrated that myristic acid (14:0)
markedly increased diacylglycerol kinase δ (DGKδ) concentration
in mouse C2C12 myotubes of the congenital type 2 diabetes model;
For other fatty acids examined, such as lauric (12:0), palmitic (16:
0), and stearic (18:0) acids, no influence was detected. Furthermore,
myristic acid significantly augmented the glucose uptake in a
DGKδ-related manner (Takato et al., 2017). DGKδ is an
essential enzyme in the suppression of the pathogenesis of type
2 diabetes and its upregulation is important for the prevention and
treatment of the disease. Iwata et al. revealed that myristic acid
stabilizes DGKδ2 and mediates the attenuation of DGKδ2 protein
degradation in skeletal muscle cells (Takato et al., 2017). The

TABLE 2 Metabolites in the plasma significantly changed in gestational diabetic women compared to normoglycemic women.

Name CV-QC p(corr.) VIP JK p-value PBH Δ(%) FC

2-Hydroxybutyric acid 19 0.71 1.57 JK 0.00002 0.00015 135 2

Oxalic acid 19 0.73 1.59 JK 0.00006 0.00033 133 2

3-Hydroxybutyric acid 27 0.75 1.62 JK 0.00000 0.00001 505 6

Glycerol 15 0.64 1.50 JK 0.00000 0.00003 77 2

Tryptophan 9 −0.45 1.04 JK 0.03995 Ns −31 1

Aldohexose 17.37 0.43 1.11 JK 0.00821 0.02711 40 1

17.37

25.7

Δ (%) change represents the increase (+) or decrease (−) of the mean in the GDM group versus NGT. In order to obtain a normal distribution, data were transformed by applying a log(base 2). CV-QC

is defined as coefficient of variation of quality control. Statistical significance was reported as the value of multivariate analysis from the threshold for variable selection set to VIP>1.0, and predictive

loading values p(corr) > .4 was applied. The Jack–Knife multivariate statistical analysis (JK) had confidence intervals estimated at 95% confidence level. Data were statistically significant according to

univariate analysis with the Benjamini–Hochberg correction, where p < .05 was considered significant. FC is the fold change which describes themagnitude of changes between GDMandNGT groups.

TABLE 3 Plasma cholesteryl ester profiling using 14 fatty acids as a representative cluster.

Fatty acida GDMb NGTb Δ(%)c p FDR

Saturated fatty acids (SFAs)

Myristic (C14:0) 0.31 (0.24–0.42) 0.49 (0.33–0.57) −37% 0.0121 0.0449

Palmitic (C16:0) 5.90 (5.24–6.86) 6.15 (5.11–7.10) −4% 0.8271 0.8960

Stearic (C18:0) 0.40 (0.29–0.50) 0.36 (0.31–0.49) +11% 0.6726 0.7949

Monounsaturated fatty acids (MUFAs)

Sapienic (C16:1) 0.45 (0.35–0.57) 0.47 (0.36–0.82) −4% 0.4658 0.7570

Palmitoleic (9c C16:1) 2.74 (2.05–3.32) 3.31 (2.53–4.34) −17% 0.0596 0.1291

Oleic (C18:1) 21.38 (20.37–22.25) 22.44 (21.89–23.79) −5% 0.0056 0.0361

Vaccenic (11c C18:1) 0.92 (0.84–1.04) 0.87 (0.76–0.93) +6% 0.0596 0.1291

Polyunsaturated fatty acids (PUFAs)

Linoleic (C18:2) 55.09 (52.49–58.25) 56.07 (51.69–58.85) −2% 0.6726 0.7949

α-linolenic (n-3 C18:3) 1.0 (0.80–1.30) 1.24 (1.08–1.54) −19% 0.0138 0.0449

γ-linolenic (n-6 C18:3) 0.69 (0.53–0.82) 0.72 (0.55–0.81) −4% 0.9535 0.9535

ARA (C20:4) 8.75 (7.73–9.74) 6.78 (6.03–8.24) +29% 0.0001 0.0017

EPA (C20:5) 0.66 (0.75–1.22) 1.12 (0.85–1.22) −41% 0.9454 0.9672

DPA (C22:5) 0.68 (0.48–1.03) 0.61 (0.40–0.92) +11% 0.6515 0.7949

DHA (C22:6) 0.68 (0.36–0.79) 0.51 (0.40–0.72) +33% 0.4223 0.7569

ARA: DHA 14.46 (10.70–18.28) 15.36 (8.83–16.78) −6% 0.9036

LA: ARA 6.23 (5.60–6.96) 7.72 (7.22–8.94) −19% 0.00006

aCholesteryl esters are reported as relative percentages of fatty acid methyl esters (% rel.) obtained by gas chromatographic analysis and the calibration procedure after cholesteryl ester isolation and

work-up, as previously reported. (Burzynska-Pedziwiatr et al., 2020) See Materials and Methods for the experimental details. FDR, false discovery rate.
bMedian with IQR.
cDifferences between the GDM and NGT groups; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid.
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authors demonstrated that this process was fatty acid-specific,
protein-specific, and cell type-specific. These findings shed light
on the role of DGKδ2 in the pathogenesis of T2DM and provided

novel insights into the molecular mechanisms of the disease (Iwata
et al., 2019).

In our study, the concentration of myristic acid was decreased by
about 37%, indicating that its deficiency may be related to insulin
resistance and a reduced glucose uptake in GDM. This outcome is in
line with the results of Ericson et al. (2015), who recently reported that
a high intake of myristic acid (14:0) was significantly associated with a
decreased risk of type 2 diabetes, while the consumption of palmitic
acid (16:0) was not. It is worth noting that along with the insulin-
dependent glucose uptake, myristic acid-enhanced insulin-
independent glucose uptake was found in C2C12 mice myotubes
(Wada et al., 2016). Therefore, myristic acid improved both insulin-
dependent and -independent glucose uptakes in mice with type
2 diabetes. In our study, the negative correlation of myristic acid
with OGTT 60’ and OGTT 120’ was observed, which may be
connected with a diminished glucose uptake in GDM (Table 4;
Figure 2).

In the plasma of the GDM group, in comparison with the control
group, the relative content of MUFAs tends to decrease, except for
vaccenic acid, which is increased. This change is not statistically
significant (Table 2). Oleic acid (18:1cis-9) content was lower in
the GDM group than in the NGT group. The observed negative
correlations with OGTT 60’ and OGTT 120’ (R = −.44. p = .0058 and
R = −.34 p = .0248, respectively) were observed, which may be
connected with diminished glucose uptake in GDM (Table 4;
Figure 3). Several mechanisms were proposed to explain the
protective effects of oleic acid for T2DM (Coll et al., 2008) (Peng
et al., 2011; Aa et al., 2017). However, it is still unclear whether an oleic
acid-activated molecular mechanism is the most important for
preventing insulin resistance, and there are still open questions

TABLE 4 Correlation with clinical data with top six changed cholesteryl esters—GDM and NGT together in the group.

