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Notch signaling viaNOTCH1 stimulated by Delta-like ligand 4 (DLL4) is required

for the development of T cells in thymus, and NOTCH2 stimulated by Notch

ligand DLL1 is required for the development of marginal zone (MZ) B cells in

spleen. Notch signaling also regulates myeloid cell production in bone marrow

and is an essential contributor to the generation of early hematopoietic stem

cells (HSC). The differentiation program in each of these cellular contexts is

optimized by the regulation of Notch signaling strength by O-glycans attached

to epidermal growth factor-like (EGF) repeats in the extracellular domain of

Notch receptors. There are three major types of O-glycan on NOTCH1 and

NOTCH2 - O-fucose, O-glucose and O-GlcNAc. The initiating sugar of each

O-glycan is added in the endoplasmic reticulum (ER) by glycosyltransferases

POFUT1 (fucose), POGLUT1/2/3 (glucose) or EOGT (GlcNAc), respectively.

Additional sugars are added in the Golgi compartment during passage

through the secretory pathway to the plasma membrane. Of particular

significance for Notch signaling is the addition of GlcNAc to O-fucose on an

EGF repeat by the Fringe GlcNAc-transferases LFNG,MFNGor RFNG. Canonical

Notch ligands (DLL1, DLL4, JAG1, JAG2) expressed in stromal cells bind to the

extracellular domain of Notch receptors expressed in hematopoietic stem cells

and myeloid and lymphoid progenitors to activate Notch signaling. Ligand-

receptor binding is differentially regulated by the O-glycans on Notch. This

reviewwill summarize our understanding of the regulation of Notch signaling in

myeloid and lymphoid cell development by specific O-glycans in mice with

dysregulated expression of a particular glycosyltransferase and discuss how this

may impact immune system development and malignancy in general, and in

individuals with a congenital defect in the synthesis of the O-glycans attached

to EGF repeats.
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Introduction

Notch signaling is a highly conserved pathway that plays a pivotal role in the

maintenance of tissue development and homeostasis. Defective Notch signaling leads

to numerous pathological conditions (Varshney and Stanley, 2018; Zhou et al., 2022). In

mammals, there are four Notch receptors (NOTCH1-NOTCH4) and five ligands of the
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Jagged and Delta-like families (DLL1, DLL3, DLL4 - orthologs to

fly Delta; JAG1, JAG2 - orthologs to fly Serrate). Both Notch

receptors and the canonical ligands, are transmembrane proteins

with an extracellular domain (ECD) that consists primarily of

epidermal growth factor-like (EGF) repeats (Figure 1). Many of

these EGF repeats harbor consensus sites for the addition of

different types of O-glycan to Ser or Thr, which takes place in the

endoplasmic reticulum (ER) (Saiki et al., 2021). Classical Notch

signaling is induced when Notch receptors interact with Notch

ligands in neighboring cells (Kopan, 2012; Hori et al., 2013)

(Figure 1). The binding of ligand promotes two proteolytic

cleavages of a Notch receptor. The first is catalyzed by an

ADAM-family metalloprotease and releases the extracellular

domain, which is endocytosed into the ligand-expressing cell

(Seib and Klein, 2021). The second cleavage is mediated by γ-
secretase, an enzyme complex that contains presenilin, nicastrin,

PEN2 and APH1 whose action releases the Notch intracellular

domain (ICD), which translocates to the nucleus and cooperates

with the DNA-binding protein RBP-Jκ/CSL and a co-activator

Mastermind-like 1 (MAML1), to promote transcription and

activate Notch target genes (Kovall et al., 2017). There are

numerous factors involved in the regulation of Notch

signaling, including the expression of Notch ligands in signal-

receiving cells that may cause cis-inhibition of Notch receptors,

factors affecting secretory pathway trafficking, and the

complement of O-glycans attached to the Notch ECD.

