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TheCentral Dogmahighlights themutualistic functions of protein and nucleic acid

biopolymers, and this synergy appears prominently in the membraneless

organelles widely distributed throughout prokaryotic and eukaryotic organisms

alike. Ribonucleoprotein granules (RNPs), which are complex coacervates of RNA

with proteins, are a prime example of these membranelles organelles and underly

multiple essential cellular functions. Inspired by the highly dynamic character of

these organelles and the recent studies that ATP both inhibits and templates phase

separation of the fused in sarcoma (FUS) protein implicated in several

neurodegenerative diseases, we explored the RNA templated ordering of a

single motif of the Aβ peptide of Alzheimer’s disease. We now know that this

strong cross-β propensity motif alone assembles through a liquid-like coacervate

phase that canbeexternally templated to formdistinct supramolecular assemblies.

Now we provide evidence that structured phosphates, ranging from complex

structures like double stranded and quadraplex DNA to simple trimetaphosphate,

differentially impact the liquid to solid phase transition necessary for paracrystalline

assembly. The results from this simple model illustrate the potential of ordered

environmental templates in the transition to potentially irreversible pathogenic

assemblies and provides insight into the ordering dynamics necessary for creating

functional synthetic polymer co-assemblies.
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Introduction

Cellular RNA is generally sequestered early within liquid-like protein coacervates

named ribonucleoprotein granules (RNPs) (Banani et al., 2017; Tauber et al., 2020;

Fomicheva and Ross, 2021). The functions of these cellular membraneless organelles

range from storage granules to processing hubs chaperoning mRNA through the
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critical stages of cellular stress, division, and differentiation

(Alberti et al., 2017; Shin and Brangwynne, 2017; Alberti et al.,

2019; Tauber et al., 2020). The multifaceted functions that

RNP granules play depends on dynamic structural plasticity of

these co-assemblies (Banani et al., 2017; Boeynaems et al.,

2019; Conicella et al., 2020; Dutagaci et al., 2021; Gordon et al.,

2021; Hallegger et al., 2021; Carey and Guo, 2022). For

example, the cooperative interactions between arginine

residues of the RNA binding domain and the tyrosine

residues from the prion-like domains (PLD) of FUS are

critical for the dual effects of ATP concentrations that both

induces and inhibits initial phase transitions at different

concentrations by controlling these interactions (Wang

et al., 2018; Ren et al., 2022).

The nucleating core of the Alzheimer’s disease-associated

Aβ42 peptide, the sequence KLVFFAE, has been extensively

studied as a separate peptide and shown to have strong cross-β

propensity: independently undergoing two-step nucleation that

includes condensation and subsequent self-assembly into cross-

β fibers, which can allow for the inclusion of other polymers

between the leaflets (Figure 1). There is now evidence that these

peptide condensates are preordered within the condensates for

nucleation, highlighting the remarkable potential

environmental control over the final assembled morphology

(Mehta et al., 2008; Childers et al., 2012; Mehta et al., 2013;

Uversky, 2013; Liang et al., 2014; Arai et al., 2015; Mollica et al.,

2016; Hsieh et al., 2017a; Kim and Han, 2018; Gordon et al.,

2021; Hallegger et al., 2021). Indeed, subtle changes in amino

acid sequence greatly impact the rates of nucleation and

propagation along the three potential cross-β assembly

growth planes. The Aβ motif congener Ac-KLVIIAG-NH2

(Pep-KG) is derived from KLVFFAE, with the phenylalanine

dyad replaced by isoleucine and the terminal glutamate replaced

by glycine. Pep-KG was designed to have a lower propensity for

nucleation relative to KLVFFAE by replacing the phenylalanine

with isoleucine residues and only retaining a single cationic

residue for charge-driven phase separation templated by

polyanions. These changes allowed for nucleic acid

passivation of the leaflet interface by nucleic acids with the

subsequent assembly of distinct antiparallel β-Sheets organized

as multilamellar cross-β nanotubes (Rha et al., 2020). RNA,

DNA, and polyphosphate (p50) all nucleate assembly,

consistent with electrostatics playing significant roles in these

two-step transitions much like ATP with FUS (Hsieh et al.,

2017b). While the final peptide cross-β assembly with

phosphate pacification are well ordered, the nucleic acid

backbone is ordered electrostatically in respect to the peptide

assembly, with consistent distances between Pep-KG lysines

and nucleic acid phosphates as shown by previous solid state

NMR data (Rha et al., 2020).