Myristic acid Palmitoleic acid Oleic acid Vaccenic acid α linolenic acid ARA

R P R p R P R p R p R p

Age [years] −0.10 0.4547 −0.05 0.7306 0.11 0.4360 0.11 0.4509 −0.09 0.5009 0.03 0.8492

BMIa—before pregnancy −0.17 0.2515 0.02 0.8910 −0.14 0.3597 −0.20 0.1894 −0.18 0.2251 0.26 0.0873

FPG—OGTT 0’ [mg/dL] 0.03 0.8417 −0.00 0.9971 −0.28 0.0571 −0.18 0.2257 −0.02 0.8936 0.20 0.1743

OGTT—60’ [mg/dL] −0.38 0.0202 −0.21 0.2166 −0.44 0.0058 −0.08 0.6454 −0.26 0.1162 0.39 0.0157

OGTT—120’ [mg/dL] −0.39 0.0081 −0.20 0.1985 −0.34 0.0248 0.05 0.7396 −0.39 0.0090 0.50 0.0005

CRP [mg/L] 0.04 0.7982 0.19 0.1800 −0.08 0.5544 −0.22 0.1074 0.13 0.3655 0.32 0.0198

Insulin [uU/mL] 0.16 0.2526 0.15 0.2836 0.02 0.8895 −0.13 0.3723 0.09 0.5397 0.06 0.6698

HOMA-IR 0.18 0.2438 0.20 0.1771 0.06 0.6803 −0.07 0.6506 0.10 0.5210 0.08 0.5929

HOMA-B −0.09 0.5549 −0.09 0.5712 0.10 0.5312 −0.01 0.9636 0.12 0.4394 0.02 0.8823

QUICKI −0.18 0.2438 −0.20 0.1771 −0.06 0.6803 0.07 0.6506 −0.10 0.5210 −0.08 0.5929

Total cholesterol [mg/dL] 0.02 0.8911 0.19 0.1800 0.16 0.2446 0.16 0.2683 −0.02 0.8652 −0.06 0.6966

HDL [mg/dL] −0.06 0.6873 −0.02 0.9153 −0.09 0.5133 0.15 0.2921 0.04 0.7597 0.10 0.4822

LDL [mg/dL] 0.03 0.8299 0.12 0.4125 0.21 0.1419 0.16 0.2501 −0.06 0.6926 −0.14 0.3058

TG [mg/dL] 0.03 0.8471 0.23 0.1008 0.09 0.5113 −0.10 0.4725 −0.06 0.6756 0.07 0.6206

aAssessed before pregnancy.

BMI, body mass index; HbA1C, glycated hemoglobin; HOMA-IR, homeostasis model assessment of insulin resistance; HOMA-β, homeostasis model of assessment of the β cell function.

Bold values are statistically significant.

FIGURE 3
Spearman’s correlation heatmap of the changed fatty acids in
cholesteryl esters with OGTT with OGTT 120’ glucose plasma
concentration in the entire study group of pregnant women (NGT +
GDM; n = 43).
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regarding the effects of oleic acid on diabetes in humans (Palomer
et al., 2018).

Furthermore, oleic acid may prevent the reduction of AMP-
activated protein kinase (AMPK) caused by palmitic acid (Salvadó
et al., 2013). Oleate prevents saturated fatty acid-induced ER stress,
inflammation, and insulin resistance in skeletal muscle cells through
an AMPK-dependent mechanism. The AMPK mechanism was used
to develop a first-line drug in T2DM—metformin (Palomer et al.,
2018). Kwon et al. suggested (Kwon and Querfurth, 2015) that oleic
acid and metformin have comparable protective effects, both
inhibiting the destructive effects of palmitic acid (Palomer et al.,
2018). In our study, the decrease of oleic acid in the cholesteryl
ester fraction may indicate an input in the pathophysiology of
GDM, but this needs further investigation.

Previously, we determined the differences in the erythrocyte
membrane lipid profiles of GDM women compared to the NGTs,
revealing statistically significant changes in vaccenic and stearic acid
contents (Bukowiecka-Matusiak et al., 2018). We postulated that the

increased vaccenic acid concentration might indicate the increased
metabolic transformation of palmitic acid (C16:0). This reaction is
catalyzed with stearoyl-CoA-desaturase (Δ9-desaturase) and elongase
in GDM women. Vaccenic acid can be transferred to the fetus, thus
predisposing it to the enzymatic induction of the biosynthesis of
palmitoleic acid (C16:1), which was earlier marked as a risk factor for
metabolic abnormalities and new onset of diabetes (Serhan, 2008;
Bukowiecka-Matusiak et al., 2018). Here, we report the study of
plasma cholesteryl esters in the same population.

It is important to note that the fatty acid content as components
of cholesteryl esters reflects, to a great extent, the consumption of
dietary fats over the previous few weeks. Furthermore, this profile
reflects the endogenous conversion of ingested fatty acids by
desaturation and elongation or both (Katan et al., 1997).
Diseases linked to insulin resistance are characterized by a
specific fatty acid pattern in the serum lipid esters, storage
lipids, and cell membranes of the skeletal muscles. In patients
with disorders such as diabetes, obesity, and coronary heart disease,

FIGURE 4
Biosynthesis of cholesteryl esters and then we showed 2 pathways: one in plasma and another in the cell.
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the fatty acid pattern is usually characterized by an increased
content of palmitic acid (C16:0) and palmitoleic acid (C16:1),
lower content of the essential linoleic acid (C18:2n-6 LA) and a
higher ratio of dihomo-γ linolenic acid (DGLA, C20:3 n-6) in
comparison to the matched healthy control subjects. There were no
differences in ARA, EPA, and DHA between diabetic patients and
controls (Vessby et al., 2002) (Boden and Shulman, 2002)
(Mozaffarian et al., 2010).

In our study, the SFA concentrations were not elevated, and
myristic acid was decreased in GDM versus NGT. Furthermore, in
GDM among PUFAs, an increase in ARA and a decrease in ALA
was observed, which stays in line with earlier findings (Ogundipe
et al., 2020). According to the results of Ogundipe et al., GDM
women had significantly elevated amounts of LA, which is parent to
all n-6 PUFA, and decreased levels of DHA belonging to n-3 fatty
acids. Moreover, GDM patients’ disorders in sequential n-6
metabolism, manifested in the decreased concentration of LA
sequential fatty acid metabolites, were observed. Under
physiological conditions, synthesis LA is converted to ARA
(C20:4) in a sequence of elongase and desaturase-catalyzed
reactions. Ogundipe et al. postulated that in GDM, an elevated
ratio of LA/ARA might result from a reduced efficacy of the
LA→ARA conversions due to insufficiencies in desaturase or
elongase enzymes (Ogundipe et al., 2020).