The major O-glycans found on EGF repeats of Notch

receptors and the canonical Notch ligands are initiated by

three different sugars: 1) O-fucose is added to Ser/Thr in the

consensus site C2XXXX(S/T)C3 between the second and third

Cys residues, where X is any amino acid, and either Ser or Thr

accepts a fucose transferred from GDP-fucose by protein

O-fucosyltransferase 1 (POFUT1); 2) O-glucose is added to

Ser in the consensus site C1XSX(P/A)C2 where Ser accepts

glucose from UDP-Glc transferred by protein

O-glucosyltransferase 1 (POGLUT1); and 3) O-GlcNAc added

to Ser/Thr in the consensus site C5XXGX(S/T)GXXC6 where Ser

or Thr accepts GlcNAc transferred from UDP-GlcNAc by EGF

domain-specific O-linked N-acetylglucosaminyltransferase

(EOGT) (Saiki et al., 2021) (Figures 2A,B). The consensus

FIGURE 1
TheNotch signaling pathway. The basic components of the Notch signaling pathway are shown. Canonical Notch ligands DLL1, DLL4, JAG1 and
JAG2 in a signal-sending cell contact heterodimeric Notch receptors (e. g. NOTCH1) in a signal-receiving cell to initiate Notch signaling. Binding of
ligand to NOTCH1 is regulated by O-glycans on EGF repeats of the Notch ECD and induces a conformational change that exposes a juxta-
membrane cleavage site for the metalloprotease ADAM10. The released Notch ECD is endocytosed into the signal-sending cell. The
transmembrane remnant of NOTCH1 is then cleaved within the membrane by gamma-secretase. The released Notch ICD transits to the nucleus
where it combines with RBP-Jκ/CSL and transcriptional activators including MAML1 to form a complex that recognizes RBP-Jκ/CSL DNA binding
sites in many target genes, thereby activating transcription. Notch signaling target genes include transcriptional suppressors like Hes and Hey family
genes and transcriptional activators like c-Myc. NRR, Notch regulatory domain; HD, heterodimerization domain.
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sequence for POGLUT2 and POGLUT3 is distinct from that of

POGLUT1 (Takeuchi et al., 2018a) (Figure 2B). The four

mammalian Notch receptors contain large numbers of EGF

repeats in their respective ECD (Figure 2C), the Notch ligands

contain fewer (Figure 2D). The predicted O-glycan occupation of

NOTCH1 based on EGF consensus sequences is shown in

Figure 2C. Almost all structural studies to determine O-glycan

occupancy have been performed on NOTCH1 constructs

expressed in cells overexpressing different O-glycan

glycosyltransferases. To date there is no O-glycan analysis of a

Notch receptor purified directly from amammalian physiological

source. However, species comparisons of O-glycan consensus

sites in EGF repeats reveal that some are highly conserved like the

O-fucose site in EGF12, and others may vary between species

(Haines and Irvine, 2003; Saiki et al., 2021). Each of the initiating

sugars can be extended by the addition of other sugars to form a

glycan. O-fucose is extended by the transfer of GlcNAc from

UDP-GlcNAc by one of three Fringe GlcNAc-transferases

termed LFNG, MFNG and RFNG. The GlcNAc may be

extended by Gal, which may in turn be extended by sialic acid

(Sia) to generate the O-linked tetra-saccharide Sia-Gal-GlcNAc-

Fuc-O-EGF. Structural analyses of NOTCH1 overexpressed in

HEK293T cells showed that O-fucose consensus sites almost

always have a fucose, but the degree of extension of each fucose is

variable (Kakuda and Haltiwanger, 2017). In T cells from mouse

spleen activated in culture, Fringe modification of

NOTCH1 occurs at few O-fucose residues (Matsumoto et al.,

2022). O-glucose may be extended by xylose transferred from

UDP-Xyl by xylosyltransferases GXYLT1 or GXYLT2, and a

second Xyl may be added by XXYLT1 (Yu and Takeuchi, 2019).

O-GlcNAc may be extended by Gal and Sia as well as Fuc

(Tsukamoto et al., 2022). Several congenital human diseases

arise from mutations in genes encoding the

glycosyltransferases that modify EGF repeats in Notch

receptors and ligands (Varshney and Stanley, 2018;

Matsumoto et al., 2021).

FIGURE 2
Notch receptor and Notch ligand glycosylation in mammals. (A) Each O-glycan predicted to be attached to an EGF repeat with an appropriate
consensus sequence is shown. (B) A generic EGF repeat of ~40 amino acids (Campbell et al., 1990) with the relevant sugar attached at the consensus
site (Takeuchi et al., 2018a). Amino acids are shown by single letter code or X for any amino acid. The symbol for each sugar and an EGF repeat is
shown in the key. The glycosyltransferases responsible for each sugar transfer are given. (C) NOTCH1-NOTCH4 ECDs are depicted with their
respective number of EGF repeats, many of which can be modified by one or more O-glycans. The predicted O-glycan additions to mouse
NOTCH1 are indicated by the respective initiating sugar. (D) The ECD of canonical Notch ligands with their respective number of EGF repeats, several
of which can be modified by O-glycans.
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In this review, we summarize our current understanding of

roles for O-glycans in Notch signaling during hematopoiesis,

myeloid and lymphoid cell development in the mouse. We also

discuss how different O-glycans may impact immune cell

development and malignancy, in general, and in individuals

with a congenital defect in the synthesis of the O-glycans

attached to Notch receptors.