Given the role of ATP as a trivalent binder regulating FUS

assembly and the range of cellular processes that depend on

RNA structural dynamics within RNP granules, we have now

explored this single motif as a reporter for the role that nucleic

acid conformations may play in the two-step nucleation

process (Brazda et al., 2011; Flores and Ataide, 2018;

Sanchez de Groot et al., 2019; Chilinski et al., 2022;

Saurabh et al., 2022). Nucleic acid conformations dictate

the ordering of phosphate charges along the backbone and

significantly impacts the initial nucleation of supramolecular

co-assembly. This ordered nucleation sets the stage for the

propagation of unique paracrystalline order. Using this

insight, we have designed nucleic acid-peptide chimeras to

create novel architectures that exploit both the plasticity of the

peptide motifs as well as the nucleic acid templates. These

results provide a foundation for strategies focused on the

construction of nucleic-acid-based functional materials with

cross-β assembles and could further inform the diverse and

dynamic controls underlying ribonucleoprotein granule

function. This knowledge will prove useful in the rapidly

FIGURE 1
Cross-β architecture allows for packing of other polymers in between the leaflets. Hydrogen bonding across amides from consecutive peptide
strands contribute to leaflet formation in the z-axis, while side chain interactions contribute to the stacking of β-Sheets along the y-axis (A). The
leaflets, where the peptide termini are positioned, have been shown to accommodate polyanionic species like polyphosphates and
oligonucleotides (B).
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evolving field of biomaterials, drawing parallels between

exploiting the energetics of coacervate materials and

bottom-up approaches for materials design.

Materials and methods

Synthesis of Ac-KLVIIAG-NH2 (Pep-KG)
and Ac-ELVIIAG-NH2 (Pep-EG)

Pep-KG was synthesized on Rink amide-MBHA

(Anaspec) solid support via a CEM Liberty Blue

Automated Microwave Peptide Synthesizer (Serial #

LB2447) with 1M N,N′-Diisopropyl carbodiimide (DIC;

CAS# 693-13-6 AAPPTEC) as the activator, Oxyma Pure

(CAS# 3849-21-6 CEM) as the activator base, and 20%

Piperidine (CAS# 110-89-4 Sigma-Aldrich) as the

deprotection solution. Amino acids were coupled using

0.25 mmol standard coupling (75°C 210 W for 15 s followed

by 90°C 30 W for 110 s) and deprotected using 0.25 mmol

standard deprotection (75°C 175 W 15 s, 90°C 30 W 50 s). The

amino acids used were as follows: fmoc-boc-lysine, fmoc-

leucine, fmoc-valine, fmoc-isoleucine, fmoc-alanine, fmoc-

glycine, fmoc-boc-glutamic acid, and each one dissolved in

dimethylformamide (DMF; CAS# 68-12-2 Sigma-Aldrich).

The N-terminus of both Pep-KG and Pep-EG were

acetylated with a 20% acetic anhydride (CAS# 108-24-

7 Sigma-Aldrich) in DMF solution and the 0.25 mmol N-

terminal acetylation method (60°C 50 W 30 s, 25°C 0 W

30 s, 60°C 50 W 30 s, 25°C 0 W 30 s). Upon completion of

synthesis, the resin beads were rinsed with dichloromethane

(DCM) then let dry via vacuum filtration for cleavage from

solid support which was carried out using a cocktail of 9:0.5:

0.3:0.2 ratios of trifluoroacetic acid (TFA CAS# 76-05-1 Chem

Impex)/thioanisole (CAS# 100-68-5 Sigma-Aldrich)/1,2-

ethanedithiol (CAS# 540-63-6 Sigma-Aldrich)/anisole

(CAS# 100-66-3 Sigma-Aldrich), where 10 ml of the

cocktail was used in each of two vials and the 0.25 mmol of

peptide attached to resin was evenly distributed across the two

vials. The resin beads were submerged in the cocktail and were

continuously perturbed using an orbital shaker at low

intensity for to allow for homogeneous coverage of the

beads with the cleaving reagents, and the reaction vessels

were left for 3 h at room temperature. Upon completion,

the beads are filtered from the peptides via gravity

filtration immediately into cold (−20°C) ether (CAS# 60-

29-7 Fischer Scientific). At this point, the ether should

become warm and cloudy due to mass precipitation of

the peptides, and the mixture is then spun down at

4000 RCF for 15 min at 4°C to improve precipitation. The

FIGURE 2
Pep-KG assembly rate is acceleratedwhen templated with dsDNA. TEM image panels (A–C): Pep-KG assembled alone, Pep-KG assembledwith
ssDNA, and Pep-KG assembled with dsDNA, respectively, within 1 day of initial dissolution. Panels (D–F) were taken after 1 week of incubation. All
peptides andDNA templates were dissolved in 40%MeCN at 1 mMPep-KG concentration and continuously incubated at 37°C. Measurements of ThT
fluorescence (G) indicates cross-β growth of the assembly within the first 12 h and (H) 2AP fluorescence within the first 6 h of assembly. Each
fluorescence measurement was done at 37°C incubation across all timepoints. All error bars are 95% CI values and all samples for 2AP and ThT
fluorescence are n = 3.
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ether supernatant was discarded, and the gel-like pellet