Among our GDM group, the level of LA was practically
unchanged, and DHA was not significantly increased, which
may be related to the fact that our GDM patients were not as
obese as patients in the study in Ogundipe et al. The LA/ARA ratio
in GDM compared to NGT was statistically decreased (6.23 vs.
7.72 p = .0006; Table 2), but the ARA/DHA (14.46 vs. 15.36. p =
.9036; Table 2) ratio was also reduced, but this change was not
statistically significant.

During pregnancy, the activity of enzymes—Δ6 and
Δ5 desaturases responsible for n-3 and n-6 fatty acid conversions,
is usually upregulated to increase the rate of hepatic ARA synthesis
(Chalil et al., 2018). It is known that in diabetes, the activity of these
enzymes is diminished due to insulin inefficiency or resistance. The
explanation of the reduced ARA:DHA ratio in GDM may be the
reason that the conversion of n-6 precursors into ARA in diabetic
pregnant womenmay be uniquely impaired and affect the ARA status.

This assumption may account for the prevalence of elevated n-6
precursors but reduce the ARA:DHA ratio in at-risk GDM women
(Saether et al., 2003). In our study both, the LA:ARA and ARA:DHA
ratios were lowered, which may be the result of the specificity of our
GDMpatients who were not obese. It is known that an elevated ratio of
n-6/n-3 is associated with obesity, whereas a balanced ratio is essential
in preventing obesity and weight gain (Simopoulos, 2016).

High BMI is one of the risk factors for GDM onset. The previous
observational studies established that the diet of obese individuals is
typically deficient in n-3 fats and rich in n-6 fats (Salek et al., 2020).
Low maternal levels of parent n-3 fatty acids and those that are
sequentially synthesized, including DHA, may play an essential role in
the pathogenesis of GDM.

The imbalance between n-3 and n-6 fatty acids in the diet is mostly
the problem of Western countries with a traditional diet based on
vegetable oils such as corn, soybean, and sunflower, lacking in leafy
green vegetables rich in n-3 fatty acids such as ALA and in fish oils
which contain EPA and DHA belonging to long-chain PUFAs. The
first group primarily contains n-6 PUFAs, including LA, which in
humans is metabolized to DGLA, docosapentaenoic acid (DPA),
and ARA.

PUFAs are essential fatty acids, meaning they cannot be
synthesized de novo and must be taken from the food, and more
importantly, the human body cannot interconvert them between n-3
and n-6 fatty acids. Therefore, once absorbed, the PUFAs are
transported through the bloodstream to all tissues and organs in
different forms (unesterified or esterified fatty acids), e.g.,
phospholipids, cholesteryl esters, or triacylglycerols, and are
metabolized into bioactive species. However, it seems that the
overall balance between n-3 and n-6 fatty acids is responsible for
the modulation of several biological processes, including
inflammation (Serhan, 2008; Dalli and Serhan, 2013). Arachidonic
acid obtained from LA is incorporated into membrane phospholipids,
released upon the action of phospholipase A1 and converted by
cyclooxygenase (COX) into pro-inflammatory molecules, mainly
prostaglandins and leukotrienes (Long et al., 2016; Miles and
Calder, 2017). Pregnancy is a unique period for the woman’s body.
This physiological process is where oxidative stress intensifies, which,
in turn, is associated with an increased ROS production (Williams,
2003) and an increased level of ARA and its mediators (Cheng and

FIGURE 5
Changes in GDM women according the results obtained during untargeted analysis and lipidomic analysis.
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Stewart, 2003). Additionally, pregnancy complicated with diabetes is
associated with an increase in oxidative stress and the level of ARA
(Williams, 2003).

Even if GDM patients involved in this study were not obese, the
incorrect diet, rich in n-6 fatty acids, could rationalize the increased
level of arachidonic acid (8.75 vs. 6.78 p = .0001) in our studies.

Although reliable from the point of view of statistical evaluation,
the reported study has certain limitations resulting from a relatively
small group of patients. In some cases, we observed substantial
discrepancies between the medians. However, they were not
statistically significant, which may be explained by large differences
in the number of subjects in the groups. Consequently, we applied a
strict FDR approach to the analysis in order to reduce the possibility of
false-positive or -negative correlations.

To conclude, in our studies, we carried out a plasma
untargeted analysis of GDM women vs. NGT ones and
additionally the lipidomic analysis in order to profile the
cholesteryl esters in both groups to attempt to search for early
predictors of GDM. Among metabolites that resulted during
untargeted analysis, only tryptophan was decreased in the
GDM group, and the rest of the metabolites were increased
including 2-hydroxybutyric acid, 3-hydroxybutyric acid, oxalic
acid, glycerol, D-glucopyranoside, and aldohexose. In turn,
among the lipid metabolites, we observed changes in all groups
of fatty acids. All lipids, excluding arachidonic acid, belonging to
PUFAs were decreased in the GDM group. These relationships are
presented in Figure 5.

One can also assume the following limitation of the presented
study. Fatty acid profiles were measured only at one point (24 ±
28 weeks), we had a small sample size during pregnancy, and the
fatty acids were not followed up further. To address this, our
further studies are designed to enroll a significantly higher
number of participants to examine the lipid profiles of pregnant
women at three time points of pregnancy and follow-up to explore
the dynamics of changes in cholesteryl esters during and after
pregnancy.

Data availability statement

The raw data supporting the conclusion of this article will be made
available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by the Ethical Committee of the Medical University of
Lodz (No. KB/268/15 from 17 February 2015). The patients/
participants provided their written informed consent to participate
in this study.

Author contributions

Data curation: IB-P, DD, andMB-M; formal analysis: BM and AZ;
investigation: IB-P, DD, and MB-M; methodology: CF and AS; project
administration: MB-M; resources: MZ-K and KC; supervision: MB-M
and LW; visualization: IB-P and MB-M; writing—original draft: IB-P
and MB-M; writing—review and editing: CF, CC, MM, and LW. All
authors read and approved the final manuscript.

Funding

This work was financially assisted, in part, by The Healthy Aging
Research Centre Project (REGPOT-2012-2013-1. 7FP). The grant
aimed at the development of young researchers and doctoral
studies participants at the Medical University of Lodz Grant nos.
502-03/0-160-01/502-04-036.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors, and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Aa, A. B., Om, J., Ts, E., and Ga, A. (2017). Preliminary phytochemical screening,
antioxidant and antihyperglycaemic activity of Moringa oleifera leaf extracts. Pak
J. Pharm. Sci. 30 (6), 2217–2222.