Notch signaling in hematopoiesis

The yolk sac is the first organ with hematopoietic potential in

the mouse embryo, producing mainly nucleated red blood cells

(RBCs) and a few macrophages and megakaryocytes during

primitive hematopoiesis, beginning at embryonic day E7.5

(Pajcini et al., 2011; Bigas et al., 2012). Hematopoiesis

continues in the embryo at sites of hemogenic endothelium,

initially in the aorta-gonad-mesonephros (AGM), which forms

HSCs that migrate to the fetal liver, and from there to the bone

marrow (BM), to finally give rise to all erythroid, myeloid and

lymphoid cells in the adult. Variations in the strength of Notch

signaling are crucial for the switch between the formation of

endothelial cells (low Notch signal induced by JAG1), and the

formation of HSCs (high Notch signal induced by DLL4) from

hemogenic endothelium (Gama-Norton et al., 2015; Porcheri

et al., 2020). Abolishing Notch signaling has no effect on

hematopoiesis in the yolk sac (Pajcini et al., 2011; Bigas et al.,

2012). However, signaling via NOTCH1, but not NOTCH2, is

required for the generation of HSCs in the embryo, although not

for their proliferation or maintenance in the adult (Kumano

et al., 2003; Souilhol et al., 2016). On the other hand, various

experimental approaches that increase Notch signaling in HSCs

lead to increased proliferation and expansion of the stem cell pool

(Lampreia et al., 2017). Most recently, conditional deletion of

RBP-Jκ in HSC has shown that Notch signaling, while not

required for the generation or maintenance of long- or short-

term HSCs, is important for HSC self-renewal after irradiation or

chemotherapeutic stress (Lakhan and Rathinam, 2021).

Roles for individual Notch receptors and ligands in

hematopoiesis have been identified by conditional knockout

strategies in the mouse. Overall requirements of Notch

signaling have been investigated by inactivation of

downstream transcription factors including RBP-Jκ, that are

required for signaling through all canonical Notch receptor/

ligand interactions (Kovall et al., 2017). Inactivation of Notch1

in HSCs using Mx1-Cre revealed that NOTCH1 is essential for

the development of T cells in the thymus (Radtke et al., 1999;

MacDonald et al., 2001). Conditional deletion of Notch1 in

thymic T cells using a CD4-Cre revealed requirements for

NOTCH1 in the generation of T cells involved in innate

immunity in liver, intestine and spleen (Chennupati et al.,

2016). A role for NOTCH2 in early T cell development was

recently identified in co-culture investigations of Notch1 and

Notch2 following inactivation in bone marrow progenitors

(Romero-Wolf et al., 2020). In elegant rescue experiments of

HSCs conditionally-deleted for RBP-Jκ, the downstream effector

of Notch signaling, a block in the development of thymus-seeking

T cell progenitors in bone marrow was identified (Chen et al.,

2019).

Experiments to determine roles for Notch ligands in thymic

stromal cells used Foxn1-Cre to identify DLL4 as essential for

stimulating Notch signaling in the thymus (Hozumi et al., 2008;

Koch et al., 2008). However, recent rescue experiments have

shown that transgenic Dll1 can substitute for Dll4 when Dll4 is

deleted, and can stimulate NOTCH1 and NOTCH2 to promote

T cell development in thymus (Hirano et al., 2022).

Immunochemistry shows that DLL1, DLL4, JAG1 and

JAG2 Notch ligands are expressed in thymus in a regio-

specific manner which may be important in controlling Notch

signaling strength in different regions of the thymus (Felli et al.,

1999; Garcia-Leon et al., 2018).