was washed with more cold ether for centrifugation, a

process that is repeated twice more. The pellet was stored

in vacuo pending HPLC purification and then a standard

desalting protocol, as described in the Supplementary

Material document.

Preparation of GQ/Pep-KG conjugate

Desalted Pep-EG (20 mg) and 33.5 mg N-

hydroxysuccinimide (CAS# 6066-82-6 Sigma-Aldrich) were

dissolved in minimal amount of DMF (approximately 2 ml).

55.8 mg EDC (1-Ethyl-3-(3-dimethylaminopropyl)

carbodiimide; CAS# 25952-53-8 Sigma-Aldrich) was added

afterward, and the solution were left to stir at room

temperature overnight, up to 36 h. Completion of this

reaction generated an imide-peptide species at 851 Da

(Supplementary Figure S1). 100 μl 0.2M NaHCO3 was then

added to the solution, and 0.15 mmol propargylamine (CAS#

2450-71-1 Sigma-Aldrich) was added immediately after the

pH was raised. This reaction was left to stir for 5 h and

propargylamine coupling, which generates Ac-EmLVIIAG-

NH2, was confirmed via mass spectrometry (Supplementary

Figure S2). This crude product was used without further

purification for conjugation with 5′-azide modified GQ

DNA (T4GGTG4TGG) via azide-alkyne click reaction using

4 nmol GQ DNA, excess of Ac-EmLVIIAG-NH2 (4 μl), 4 μl 2M

triethylamine-acetate buffer at pH 7, and 4 μl of saturated

ascorbic acid for activation of 10 mM Cu(II)-TBTA in 55%

aqueous DMSO (Lumiprobe, MD, United States) was added

last (4 μl). This reaction was run at room temperature for up to

48 h and the peptide/DNA conjugate was precipitated with

ethanol. Despite the excess of peptide, only peptide/DNA

conjugates were recovered using this protocol involving

2 ml of 2M MgCl2 and a fourfold excess of 200 proof

FIGURE 3
Proposed energy diagram of distinct pathways that Pep-KGmay undergo through context-dependent co-assemblies. (A) and (B) denote Pep-
KG assembly templated by ssDNA and dsDNA, respectively. Proposed energy diagram (C) illustrates dsDNA templates lower the energetics of
nanotube assembly relative to ssDNA templates, as demonstrated by ThT fluorescence experiments.
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ethanol. The solution was shaken vigorously prior to placing in

an ice bath for 1 hour. As the solution became turbid during

the incubation period, the sample was spun down at

13,000 rpm for 20 min to give a gel-like pellet. After

decanting the supernatant, the pellet was resuspended and

washed with 70% ethanol and then spun down once more at

13,000 rpm for 10 min to give the peptide/DNA chimera. The

ethanol was decanted, the pellet was analyzed by Urea-PAGE

electrophoresis and mass spectroscopy, and the final sample

was stored in vacuo until co-assembly with Pep-KG.

FIGURE 4
(A) Structures of A3 (left) and TMP (right). Micrographs of Pep-KG assembled in the presence of A3 (B) and in the presence of TMP (C). Both
images were taken within 1 day of dissolution in 40% MeCN at 37°C. Both samples consisted of 1 mM Pep-KG and 333 μM dsDNA and 333 μM TMP.
(D) ThT fluorescence of Pep-KG/dA3 and Pep-KG/TMP samples within the first 12 h. Error bars represent 95% CI values, and all samples are n = 3.
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Assembly of Pep-KG with and without
templates

All assembled samples were prepared using desalted Pep-KG

following HPLC purification. Pep-KG was assembled at a final

concentration of 1 mM both in the presence and the absence of

polyanionic templates. Templates were added to satisfy a 1:

1 charge ratio with Pep-KG, which contributes a single

positive charge. Assemblies were done with the following

charge assumptions: the Drew-Dickerson dodecamer single

stranded sequence d(CGCGAATTGCGC) contributed a

charge of −12, whereas the double stranded counterpart of the

same sequence had −24 charges. Both dA3 and trimetaphosphate

contributed a −3 charge each. A solution of double the

concentration of each template, relative to the template’s final

concentration, was prepared using 40% MeCN, where an equal

volume of 2 mM Pep-KG in 40% MeCN was then added to the

template solutions that were pre-incubated at 37°C. As an

example, an initial solution of 400 μl 0.66 mM

trimetaphosphate was prepared in 40% MeCN, where 400 μl

2 mM Pep-KG in 40% MeCN was added to it. All samples were

incubated at 37°C throughout the assembly times of up to

2 weeks.