Alesi, S., Ghelani, D., Rassie, K., and Mousa, A. (2021). Metabolomic biomarkers in
gestational diabetes mellitus: A review of the evidence. Int. J. Mol. Sci. 22 (11), 5512. doi:10.
3390/ijms22115512

Ameer, F., Scandiuzzi, L., Hasnain, S., Kalbacher, H., and Zaidi, N. (2014). De novo lipogenesis
in health and disease. Metabolism 63 (7), 895–902. doi:10.1016/j.metabol.2014.04.003

Anderson, E. K., Hill, A. A., and Hasty, A. H. (2012). Stearic acid accumulation in
macrophages induces toll-like receptor 4/2-independent inflammation leading to
endoplasmic reticulum stress-mediated apoptosis. Arterioscler. Thromb. Vasc. Biol. 32
(7), 1687–1695. doi:10.1161/ATVBAHA.112.250142

Astarita, G., McKenzie, J. H., Wang, B., Strassburg, K., Doneanu, A., Johnson, J., et al.
(2014). A protective lipidomic biosignature associated with a balanced omega-6/omega-
3 ratio in fat-1 transgenic mice. PLoS One 9 (4), e96221. doi:10.1371/journal.pone.0096221

Baylin, A. K. E., Siles, X., and Campos, H. (2002). Adipose tissue biomarkers of fatty acid
intake. Am. J. Clin. Nutr. 76, 750–757. doi:10.1093/ajcn/76.4.750

Benhalima, K., Van Crombrugge, P., Moyson, C., Verhaeghe, J., Vandeginste, S.,
Verlaenen, H., et al. (2021). Women with mild fasting hyperglycemia in early
pregnancy have more neonatal intensive care admissions. J. Clin. Endocr. Metab. 106
(2), E836–e854. doi:10.1210/clinem/dgaa831

Beynen, A. C. H. R., and Hautvast, J. G. (1980). Amathematical relationship between the
fatty acid composition of the diet and that of the adipose tissue in man. Am. J. Clin. Nutr.
33, 81–85. doi:10.1093/ajcn/33.1.81

Boden, G., and Shulman, G. I. (2002). Free fatty acids in obesity and type 2 diabetes:
Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur.
J. Clin. Invest. 32, 14–23. doi:10.1046/j.1365-2362.32.s3.3.x

Bradbury, K. E., Skeaff, C. M., Crowe, F. L., Green, T. J., and Hodson, L. (2011). Serum
fatty acid reference ranges: Percentiles from a New Zealand national nutrition survey.
Nutrients 3 (1), 152–163. doi:10.3390/nu3010152

Brink, H. S., van der Lely, A. J., and van der Linden, J. (2016). The potential role of biomarkers
in predicting gestational diabetes. Endocr. Connect. 5 (5), R26–R34. doi:10.1530/EC-16-0033

Broadhurst, D., Goodacre, R., Reinke, S. N., Kuligowski, J., Wilson, I. D., Lewis, M. R.,
et al. (2018). Guidelines and considerations for the use of system suitability and quality

Frontiers in Molecular Biosciences frontiersin.org12

Burzynska-Pedziwiatr et al. 10.3389/fmolb.2022.997436

https://doi.org/10.3390/ijms22115512
https://doi.org/10.3390/ijms22115512
https://doi.org/10.1016/j.metabol.2014.04.003
https://doi.org/10.1161/ATVBAHA.112.250142
https://doi.org/10.1371/journal.pone.0096221
https://doi.org/10.1093/ajcn/76.4.750
https://doi.org/10.1210/clinem/dgaa831
https://doi.org/10.1093/ajcn/33.1.81
https://doi.org/10.1046/j.1365-2362.32.s3.3.x
https://doi.org/10.3390/nu3010152
https://doi.org/10.1530/EC-16-0033
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.997436


control samples in mass spectrometry assays applied in untargeted clinical metabolomic
studies. Metabolomics 14 (6), 72. doi:10.1007/s11306-018-1367-3

Bui, D., Ravasz, D., and Chinopoulos, C. (2019). The effect of 2-ketobutyrate on
mitochondrial substrate-level phosphorylation. Neurochem. Res. 44, 2301–2306. doi:10.
1007/s11064-019-02759-8

Bukowiecka-Matusiak, M., Burzynska-Pedziwiatr, I., Sansone, A., Malachowska, B.,
Zurawska-Klis, M., Ferreri, C., et al. (2018). Lipid profile changes in erythrocyte
membranes of women with diagnosed GDM. PLoS One 13 (9), e0203799. doi:10.1371/
journal.pone.0203799

Burzynska-Pedziwiatr, I., Jankowski, A., Kowalski, K., Sendys, P., Zieleniak, A., Cypryk,
K., et al. (2020). Associations of arginine with gestational diabetes mellitus in a follow-up
study. Int. J. Mol. Sci. 21 (21), 7811. doi:10.3390/ijms21217811

Chalil, A., Kitson, A. P., Aristizabal Henao, J. J., Marks, K. A., Elzinga, J. L., Lamontagne-
Kam, D. M. E., et al. (2018). PEMT, Δ6 desaturase, and palmitoyldocosahexaenoyl
phosphatidylcholine are increased in rats during pregnancy. J. Lipid Res. 59 (1),
123–136. doi:10.1194/jlr.M080309

Chen, T., Zheng, X., Ma, X., Bao, Y., Ni, Y., Hu, C., et al. (2016). Tryptophan predicts the
risk for future type 2 diabetes. PLoS One 11 (9), e0162192. doi:10.1371/journal.pone.
0162192

Cheng, J. G., and Stewart, C. L. (2003). Loss of cyclooxygenase-2 retards decidual growth
but does not inhibit embryo implantation or development to term. Biol. Reprod. 68 (2),
401–404. doi:10.1095/biolreprod.102.009589

Christiaens, B., Vanloo, B., Gouyette, C., Van Vynckt, I., Caster, H., Taveirne, J., et al.
(2000). Headgroup specificity of lecithin cholesterol acyltransferase for monomeric and
vesicular phospholipids. Biochim. Biophys. Acta 1486 (2-3), 321–327. doi:10.1016/s1388-
1981(00)00075-5

Chu, X., Liu, L., Na, L., Lu, H., Li, S., Li, Y., et al. (2013). Sterol regulatory element-
binding protein-1c mediates increase of postprandial stearic acid, a potential target for
improving insulin resistance, in hyperlipidemia. Diabetes 62 (2), 561–571. doi:10.2337/
db12-0139