Notch2 is expressed in Pro B and Pre B cells of the bone

marrow, and in the different B cell subsets of spleen (Garis and

Garrett-Sinha, 2021). However, conditional deletion of Notch2

usingMx1-Cre primarily inhibits development of MZ B cells and

their precursors in spleen (Saito et al., 2003). DLL1 in splenic

fibroblasts is the Notch ligand responsible for stimulating Notch

signaling via NOTCH2 to generate MZ B cells in spleen (Sheng

et al., 2008). Plasticity in this differentiation has recently been

revealed in the generation of MZ B cells from follicular B (Fo B)

cells (Lechner et al., 2021). A diagram of bone marrow HSC

differentiation into lymphoid and myeloid cells in thymus and

spleen including expression of Notch receptor, Notch ligand and

Notch-related glycosyltransferase genes from the ImmGen

Project (Immunological Genome Project, 2020) is shown in

Figure 3.

Notch target genes in lymphopoiesis and
myelopoiesis

Determining genes altered in expression following deletion of

Notch pathway members in HSCs or progenitors must be

performed in the earliest lineage in which the gene is

expressed because an essential requirement for Notch

signaling may mean that certain cell populations are not

generated or are contaminated by cells that differentiate along

aberrant pathways. For example, deletion of Notch1 using Mx1-

Cre does not appear to perturb bone marrow cell populations

derived from HSCs, but blocks T cell development at an early

stage, and causes T cell progenitors to differentiate into B cells

and myeloid cells in the thymus (Radtke et al., 1999; Feyerabend

et al., 2009). Consequently, gene expression analysis of CD4/

CD8 double-negative (DN) thymocytes lacking Notch1 which

have become B cells andmyeloid cells, would not provide insights

into genes related to T cell development. Interestingly, deletion of
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RBP-Jκ in HSCs using Vav1-Cre or Mx1-Cre does not affect

Notch target gene expression in HSCs, and actually increases

expression of classic Notch target genes like Hes1 and Hes5 in

megakaryocyte, erythroid and myeloid bone marrow progenitors

(Duarte et al., 2018). However, investigations of thymus-seeding

progenitors in bone marrow by an elegant gene rescue approach

revealed requirements for RBP-Jκ and Notch signaling in the

generation of the MPP4/LMPP lymphoid progenitor population

in bone marrow (Chen et al., 2019). Thus, Notch signaling is

required for generation of thymus-seeding progenitors in bone

marrow. In the case of Notch target Hes1, conditional knockout

withMx1-Cre does not affect HSC or HSPC numbers but causes

a major block in T cell development in thymus, as expected if

Notch signaling in inhibited (Wendorff et al., 2010). However,

MZ B cell numbers in spleen are not altered following the loss of

Hes1 in HSCs (Wendorff et al., 2010). Deletion of Hes1 using

Vav1-Cre also showed that hematopoiesis was not obviously

altered. However, stress hematopoiesis was ineffective in stem

cells lacking Hes1, which exhibit an exhausted phenotype (Ma

et al., 2020).

Strategies to identify roles for O-glycans in
hematopoiesis

As mentioned above, Notch receptors and ligands are

transmembrane glycoproteins with an ECD comprising

numerous EGF repeats (Figures 2C,D). Each EGF repeat

consists of ~40 amino acids, including six conserved cysteines

which form three disulfide bonds. EGF repeats may contain

consensus sequences for the addition of fucose (Fuc), glucose

(Glc) or N-acetylglucosamine (GlcNAc) to Ser or Thr to initiate

an O-Fuc, O-Glc or O-GlcNAc glycan (Haltiwanger et al., 2022).

Glycosyltransferases that transfer an initiating sugar reside in the

ER - POFUT1 transfers Fuc from GDP-Fuc, POGLUT1/2/

3 transfer Glc from UDP-Glc, and EOGT transfers GlcNAc

from UDP-GlcNAc. O-fucose on an EGF repeat may be

extended by Fringe GlcNAc-transferases LFNG, MFNG or

RFNG, and the GlcNAc may be further extended by Gal and

sialic acid (Sia). O-glucose may be extended by xylose (Urata

et al., 2020) and O-GlcNAc may be extended by Gal and Sia

(Ogawa et al., 2020). To date, experiments aimed at defining roles

FIGURE 3
Expression of O-glycan glycosyltransferase, Notch receptor and Notch ligand genes in hematopoietic cells. Expression of the O-glycan
glycosyltransferase, Notch receptor and canonical Notch ligand genes whose deletion causes developmental changes in lymphopoiesis and
myelopoiesis are shown in cells of the three hematopoietic compartments - bonemarrow, thymus and spleen - based on data from single cell RNA-
seq or microarray experiments reported in the ImmGen Skyline database (http://rstats.immgen.org/Skyline/skyline.html). NOTCH1 in ETP and
DLL4 in thymic stroma, as well as NOTCH2 in MZ B and DLL1 in splenic stroma, are also shown as proteins.
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for O-glycans on EGF repeats in immune cell development have