ThT fluorescence assay

Samples for Thioflavin T fluorescence analyses were

prepared by combining 74 μl of each sample, 100 μl of 40%

acetonitrile, and 1 μl of 10 mM Thioflavin T (CAS# 2390-54-

7 purchased from Sigma-Aldrich) and measured in the wells of

a 96 well plate (Microplate, 96 well, PS, F-bottom, μCLEAR,

black, med. binding, Greiner Bio-one). Thioflavin T

fluorescence was determined with a BioTek Synergy Mx

plate reader (Serial# 250843) every 15 min for up to 24 h,

with short shaking before each read. The excitation

wavelength was 444 nm and fluorescence was measured at

484 nm. A well containing 1 μl 10 mM ThT in 40% MeCN and

174 μl 40% MeCN was used as a baseline. The plate was held at

37°C for all 24 h.

Sample preparation for TEM imaging

Each selected sample (8 μl) was pipetted onto a carbon-film

coated, 200 mesh copper grid (CF200-Cu purchased from

Electron Microscopy Services) The sample was then negative

stained with 8 μl of the supernatant of a 2% w/v Uranyl acetate in

water solution that had been centrifuged at 12,000 RCF for

10 min (CAS# 541-09-3 purchased from Electron Microscopy

Solutions). Loaded electron microscopy grids were visualized

with a Hitachi HT7700 transmission electron microscope at

80 kV.

Sample preparation for EFM imaging

Aliquots (10 μl) of GQPC assemblies in 40% acetonitrile

were deposited on gold film upon Si/SiO2 substrate and then

dried over 12 h. All micrographs were taken by Park System

XE-100 AFM in tapping mode. To probe for charge surface

of our assemblies, a charge bias of +1 V was applied

between the electrically conductive Pt-Ir coated tip, with

2.7 N/m force constant, (Mountain View, CA, AppNano)

and the sample.

FIGURE 5
Pep-KG association with DNA can be modulated by LiCl.
Cross-β assembly of Pep-KG, Pep-KG/ssDNA, and Pep-KG/
dsDNA [(A–C), respectively] monitored by ThT fluorescence in the
presence of different LiCl concentrations, 10 and 150 mM. All
assemblies were incubated in 40% MeCN at 37°C with dsDNA and
ssDNA added at a 1:1 charge ratio, 41.6 μM dsDNA and 83.3 μM
ssDNA, with 5 μM ThT that was added at the beginning of the
assembly. It should be noted that, while ThT has been the standard
probe for identifying the presence of cross-β assembly, it is unclear
whether it plays a role in stabilization of the architecture. Thus, all
assembly rates discussed here are relative to the baseline Pep-KG
incubated with ThT. Error bars are 95% CI values and all samples
are n = 3.
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Characterization of assemblies via circular
dichroism spectroscopy

Circular Dichroism (CD) analyses were recorded on a Jasco-

810 Spectropolarimeter. Samples were micro-pipetted onto a

50 μl Hellma Analytics quartz cell with a 0.1 mm path length

(Model # 106-0.10-40). Spectra were measured by averaging

three scans from 260-190 nm with a 0.2 nm data pitch and

100 nm s−1 scanning speed. Molar ellipticity was calculated

with the equation [θ] = θ/(10 × c × l) where c is the peptide

concentration in moles/L and l is the pathlength of the

cuvette (cm).

Circular dichroism melting experiments

43 μl of each sample was loaded onto a 50 μl Hellma

Analytics quartz cell with 0.1 mm path length (Model # 106-

0.10-40) while taking care to minimize bubbles inside the cuvette,

and the edge of the cuvette was wrapped in parafilm to minimize

evaporation. Each melting trial was conducted using a Jasco J-

1500 (Serial #B043361638) Spectropolarimeter starting at 37°C

and ending at 92°, changing 1°C every minute and accumulating

three scans from 260 to 190 nm every 5°C interval. The data pitch

was 0.2 nm, the scanning speed used was 200 nm min−1.