Cobb, J., Gall, W., Adam, K. P., Nakhle, P., Button, E., Hathorn, J., et al. (2013). A novel
fasting blood test for insulin resistance and prediabetes. J. Diabetes Sci. Technol. 7 (1),
100–110. doi:10.1177/193229681300700112

Coll, T., Eyre, E., Rodríguez-Calvo, R., Palomer, X., Sánchez, R. M., Merlos, M.,
et al. (2008). Oleate reverses palmitate-induced insulin resistance and inflammation
in skeletal muscle cells. J. Biol. Chem. 283 (17), 11107–11116. doi:10.1074/jbc.
M708700200

Cosson, E., Carbillon, L., and Valensi, P. (2017). High fasting plasma glucose during
early pregnancy: A review about early gestational diabetes mellitus. J. Diabetes Res. 2017,
8921712. doi:10.1155/2017/8921712

Cosson, E., Vicaut, E., Berkane, N., Cianganu, T. L., Baudry, C., Portal, J. J., et al. (2021).
Prognosis associated with initial care of increased fasting glucose in early pregnancy: A
retrospective study. Diabetes & Metabolism 47 (3), 101197. doi:10.1016/j.diabet.2020.
08.007

Dalli, J. C. R., and Serhan, C. N. (2013). Novel n-3 immunoresolvents: Structures and
actions. Sci. Rep. 3, 1940. doi:10.1038/srep01940

Dudzik, D., Barbas-Bernardos, C., Garcia, A., and Barbas, C. (2018). Quality assurance
procedures for mass spectrometry untargeted metabolomics. a review. J. Pharm. Biomed.
Anal. 147, 149–173. doi:10.1016/j.jpba.2017.07.044

Dudzik, D., Zorawski, M., Skotnicki, M., Zarzycki, W., Garcia, A., Angulo, S., et al.
(2017). GC-MS based Gestational Diabetes Mellitus longitudinal study: Identification of 2-
and 3-hydroxybutyrate as potential prognostic biomarkers. J. Pharm. Biomed. Anal. 144,
90–98. doi:10.1016/j.jpba.2017.02.056

Dudzik, D., Zorawski, M., Skotnicki, M., Zarzycki, W., Kozlowska, G., Bibik-
Malinowska, K., et al. (2014). Metabolic fingerprint of gestational diabetes mellitus.
J. Proteomics 103, 57–71. doi:10.1016/j.jprot.2014.03.025

Eckel, R. H., Alberti, K. G., Grundy, S. M., and Zimmet, P. Z. (2010). The metabolic
syndrome. Lancet 375 (9710), 181–183. doi:10.1016/S0140-6736(09)61794-3

Ericson, U., Hellstrand, S., Brunkwall, L., Schulz, C. A., Sonestedt, E., Wallström, P., et al.
(2015). Food sources of fat may clarify the inconsistent role of dietary fat intake for
incidence of type 2 diabetes. Am. J. Clin. Nutr. 101 (5), 1065–1080. doi:10.3945/ajcn.114.
103010

Favennec, M., Hennart, B., Caiazzo, R., Leloire, A., Yengo, L., Verbanck, M., et al. (2015).
The kynurenine pathway is activated in human obesity and shifted toward kynurenine
monooxygenase activation. Obes. (Silver Spring) 23 (10), 2066–2074. doi:10.1002/oby.
21199

Ferrannini, E., Natali, A., Camastra, S., Nannipieri, M., Mari, A., Adam, K. P., et al.
(2013). Early metabolic markers of the development of dysglycemia and type
2 diabetes and their physiological significance. Diabetes 62 (5), 1730–1737. doi:10.
2337/db12-0707

Ferreri, C., and Chatgilialoglu, C. (2012). Role of fatty acid-based functional lipidomics
in the development of molecular diagnostic tools. Expert Rev. Mol. Diagn 12 (7), 767–780.
doi:10.1586/erm.12.73

Ferreri, C., Masi, A., Sansone, A., Giacometti, G., Larocca, A. V., Menounou, G., et al.
(2016). Fatty acids in membranes as homeostatic, metabolic and nutritional biomarkers:
Recent advancements in analytics and diagnostics. Diagn. (Basel) 7 (1), 1. doi:10.3390/
diagnostics7010001

Field, C. J. A. A., Clandinin, M. T., and Angel, A. (1985). Relationship of diet to the fatty
acid composition of human adipose tissue structural and stored lipids. Am. J. Clin. Nutr.
42, 1206–1220. doi:10.1093/ajcn/42.6.1206

Glomset, J. (1968). The plasma lecithin:cholesterol acyltransferase reaction. J. Lipid 9,
155–167. doi:10.1016/s0022-2275(20)43114-1

Hagen, J. H., Moorhouse, J. A., and Steinberg, J. (1963). Effect of insulin on plasma
glycerol in man. Metabolism 12, 346–351.

Herrera, E., and Desoye, G. (2016). Maternal and fetal lipid metabolism under normal
and gestational diabetic conditions.Horm.Mol. Biol. Clin. Investig. 26 (2), 109–127. doi:10.
1515/hmbci-2015-0025

Hodson, L., Skeaff, C. M., and Fielding, B. A. (2008). Fatty acid composition of adipose
tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 47
(5), 348–380. doi:10.1016/j.plipres.2008.03.003

Iwata, K., Sakai, H., Takahashi, D., and Sakane, F. (2019). Myristic acid specifically
stabilizes diacylglycerol kinase delta protein in C2C12 skeletal muscle cells. Biochim.
Biophys. Acta Mol. Cell Biol. Lipids 1864 (7), 1031–1038. doi:10.1016/j.bbalip.2019.04.003

Jonas, A. (2000). Lecithin cholesterol acyltransferase. Biochim. Biophys. Acta. 1529,
245–256. doi:10.1016/s1388-1981(00)00153-0

Karpe, F., Dickmann, J. R., and Frayn, K. N. (2011). Fatty acids, obesity, and insulin
resistance: Time for a reevaluation. Diabetes 60 (10), 2441–2449. doi:10.2337/db11-0425

Katan, M. B. D. J., van Birgelen, A. P., PendersM.and ZegwaardM. (1997). Kinetics of the
incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes,
and adipose tissue: An 18-month controlled study. J. Lipid 38, 2012–2022. doi:10.1016/
s0022-2275(20)37132-7

Katan, M. B. v. B. A., Deslypere, J. P., vAn Birgelen, A., PendersM.and van Staveren, W.
A. (1991). Biological markers of dietary intake, with emphasis on fatty acids. Ann. Nutr.
Metab. 35, 249–252. doi:10.1159/000177653

Klein, M. S., and Shearer, J. (2016). Metabolomics and type 2 diabetes: Translating basic
research into clinical application. J. Diabetes Res. 2016, 3898502. doi:10.1155/2016/
3898502