been performed by manipulating the O-fucose glycans by

deleting or overexpressing Pofut1, Lfng, Mfng or Rfng

(Figure 2A). Only approximately 100 proteins contain EGF

repeats that may be modified by these O-glycans (Rampal

et al., 2007). The four Notch receptors and five Notch ligands

comprise almost 10% of these substrates. However, ascribing

phenotypic changes observed after deletion or overexpression of

one of these glycosyltransferases to changes in Notch signaling

depends on whether the phenotype mimics that of mutants

deleted for, or overexpressing, other Notch pathway members;

or on the mutation causing defective activation of Notch

receptors by ligand-induced cleavage to generate NICD; or on

the altered expression of known Notch signaling target genes. To

directly determine if loss of one or more O-glycans on a

particular Notch receptor or Notch ligand provides the basis

of a glycosylation-defective phenotype, it is necessary to mutate

individual Ser/Thr residues to preclude glycosylation in a specific

EGF repeat. This, however, comes with caveats, since the

alternative amino acid chosen can affect the outcome, as

described below.

O-Fucose glycans and Notch signaling in
lymphopoiesis and myelopoiesis

Deletion of Pofut1 in mice results in embryonic lethality with

a phenotype typical of defective Notch signaling (Shi and Stanley,

2003; Okamura and Saga, 2008). Conditional deletion of Pofut1

in bone marrow HSCs using Mx1-Cre or Vav1-Cre causes

changes in lymphoid and myeloid cell differentiation (Yao

et al., 2011; Yu et al., 2015). HSC progenitors (Lineage minus

(Lin-)Sca1+cKit + bone marrow cells termed LSK) lacking Pofut1

exhibit a 3-6-fold reduction in the binding of soluble Notch

ligands DLL1-Fc and DLL4-Fc, a major decrease in ligand

recognition, and a slight reduction of ~30% in cell surface

expression of NOTCH1 and NOTCH2 (Yao et al., 2011),

indicating a minor effect on Notch receptor trafficking.

Myeloid cells in bone marrow were increased, whereas T cell

production in thymus, and MZ B cells in spleen were decreased,

as expected if the loss of O-fucose glycans causes defective Notch

signaling via both NOTCH1 and NOTCH2. In addition,

expression of Notch target genes Dtx1 and Hes1 was

depressed in co-cultures of LSK cells with OP9 stromal cells

under conditions that induce differentiation to T cells. Bone

marrow transplantation revealed that the reduced lymphopoiesis

and altered myelopoiesis following conditional deletion of Pofut1

arose largely from cell-autonomous effects in HSCs and HSC

progenitors (HSPC). The overall findings validated conclusions

of earlier experiments that characterized defective myelopoiesis

in mice with a global knockout of Gmds, an enzyme required for

the synthesis of GDP-Fuc, the substrate of POFUT1 (Zhou et al.,

2008). Loss of O-fucose onNotch receptors, proposed as the basis

of changes in myelopoiesis in the Gmds [−/−] mice, is consistent

with the Notch-defective phenotype of mice lacking Pofut1 the

enzyme that transfers O-fucose to all Notch receptors and ligands

(Yan et al., 2010). Interestingly, conditional deletion of the

downstream transcription factor RBP-Jκ that transduces

Notch signaling via all combinations of Notch receptors and

ligands, gives more severe reductions in lymphoid and myeloid

cells than deletion of Pofut1 in HSC (Yu et al., 2015), suggesting

that other O-glycans on Notch receptors might support Notch

signaling in the absence of O-fucose glycans. We recently

addressed this question by generating mice lacking Eogt and

O-GlcNAc glycans as well as being conditionally deleted for

Pofut1 in HSCs, as described below (Tanwar and Stanley, 2022).