Fluorescence spectroscopy for analyzing
ISCH-oa1 binding

ISCH-oa1 were all measured at 1 μM final concentration,

both in the presence and in the absence of peptides or GQ DNA.

Each sample was measured in 3 mm path length quartz cuvette

(Müllheim, Germany, Hellma Analytics) using Cary Eclipse

Fluorescence Spectrophotometer (Santa Clara, CA, Agilent).

Excitation was set to 550 nm, and emission spectra were

acquired from 560 nm to 700 nm. Raw data were normalized

to f/f0, where f is fluorescence of each sample, and f0 is

fluorescence of ISCH-oa1 probe at 1 μM concentration.

Results and discussion

dsDNA efficiently templates two-step
nucleation for cross-β peptide assembly

It has been demonstrated that charged monomer sequence

patterns can influence complex coacervate formation in synthetic

polymers, but how nucleic acid polymer conformations impact

peptide coacervation remains unknown. To investigate the role

higher-order nucleic acid structure plays in nucleating 2-step

peptide assembly, the single stranded dodecamer (5′-
CGCGAATTCGCG-3′, ssDNA) and its Drew-Dickerson

B-DNA duplex (dsDNA) were each incubated with the single

sticker/spacer motif, Pep-KG (Ac-KLVIIAG-NH2) (Dickerson

and Drew, 1981a; Dickerson and Drew, 1981b; Drew and

Dickerson, 1981; Drew et al., 1981; Marky et al., 1983). The

structures formed by this DNA sequence has been extensively

studied for decades and is short enough to limit conformational

sampling throughout the studies. Furthermore, previous studies

have demonstrated that the nanotube morphology are

independent of oligonucleotide sequence and length, provided

that there are at least six consecutive nucleotides (Rha et al.,

2020). As shown in Figure 2A top panel, Pep-KG alone

undergoes 2-step nucleation, transitioning through initial

condensates to fibrous assemblies within a day of dissolution

and remains as such (Figure 2D) indefinitely, as previously

reported (Rha et al., 2020). In comparison, when Pep-KG is

FIGURE 6
Ions like Na+ are conducive to guanine quadruplex formation. Metal cations, including K+ and Na+, facilitate guanine quartet formation
through coordination with O6 atoms that project into the internal cavity (A). Metal cations are arranged equidistant from guanine quartets in the
quadruplex, aligning the eight oxygen atoms in a symmetric tetragonal bipyramidal configuration. The sequence GGTG4TGG used in this study
requires two DNA strands to associate for proper quadruplex folding and gives the depicted parallel guanine quadruplex (B). CD of GGTG4TGG
in the presence of Na+ gives the expected parallel quadruplex signature with a maximum positive ellipticity at 260 nm (C).
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assembled in the presence of DNA templates at a 1:1 charge ratio,

the rate of assembly is dramatically accelerated as reported by

thioflavin T (ThT) fluorescence (Figure 2G). While both dsDNA

and ssDNA templates dramatically impact Pep-KG assembly,

dsDNA rapidly templates helical ribbons while ssDNA shows

much greater heterogeneity at early time points (Figures 2B,C).

However, with longer incubation times, both ssDNA and dsDNA

template the assembly of similar multilamellar ribbon

morphology that ultimately transitions into nanotubes

(Figures 2E,F).

To evaluate whether the initial coacervation step might be

impacted by the charge ordering of the template, the fluorescent

probe 2-aminopurine (2AP) (Ex. 310 nm/Em. 370 nm) was

synthetically incorporated into the center of the dodecamer

sequence, 5′-CGCG(2AP)ATTCGCG-3’. As shown in

Figure 2H, the fluorescence is immediately quenched in all the

peptide co-assemblies to a level similar to that of the dsDNA,

significantly less than the ssDNA alone. These data establish that

ssDNA does not self-assemble under these conditions, and rapidly

condenses with the oppositely charged peptide. This immediate

2AP quenching in ssDNA is consistent with long, synthetic, same-

chargemonomers in polymers exhibiting strong charge interactions

in complex coacervate condensation (Chang et al., 2017).