Kohlmeier, L. (1995). Future of dietary exposure assessment. Am. J. Clin. Nutr. 61 (3),
702S–9S. doi:10.1093/ajcn/61.3.702S

Kwon, B., and Querfurth, H. W. (2015). Palmitate activates mTOR/p70S6K through
AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by
oleate is similar to metformin. Biochimie 118, 141–150. doi:10.1016/j.biochi.2015.09.006

Laiakis, E. C., Strassburg, K., Bogumil, R., Lai, S., Vreeken, R. J., Hankemeier, T., et al.
(2014). Metabolic phenotyping reveals a lipid mediator response to ionizing radiation.
J. Proteome Res. 13 (9), 4143–4154. doi:10.1021/pr5005295

Landaas, S. (1975). The formation of 2-hydroxybutyric acid in experimental animals.
Clin. Chim. Acta 58 (1), 23–32. doi:10.1016/0009-8981(75)90481-7

Long, A., Ma, S., Li, Q., Lin, N., Zhan, X., Lu, S., et al. (2016). Association between the
maternal serum levels of 19 eicosanoids and pre -eclampsia. Int. J. Gynecol. Obstet. 133,
291–296. doi:10.1016/j.ijgo.2015.10.024

Lord, R. S., and Bralley, J. A. (2008). Clinical applications of urinary organic acids. Part I:
Detoxification markers. Altern. Med. Rev. 13 (3), 205–215.

Martín-Grau, C., Deulofeu, R., Serrat Orus, N., Arija, V., and On Behalf Of The Eclipses
Study, G. (2021). Trimester-specific reference ranges for saturated, monounsaturated and
polyunsaturated fatty acids in serum of pregnant women: A cohort study from the eclipses
group. Nutrients 13 (11), 4037. doi:10.3390/nu13114037

Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., and Turner,
R. C. (1985). Homeostasis model assessment: Insulin resistance and beta-cell function
from fasting plasma glucose and insulin concentrations in man. Diabetologia 28 (7),
412–419. doi:10.1007/BF00280883

Maulucci, G., Cohen, O., Daniel, B., Ferreri, C., and Sasson, S. (2019). The combination
of whole cell lipidomics analysis and single cell confocal imaging of fluidity and
micropolarity provides insight into stress-induced lipid turnover in subcellular
organelles of pancreatic beta cells. Molecules 24 (20), 3742. doi:10.3390/
molecules24203742

Mdoe, M. B., Kibusi, S. M., Munyogwa, M. J., and Ernest, A. I. (2021). Prevalence and
predictors of gestational diabetes mellitus among pregnant women attending antenatal
clinic in dodoma region, Tanzania: An analytical cross- sectional study. BMJ Nutr. Prev.
Health 4, 69–79. doi:10.1136/bmjnph-2020-000149

Melchiorre, M., Torreggiani, A., Chatgilialoglu, C., and Ferreri, C. (2011). Lipid markers
of "geometrical" radical stress: Synthesis of monotrans cholesteryl ester isomers and
detection in human plasma. J. Am. Chem. Soc. 133 (38), 15184–15190. doi:10.1021/
ja205903h

Miles, E. A., and Calder, P. C. (2017). Can early omega-3 fatty acid exposure reduce risk
of childhood allergic disease? Nutrients 9 (7), 784. doi:10.3390/nu9070784

Mojsak, P., Miniewska, K., Godlewski, A., Adamska-Patruno, E., Samczuk, P., Rey-
Stolle, F., et al. (2021). A preliminary study showing the impact of genetic and dietary
factors on GC-MS-based plasmametabolome of patients with and without PROX1-genetic
predisposition to T2DM up to 5 Years prior to prediabetes appearance. Curr. Issues Mol.
Biol. 43 (2), 513–528. doi:10.3390/cimb43020039

Montelongo, A., Lasunción, M. A., Pallardo, L. F., and Herrera, E. (1992). Longitudinal
study of plasma lipoproteins and hormones during pregnancy in normal and diabetic
women. Diabetes 41 (12), 1651–1659. doi:10.2337/diab.41.12.1651

Frontiers in Molecular Biosciences frontiersin.org13

Burzynska-Pedziwiatr et al. 10.3389/fmolb.2022.997436

https://doi.org/10.1007/s11306-018-1367-3
https://doi.org/10.1007/s11064-019-02759-8
https://doi.org/10.1007/s11064-019-02759-8
https://doi.org/10.1371/journal.pone.0203799
https://doi.org/10.1371/journal.pone.0203799
https://doi.org/10.3390/ijms21217811
https://doi.org/10.1194/jlr.M080309
https://doi.org/10.1371/journal.pone.0162192
https://doi.org/10.1371/journal.pone.0162192
https://doi.org/10.1095/biolreprod.102.009589
https://doi.org/10.1016/s1388-1981(00)00075-5
https://doi.org/10.1016/s1388-1981(00)00075-5
https://doi.org/10.2337/db12-0139
https://doi.org/10.2337/db12-0139
https://doi.org/10.1177/193229681300700112
https://doi.org/10.1074/jbc.M708700200
https://doi.org/10.1074/jbc.M708700200
https://doi.org/10.1155/2017/8921712
https://doi.org/10.1016/j.diabet.2020.08.007
https://doi.org/10.1016/j.diabet.2020.08.007
https://doi.org/10.1038/srep01940
https://doi.org/10.1016/j.jpba.2017.07.044
https://doi.org/10.1016/j.jpba.2017.02.056
https://doi.org/10.1016/j.jprot.2014.03.025
https://doi.org/10.1016/S0140-6736(09)61794-3
https://doi.org/10.3945/ajcn.114.103010
https://doi.org/10.3945/ajcn.114.103010
https://doi.org/10.1002/oby.21199
https://doi.org/10.1002/oby.21199
https://doi.org/10.2337/db12-0707
https://doi.org/10.2337/db12-0707
https://doi.org/10.1586/erm.12.73
https://doi.org/10.3390/diagnostics7010001
https://doi.org/10.3390/diagnostics7010001
https://doi.org/10.1093/ajcn/42.6.1206
https://doi.org/10.1016/s0022-2275(20)43114-1
https://doi.org/10.1515/hmbci-2015-0025
https://doi.org/10.1515/hmbci-2015-0025
https://doi.org/10.1016/j.plipres.2008.03.003
https://doi.org/10.1016/j.bbalip.2019.04.003
https://doi.org/10.1016/s1388-1981(00)00153-0
https://doi.org/10.2337/db11-0425
https://doi.org/10.1016/s0022-2275(20)37132-7
https://doi.org/10.1016/s0022-2275(20)37132-7
https://doi.org/10.1159/000177653
https://doi.org/10.1155/2016/3898502
https://doi.org/10.1155/2016/3898502
https://doi.org/10.1093/ajcn/61.3.702S
https://doi.org/10.1016/j.biochi.2015.09.006
https://doi.org/10.1021/pr5005295
https://doi.org/10.1016/0009-8981(75)90481-7
https://doi.org/10.1016/j.ijgo.2015.10.024
https://doi.org/10.3390/nu13114037
https://doi.org/10.1007/BF00280883
https://doi.org/10.3390/molecules24203742
https://doi.org/10.3390/molecules24203742
https://doi.org/10.1136/bmjnph-2020-000149
https://doi.org/10.1021/ja205903h
https://doi.org/10.1021/ja205903h
https://doi.org/10.3390/nu9070784
https://doi.org/10.3390/cimb43020039
https://doi.org/10.2337/diab.41.12.1651
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.997436