An alternative approach to deleting Pofut1 is to pinpoint

functions of O-fucose in NOTCH1 by mutating key O-fucose

sites in EGF repeats of the ECD. The first example in mouse was

mutation of the O-fucose site in EGF12 of NOTCH1 from Thr to

Ala (Ge and Stanley, 2008). EGF12 is within the Notch ligand

binding domain, and we now know that the O-fucose in

EGF12 of NOTCH1 is recognized directly by Notch ligands

(Luca et al., 2015; Luca et al., 2017). Homozygotes with the

EGF12 mutation termed Notch1[12f/12f], are viable and fertile in

a mixed genetic background. However, they exhibit effects typical

of reduced NOTCH1 signaling in T cell development. Thymus

size and thymocyte numbers were reduced ~50%, and T cell

progenitors, CD4 or CD8 single-positive (SP) and CD4/

CD8 double-positive (DP) T cells were reduced in thymus. In

addition, Notch1[12f/12f] thymocytes exhibit reduced expression

of activated NOTCH1 (NICD), and reduced levels of Notch

targets Hes1 and Dtx1. Binding of Notch ligand DLL1 to

thymocytes is also reduced. The defective T cell phenotype is

cell autonomous following transplantation of Notch1[12f/12f]

bone marrow. Therefore, loss of one critical fucose in

EGF12 of NOTCH1 significantly weakens signaling via

NOTCH1, even though O-fucose is probably present on

19 other EGF repeats with an O-fucose consensus site

(Figure 2C). This hypomorphic phenotype is surprisingly

maintained in mice overexpressing Lfng in T cells (Visan

et al., 2010).

The question of whether loss of O-Fuc from EGF12 in

NOTCH1 due to conversion of Thr to Ala or the amino acid

mutation itself causes the T cell phenotype was not addressed in

the mouse mutant. However, it was previously investigated in

cell-based Notch signaling assays. In these experiments, the Thr

in NOTCH1 EGF12 was changed to Ala to abrogate O-Fuc

addition or, alternatively, changed to Ser which accepted

O-fucose (Shi et al., 2007). The Thr to Ala mutation in

EGF12 inactivated NOTCH1 signaling in the cell-based assay,

but the Thr to Ser mutation did not, consistent with O-fucose

being required in EGF12 for NOTCH1 signaling. The inhibition

of NOTCH1 signaling in the Thr to Ala mutant construct was

essentially complete in these experiments. Thus, it was surprising

that Notch1[12f/12f] homozygous mice were viable (Ge and
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Stanley, 2008). The explanation turned out to be genetic

background. When the Notch1[12f] mutation was backcrossed

into the C57BL/6J background for >10 generations, Notch1[12f/

12f] homozygotes died at E11.5 (Varshney et al., 2019). It seems

that a modifying activity in the initial mixed genetic background

rescued Notch1[12f/12f] from embryonic lethality.

These findings highlight the complexities of interpreting the

results of point mutations that preclude a glycosylation reaction.

In another example, a mutation converting an Asn which

receives an N-glycan in the enzyme POFUT1 to Leu was

found to reduce POFUT1 activity. However, substitution of

the Asn with Gln that also could not receive an N-glycan,

restored POFUT1 activity (Takeuchi et al., 2018b). Therefore,

certain amino acids at that position are required for

POFUT1 activity, but the N-glycan attached to Asn is not

required for POFUT1 to be active. In another example,

mutation of Thr to Ala in the EGF repeat of Cripto inhibits

Cripto signaling. However, mutation to Ser, which could receive

an O-fucose, also inhibits Cripto signaling, leading to the

conclusion that the Thr, and not the O-fucose, is necessary

for Cripto signaling (Shi et al., 2007). The take-home message

from these experiments is that all caveats should be explored to

enable interpretation of mutant phenotypes in relation to

glycosylation status.

Fringe GlcNAc-transferases in
lymphopoiesis and myelopoiesis

The first investigation of roles for Fringe GlcNAc-

transferases in T cell development showed that overexpression

of Lfng under the control of the lck promoter that is initially

expressed in T cell progenitors, blocks T cell development and

leads to a large population of B cells in the thymus (Koch et al.,

2001). This result is consistent with numerous subsequent

experiments showing that B cells and myeloid cells are

generated from thymic T cell precursors blocked in Notch

signaling by a variety of strategies (Brandstadter and Maillard,

2019). Most interesting is the basis of the block caused by

overexpressing Lfng in thymocytes, which might be expected

to enhance rather than block Notch signaling because LFNG

modification of Notch receptors generally enhances signaling

induced by DLL ligands (Hicks et al., 2000). Elegant experiments

showed that mature thymic T cells overexpressing Lfng compete

with early T cell progenitors for binding to DLL4-expressing

thymic stroma, and thereby prevent access of T cell progenitors

to Notch ligands that stimulate Notch signaling and promote

differentiation along the T cell lineage (Visan et al., 2006).