The dsDNA template rapidly nucleates and propagates

paracrystalline peptide assembly (Figure 2G), but the initial

ThT fluorescence drops during the first hour, and then grows

SCHEME 1
Alkynylation of terminal glutamic acid (Ac-EmLVIIAG-NH2) and click reactionwith azide-modified guanine quadruplex DNA [d(T4GGTG4TGG)].
Primary peptide sequence for Ac-ELVIIAG-NH2. Dotted box outlines terminal glutamic acid residue (A). Alkyne modification of carboxylic acid
moiety of terminal glutamate via amide linkage (Ac-EmLVIIAG-NH2, where “m” denotesmodification of glutamate) (B). Cu(I) catalyzed click reaction
of Ac-EmLVIIAG-NH2 and 5′-azide-modified ssDNA [d(T4GGTG4TGG)] gave the guanine quadruplex peptide conjugate (GQPC) through
triazole formation (C).
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cooperatively. This initial drop could be the result of breathing

modes and fraying at the ends of the template as it enters the

peptide condensate (Leroy et al., 1988; Peyrard et al., 2009). The

apparent autocatalytic growth has been previously seen with

rearrangements that alter ThT binding as the growing assembly

moves beyond the initial biomolecular condensate (Hsieh et al.,

2017a; Rengifo et al., 2020). The ssDNA also templates peptide

ordering, but only beginning after 6 h of incubation as monitored

by ThT fluorescence (Figure 2G). Taken together, these results

indicate that although both single-stranded and double-stranded

DNA function as polyanionic templates capable of nucleating

peptide assembly, double-stranded DNA accelerates the

formation of paracrystalline assemblies. Given what we know

about the assembly pathway of Pep-KG, we believe this to be

because dsDNA is more effectively recruiting Pep-KGmonomers

within the particle phase and more rapidly forming a stable

nucleus which then propagates out of the particle into ribbons

and finally nanotubes (Figure 3).

Electrostatic ordering underlies template
effectiveness

The dsDNA template contains twice the number of

phosphates as the ssDNA template, and this difference may

contribute to the difference in nucleation efficiency. However,

the number of charges is not the only difference when comparing

dsDNA to ssDNA, as the duplexed DNA also exhibits a

significant surface area increase, which impacts the spatial

ordering of the charges. Thus, to determine whether the

number of phosphates or their order contributes most

significantly to nucleation efficiency, we compared dA3, the

5′-phosphorylated linear adenine ssDNA, and

trimetaphosphate (TMP), a constrained cyclic 6-membered

phosphate ring with the same number of charges as dA3

(Figure 4A). Consistent with the previously reported results,

incubation of dA3 with Pep-KG gave heterogeneous fibrillar

morphologies (Figure 4B), while TMP rapidly nucleates Pep-KG

FIGURE 7
Guanine quadruplex folding is necessary for tapered nanotubemorphology. Pep-KG (0.4 mM) assembled in sodium phosphate buffer results in
bundled fiber formation (A). Co-assembly of GQPC (2.5% molar equivalent) and pep-KG (0.4 mM) yields tapered conical assemblies resembling
nanotubes in sodium phosphate buffer (B). Like previously described nanotubes, GQPC/Pep-KG co-assemblies form ribbons first. The tapered ends
of GQPC/pep-KG co-assemblies close first (tapered end, arrow; wide end, arrowhead) (C). LiPO4 buffer used in place of NaPO4 resulted in a
mixture of both non-tapered nanotubes and fibers (D), suggesting that GQ formation is essential for conical tube morphology as depicted in the
proposed co-assembly mechanism (E).
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into the nanotube morphology seen with dsDNA and ssDNA

templates (Figure 4C) (Rha et al., 2020).

These co-assemblies were also monitored for 12 h following

dissolution via ThT fluorescence (Figure 4D). Here, the TMP-

templated sample assembled more rapidly than dA3-templated

and non-templated assemblies. Considering the distinct ordering

of the charged phosphates in TMP, these data suggest that in

addition to charged monomers, conformational charge ordering,

in TMP covalently constrained, is most critical for nucleating

paracrystalline ordering. Whereas dsDNA accelerates the

formation of nanotubes relative to ssDNA but the DNA and

Pep-KG assembly pathway is overall the same (Figure 3), the

TMP and Pep-KG assembly pathway is totally distinct from the

assemblies formed with dA3 (Figures 4B,C).

Propagation of cross-β co-assemblies is
sensitive to electrostatic interference

Given the electrostatic ordering achieved by dsDNA

during templated peptide cross-β nucleation, we sought to

compare ss/dsDNA as templates for propagation. Propagation

rates have been obtained via imaging approaches, but because

of the complexity these electrostatic-driven processes, we

investigated propagation control with passivating salts.

MgCl2 inhibits both nucleation and propagation in these

co-assemblies, and here LiCl was selected because of Li+’s

small size, single charge, and minimal impact on more

complex DNA structures (Wen et al., 2014). Propagation

was assessed via ThT kinetics at low and high

concentrations of LiCl. The influence of LiCl concentrations

on the relative growth rates showed little difference at high

LiCl concentrations (Figure 5). This observation is most

consistent with ssDNA and dsDNA being equally effective

in co-assembly propagation in stark contrast to their effect on

nucleation. Additional imaging approaches will be necessary

to define these rates more precisely.