Mozaffarian, D., Cao, H., King, I. B., Lemaitre, R. N., Song, X., Siscovick, D. S., et al.
(2010). Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset
diabetes. Am. J. Clin. Nutr. 92 (6), 1350–1358. doi:10.3945/ajcn.110.003970

Mydlík, M., and Derzsiová, K. (2008). Oxalic Acid as a uremic toxin. J. Ren. Nutr. 18 (1),
33–39. doi:10.1053/j.jrn.2007.10.008

Nezami, N., Safa, J., Eftekhar-Sadat, A. T., Salari, B., Ghorashi, S., Sakhaee, K., et al.
(2010). Lovastatin raises serum osteoprotegerin level in people with type 2 diabetic
nephropathy. Clin. Biochem. 43 (16-17), 1294–1299. doi:10.1016/j.clinbiochem.2010.
08.012

Ogundipe, E., Samuelson, S., and Crawford, M. A. (2020). Gestational diabetes mellitus
prediction? A unique fatty acid profile study. Nutr. Diabetes 10 (1), 36. doi:10.1038/
s41387-020-00138-9

Oxenkrug, G. (2013). Insulin resistance and dysregulation of tryptophan-kynurenine
and kynurenine-nicotinamide adenine dinucleotide metabolic pathways. Mol. Neurobiol.
48 (2), 294–301. doi:10.1007/s12035-013-8497-4

Oxenkrug, G. F. (2015). Increased plasma levels of xanthurenic and kynurenic acids in
type 2 diabetes. Mol. Neurobiol. 52 (2), 805–810. doi:10.1007/s12035-015-9232-0

Padberg, I., Peter, E., González-Maldonado, S., Witt, H., Mueller, M., Weis, T., et al.
(2014). A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology.
PLoS One 9 (1), e85082. doi:10.1371/journal.pone.0085082

Palomer, X., Pizarro-Delgado, J., Barroso, E., and Vázquez-Carrera, M. (2018). Palmitic
and oleic acid: The yin and yang of fatty acids in type 2 diabetes mellitus. Trends
Endocrinol. Metab. 29 (3), 178–190. doi:10.1016/j.tem.2017.11.009

Peng, G., Li, L., Liu, Y., Pu, J., Zhang, S., Yu, J., et al. (2011). Oleate blocks palmitate-
induced abnormal lipid distribution, endoplasmic reticulum expansion and stress, and
insulin resistance in skeletal muscle. Endocrinology 152 (6), 2206–2218. doi:10.1210/en.
2010-1369

Plows, J. F., Stanley, J. L., Baker, P. N., Reynolds, C. M., and Vickers, M. H. (2018). The
pathophysiology of gestational diabetes mellitus. Int. J. Mol. Sci. 19 (11), 3342. doi:10.3390/
ijms19113342

Rey-Stolle, F., Dudzik, D., Gonzalez-Riano, C., Fernández-García, M., Alonso-Herranz,
V., Rojo, D., et al. (2021). Low and high resolution gas chromatography-mass spectrometry
for untargeted metabolomics: A tutorial. Anal. Chim. Acta 1210, 339043. doi:10.1016/j.aca.
2021.339043

Saether, T., Tran, T. N., Rootwelt, H., Christophersen, B. O., and Haugen, T. B. (2003).
Expression and regulation of delta5-desaturase, delta6-desaturase, stearoyl-coenzyme A
(CoA) desaturase 1, and stearoyl-CoA desaturase 2 in rat testis. Biol. Reprod. 69 (1),
117–124. doi:10.1095/biolreprod.102.014035

Sakurai, K., Eguchi, A., Watanabe, M., Yamamoto, M., Ishikawa, K., andMori, C. (2019).
Exploration of predictive metabolic factors for gestational diabetes mellitus in Japanese
women using metabolomic analysis. J. Diabetes Investig. 10 (2), 513–520. doi:10.1111/jdi.
12887

Salek, S., Hashemipour, M., Feizi, A., Hovsepian, S., and Kelishadi, R. (2020). Association of
maternal dietary components during pregnancy and/or lactation with insulin-dependent
diabetes mellitus. Int. J. Endocrinol. Metab. 18 (3), e93076. doi:10.5812/ijem.93076

Salvadó, L., Coll, T., Gómez-Foix, A. M., Salmerón, E., Barroso, E., Palomer, X., et al.
(2013). Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin
resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia
56 (6), 1372–1382. doi:10.1007/s00125-013-2867-3

Sansone, A., Tolika, E., Louka, M., Sunda, V., Deplano, S., Melchiorre, M., et al. (2016).
Hexadecenoic fatty acid isomers in human blood lipids and their relevance for the
interpretation of lipidomic profiles. PLoS ONE 11, e0152378. doi:10.1371/journal.pone.
0152378

Schwartz, E. A., Zhang, W. Y., Karnik, S. K., Borwege, S., Anand, V. R., Laine, P. S., et al.
(2010). Nutrient modification of the innate immune response: A novel mechanism by
which saturated fatty acids greatly amplify monocyte inflammation. Arterioscler. Thromb.
Vasc. Biol. 30 (4), 802–808. doi:10.1161/ATVBAHA.109.201681

Schwarz, J. M., Linfoot, P., Dare, D., and Aghajanian, K. (2003). Hepatic de novo
lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-
carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr. 77 (1),
43–50. doi:10.1093/ajcn/77.1.43

Serhan, C. N. (2008). Systems approach with inflammatory exudates uncovers novel
anti-inflammatory and pro-resolving mediators. Prostagl. Leukot. Essent. Fat. Acids 79 (3-
5), 157–163. doi:10.1016/j.plefa.2008.09.012