Seeding with quadruplex DNA/peptide
chimeras

Given the effect of ordered charged templates on nanotube

nucleation and the accommodation of ordered phosphate-

containing molecules within propagating cross-β peptide

assemblies, we sought to exploit these findings to construct

functional sites along the peptide nanotube. Guanine

quadruplexes (GQ) contain planes of four Hoogsteen base-

paired guanine bases with phosphates defining the connecting

edges. The bimolecular parallel quadruplex-forming DNA,

GGTG4TGG, which requires two GQ DNA strands for

assembly, organizes to form four stacked guanine quartets

with well-ordered charges running along the corners of the

GQ planes and potential for extended GQ stacking (Figures

6A,B). (Ilc et al., 2013; Do et al., 2017; Ahmed et al., 2018) As

shown in Figure 6C, this DNA sequence assembles to give the

characteristic CD signature of a parallel GQ. (Kypr et al., 2009;

Bhattacharyya et al., 2016; Ahmed et al., 2018).

To enhance templating by this GQ template, GGTG4TGG

was conjugated to the N-terminal residue side chain of the

accompanying peptide via a Cu(I)-catalyzed click reaction.

Initial peptide synthesis required replacement of the N-

terminal lysine of Pep-KG with N-acetylated glutamic acid to

give Ac-ELVIIAG-NH2. Further alkyne modification of the

glutamic acid side chain was achieved following esterification

using N-Hydroxysuccinimide (NHS) and amidation with

propargylamine to give Ac-EmLVIIAG-NH2 (Scheme 1).

Preparation of the GQ DNA included the addition of a 5′
azide-modified T4 linker, N3-TTTTGGTG4TGG. These

alterations provided flexibility for chimera-associated

quadruplex formation (T4 linker) and enabled peptide-DNA

click-conjugation via triazole linkage (Scheme 1). (Hazel et al.,

2004; Vondruskova et al., 2008; Do et al., 2017; Ahmed et al.,

2018) The click reaction gave rise to the guanine quadruplex

FIGURE 8
Guanine quadruplexes are present in GQPC/Pep-KG tapered
nanotubes. ISCH-oa1 (A) was used as a fluorescent marker of
guanine quadruplex folding and presence in conical co-
assemblies. In the presence of GQ, ISCH-oa1 showed a
marked fluorescence increase relative to ISCH-oa1 alone or in the
presence of other DNA moieties (B). GQPC indicates GQPC/pep-
KG co-assemblies formed in the presence of Na+. Ac-KLVIIAG
indicates pep-KG.
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peptide conjugate (GQPC), with linkage between the modified

glutamic acid sidechain and the 5′-end of the GQ DNA. To form

the quadruplex, two strands of the GQPC chimera must

hybridize to give Hoogsteen hydrogen bonds (Figure 6B),

forming an intermolecular parallel guanine quadruplex

with four quartets and thymine nucleotides present in the loops.

To improve the propensity for supramolecular assembly and

direct quadruplex formation, peptide concentrations and

temperature were optimized. We found that below 0.4 mM,

Pep-KG nucleates slowly and when combined with GQPC,

produced few visible assemblies by electron microscopy. At

concentrations above 0.4 mM, pep-KG and GQPC gave

heterogenous co-assemblies. Therefore, 0.4 mM Pep-KG was

used during the co-assembly process (Figure 7A). Due to the

small reaction sizes, a maximum concentration of 10 μM GQPC

was achieved and combined completely with 0.4 mM pep-KG.

Pep-KG and GQPC were combined in sodium phosphate buffer

(pH 7.4), heated to 95°C for five minutes to melt any existing

nuclei, and returned to room temperature by decreasing the

sample temperature at a rate of 2°C/minute to promote

quadruplex formation. GQPC/pep-KG co-assemblies, in which

the charge ratio was not 1:1 but rather the overall concentration

ratio was 40:1, resulted in conical nanostructures by TEM

(Figures 7B,C). Similar to dsDNA and ssDNA-directed

assembly, GQPC-templated assembly initially formed ribbons

with the narrow end of the conical nanotubes closing first

(Figure 7C).

The resulting conical nanotube is distinct from the

multilamellar nanotubes found with ssDNA, dsDNA, or TMP

templates. Most notably, the chimeric template nucleated GQPC/

Pep-KG co-assembly at low concentrations (10 μM GQPC) and

formed nanotubes with a width greater than that observed for

either the ssDNA or dsDNA template visualized by TEM. Cross-

β nanotube assemblies arise from growth along the lamination

(sheet stacking) axis as well as the β-sheet H-bonding axis, and

the covalently attached GQ-DNA was designed to impact

nucleation along both growth axes by favoring initial GQ

assembly.(Lu et al., 2003; Mehta et al., 2008) We hypothesize

that early selection for guanine quadruplex formation coupled

with low GQPC concentration, positioned GQPC conjugates at

the tapered end of mature conical assemblies and facilitated

further GQPC/Pep-KG templating. Future studies will be

required to further elucidate the structural characteristics of

the GQPC/Pep-KG co-assemblies. In addition to favored GQ

formation, the sodium phosphate buffer may promote nanotube

assembly through neutralization of the leaflet interface, similar to

the previous study by Li et al. where salt passivation of nanotube

bilayers was documented (Li et al., 2016). Electrostatic force

microscopy (EFM) of GQPC/Pep-KG co-assemblies was

consistent with a strong positive external surface charge for

the tapered nanotubes, placing the positive N-terminal lysine

of Pep-KG on the surface and sequestration of the quadruplex

DNA within the nanotube interior (Supplementary Figure S9).

GQPC/Pep-KG nanotubes contain strong peptide β-sheet

CD signatures (Supplementary Figure S4), however the GQ seeds

are below the limit of detection, thus fluorescent spectroscopy

was used to probe GQ formation. As shown in Figure 8, when

combined with GQPC/Pep-KG co-assemblies the quadruplex-

specific fluorophore ISCH-oa1 gives a 16-fold increase in

fluorescence over Pep-KG assemblies or dye alone and a 4-

fold increase in fluorescence over a dsDNA control (Chen

et al., 2016). Unlike sodium, lithium does not stabilize

quadruplex assembly, and co-assembly of GQPC/Pep-KG in

lithium phosphate buffer results in heterogeneous, thin-walled

nanotubes and fibers without conical tube tapering (Figure 7D)

(Venczel and Sen, 1993; Bhattacharyya et al., 2016). Altogether,

these results support the incorporation of GQPC and assembly of

parallel GQs within the conical GQPC/Pep-KG co-assemblies

(Figure 7E).

Conclusion

Varying ATP concentrations in cells can work to control

protein condensation, (Patel et al., 2017; Aida et al., 2022;

Saurabh et al., 2022) and biphasic control of PLD proteins like

FUS in membraneless compartments relies on electrostatic

and π-cation interactions that, in a concentration-dependent

manner, both condenses and dissolves protein condensates

(Patel et al., 2017; Ren et al., 2022). Phosphate salts are also

strongly kosmotropic and are known to induce crystalline

order in other biomolecular condensates (Malay et al., 2020).

Furthermore, previous work has used the nucleating core of

the Aβ peptide of Alzheimer’s disease as a scaffold to elucidate

the importance of electrostatic interactions in nucleic acid/

amyloid co-assembly (Rha et al., 2020). This motif forms an

initial biomolecular condensate which biases conformational

sampling, enabling both self-templating and pre-organizing

the condensate for external templated assembly (Chen et al.,

2017; Rengifo et al., 2020). Most interestingly, while ssDNA

and RNA effectively templated precise peptide ordering, the

nucleic acid had no higher-order structure and this motivated

our investigation of more ordered templates. Based on this

evidence, a minimal model was developed to explore the

importance of polyanion structural ordering in the

formation and selection of nuclei during liquid to solid

transitions.

Our model system now establishes that structured nucleic

acid assemblies provide a significantly lower threshold for

effective templating as well as provide a framework for

exploring the structural rules underpinning the early

dynamics of membraneless organelles. Specifically, we find

that the different ordering of phosphate groups on a

polyanionic template modulates the liquid to solid phase

transition from coacervate droplets to paracrystalline

assemblies, either accelerating the formation of a stable
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nucleus which propagates out of the condensate or totally

altering which nuclei is selected for within the condensate.

This finding highlights the versatility of the cross-β

architecture in accommodating various single-stranded

and higher-order nucleic acid structures. Furthermore,

our experiments with non-stoichiometric amounts of

peptide-DNA chimera allow for seeding of distinct

structures beyond co-assemblies, effectively separating

nucleation with environmental agents from propagation.

Finally, in the rapidly evolving field of biomaterials, the

utilization of a specific nucleating material for nucleation

and a different monomer for paracrystalline assembly

propagation may provide avenues for design and

incorporation of unique functional sites along amyloid-

mimetic materials.
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