Sieber, J., Lindenmeyer, M. T., Kampe, K., Campbell, K. N., Cohen, C. D., Hopfer, H.,
et al. (2010). Regulation of podocyte survival and endoplasmic reticulum stress by fatty
acids. Am. J. Physiol. Ren. Physiol. 299 (4), F821–F829. doi:10.1152/ajprenal.00196.2010

Simopoulos, A. P. (2016). An increase in the omega-6/omega-3 fatty acid ratio increases
the risk for obesity. Nutrients 8 (3), 128. doi:10.3390/nu8030128

Takato, T., Iwata, K., Murakami, C., Wada, Y., and Sakane, F. (2017). Chronic
administration of myristic acid improves hyperglycaemia in the Nagoya-Shibata-
Yasuda mouse model of congenital type 2 diabetes. Diabetologia 60 (10), 2076–2083.
doi:10.1007/s00125-017-4366-4

Tosheska Trajkovska, K. T. S., and Topuzovska, S. (2017). High-density lipoprotein
metabolism and reverse cholesterol transport: Strategies for raising HDL cholesterol.
Anatol. J. Cardiol. 18, 149–154. doi:10.14744/AnatolJCardiol.2017.7608

Varvel, S. A., Pottala, J. V., Thiselton, D. L., Caffrey, R., Dall, T., Sasinowski, M., et al.
(2014). Serum α-hydroxybutyrate (α-HB) predicts elevated 1 h glucose levels and early-
phase β-cell dysfunction during OGTT. BMJ Open Diabetes Res. Care 2 (1), e000038.
doi:10.1136/bmjdrc-2014-000038

Vessby, B., Gustafsson, I. B., Tengblad, S., Boberg, M., and Andersson, A. (2002).
Desaturation and elongation of Fatty acids and insulin action. Ann. N. Y. Acad. Sci. 967,
183–195. doi:10.1111/j.1749-6632.2002.tb04275.x

Wada, Y., Sakiyama, S., Sakai, H., and Sakane, F. (2016). Myristic acid enhances
diacylglycerol kinase delta-dependent glucose uptake in myotubes. Lipids 51 (8),
897–903. doi:10.1007/s11745-016-4162-9

Williams, D. (2003). Pregnancy: A stress test for life. Curr. Opin. Obstet. Gynecol. 15 (6),
465–471. doi:10.1097/00001703-200312000-00002

Wójcik, M., Mac-Marcjanek, K., Nadel, I., Woźniak, L., and Cypryk, K. (2015).
Gestational diabetes mellitus is associated with increased leukocyte peroxisome
proliferator-activated receptor γ expression. Arch. Med. Sci. 11 (4), 779–787. doi:10.
5114/aoms.2015.47692

Wojcik, M. Z. A., Zurawska-Klis, M., Cypryk, K., and Wozniak, L. A. (2016). Increased
expression of immunerelated genes in leukocytes of patients with diagnosed gestational
diabetes mellitus (GDM). Exp. Biol. Med. (Maywood). 241, 457–465. doi:10.1177/
1535370215615699

Wojcik, M., Zieleniak, A., Mac-Marcjanek, K., Wozniak, L. A., and Cypryk, K. (2014).
The elevated gene expression level of the A(2B) adenosine receptor is associated with
hyperglycemia in women with gestational diabetes mellitus. Diabetes Metab. Res. Rev. 30
(1), 42–53. doi:10.1002/dmrr.2446

Xu, F., Tavintharan, S., Sum, C. F., Woon, K., Lim, S. C., and Ong, C. N. (2013).
Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based
metabolomics. J. Clin. Endocrinol. Metab. 98 (6), E1060–E1065. doi:10.1210/jc.2012-4132

Yahaya, T. O., Salisu, T., Abdulrahman, Y. B., and Umar, A. K. (2020). Update on the
genetic and epigenetic etiology of gestational diabetes mellitus: A review. Egypt J. Med.
Hum. Genet. 21, 13. doi:10.1186/s43042-020-00054-8

Frontiers in Molecular Biosciences frontiersin.org14

Burzynska-Pedziwiatr et al. 10.3389/fmolb.2022.997436

https://doi.org/10.3945/ajcn.110.003970
https://doi.org/10.1053/j.jrn.2007.10.008
https://doi.org/10.1016/j.clinbiochem.2010.08.012
https://doi.org/10.1016/j.clinbiochem.2010.08.012
https://doi.org/10.1038/s41387-020-00138-9
https://doi.org/10.1038/s41387-020-00138-9
https://doi.org/10.1007/s12035-013-8497-4
https://doi.org/10.1007/s12035-015-9232-0
https://doi.org/10.1371/journal.pone.0085082
https://doi.org/10.1016/j.tem.2017.11.009
https://doi.org/10.1210/en.2010-1369
https://doi.org/10.1210/en.2010-1369
https://doi.org/10.3390/ijms19113342
https://doi.org/10.3390/ijms19113342
https://doi.org/10.1016/j.aca.2021.339043
https://doi.org/10.1016/j.aca.2021.339043
https://doi.org/10.1095/biolreprod.102.014035
https://doi.org/10.1111/jdi.12887
https://doi.org/10.1111/jdi.12887
https://doi.org/10.5812/ijem.93076
https://doi.org/10.1007/s00125-013-2867-3
https://doi.org/10.1371/journal.pone.0152378
https://doi.org/10.1371/journal.pone.0152378
https://doi.org/10.1161/ATVBAHA.109.201681
https://doi.org/10.1093/ajcn/77.1.43
https://doi.org/10.1016/j.plefa.2008.09.012
https://doi.org/10.1152/ajprenal.00196.2010
https://doi.org/10.3390/nu8030128
https://doi.org/10.1007/s00125-017-4366-4
https://doi.org/10.14744/AnatolJCardiol.2017.7608
https://doi.org/10.1136/bmjdrc-2014-000038
https://doi.org/10.1111/j.1749-6632.2002.tb04275.x
https://doi.org/10.1007/s11745-016-4162-9
https://doi.org/10.1097/00001703-200312000-00002
https://doi.org/10.5114/aoms.2015.47692
https://doi.org/10.5114/aoms.2015.47692
https://doi.org/10.1177/1535370215615699
https://doi.org/10.1177/1535370215615699
https://doi.org/10.1002/dmrr.2446
https://doi.org/10.1210/jc.2012-4132
https://doi.org/10.1186/s43042-020-00054-8
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.997436

	Targeted and untargeted metabolomic approach for GDM diagnosis
	Introduction
	Materials and methods
	Study design
	Untargeted plasma metabolomics analysis
	Chemicals
	Untargeted plasma metabolomics analysis
	Derivatization protocol

	GC-Q-MS analysis
	Data processing and compound identification
	Data treatment

	Fatty acid analysis
	Statistical analysis

	Results
	Multivariate statistical analysis

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