Overexpression or loss of Lfng in fetal liver-derived HSC

confirmed that Lfng is required for optimal T cell

development (Tsukumo et al., 2006). Loss of Lfng from CD4/

CD8 double-negative 3 (DN3) T cell progenitors inhibits their

proliferation and causes them to differentiate prematurely to

CD4/CD8 double-positive (DP) T cells (Yuan et al., 2011). Thus,

extension of O-fucose on NOTCH1 in pre-T cells by LFNG

enhances Notch ligand binding to Notch receptors and Notch

signaling, thereby prolonging proliferation of the pool of

DN3 T cell progenitors and promoting the production of

mature thymic T cells. The role of LFNG is therefore to

enhance the strength of Notch signaling in T cell progenitors,

a necessary boost required for optimal production of T cells in

thymus (Yuan et al., 2011). However, overexpression of Lfng

under the lck promoter could not fully rescue reduced T cell

production in the Notch1[12f/12f] thymus (Visan et al., 2010).

This result indicates that extension of the O-fucose at EGF12 of

NOTCH1, regardless of potentially enhanced extension of

O-fucose at other EGF repeats due to prolonged

overexpression of Lfng, is required for optimal Notch

signaling in T cell progenitors. In these experiments, Lfng

expression was manipulated only in Notch receptor-expressing

T cells. Requirements of Lfng for Notch ligand functions in

thymic stroma were not addressed. However, there are cellular

contexts in which effects of Fringe modification of canonical

Notch ligands have been identified in other systems (for example

(Bochter et al., 2022) and (Kadur Lakshminarasimha Murthy

et al., 2018)), and it will be important to examine this issue and

the role of each FNG during hematopoiesis in future.

Roles for each of the Fringe GlcNAc-transferases in T and

B cell development were revealed in mice inactivated for all three

Fng genes compared to mice expressing a single Fng gene from

one allele (Song et al., 2016). Loss of all three Fringe GlcNAc-

transferases leaves Notch receptors and Notch ligands with EGF

repeats carrying O-fucose that cannot be extended (Figure 2A).

Triple knockout (Fng tKO) mice have reduced DLL4-Fc binding

to DNT cell progenitors, and reduced frequencies of early thymic

progenitors (ETP), DN2 T cell progenitors, and double-positive

(DP) T cells (Song et al., 2016). Increased frequencies of CD4 and

CD8 single-positive (SP) T cells in the thymus were a novel

characteristic of Fng tKO thymus that could indicate delayed exit

of mature SP T cells from the thymus. The Fng tKO phenotype is

transferred cell-autonomously by bone marrow. Substantial

rescue of T cell development is achieved in mice expressing

only Lfng, onlyMfng, or only Rfng from a single allele. Thus, each

Fng contributes to Notch signaling in thymic T cells and

promotes optimal T cell development.

In spleen, both LFNG and MFNG are required for MZ B cell

development (Tan et al., 2009). Deficiency of either one reduces

the number of MZ B cells in spleen. In mice expressing no Fng

genes, there is a reduced frequency of MZ B cells as expected, and

a corresponding increase in Fo B and MZ P precursor B cells.

CD4+ and CD8+ splenic T cells are also decreased. By contrast,

granulocyte numbers are increased (Song et al., 2016). All

changes are consistent with reduced Notch signaling and

show that Fringe modification is necessary for optimal T and

B cell and granulocyte production. In terms of individual Fng

genes, Lfng was able to rescue the frequency of T and MZ B cells
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in the absence of both Mfng and Rfng. Mfng or Rfng expressed

from a single allele accomplished a less complete rescue (Song

et al., 2016). There are also functional consequences for T cell

responses in mice lacking all Fringe activities. Fng tKO

splenocytes stimulated by anti-CD3/CD28 beads or

lipopolysaccharide (LPS) or Concanavalin A exhibit reduced

proliferation (Song et al., 2016). In addition, naïve T cells and

effector memory T cells were reduced in Fng tKO spleen.

O-GlcNAc glycans in hematopoiesis

Mice lacking Eogt and O-GlcNAc are viable and fertile but

exhibit mildly defective Notch signaling during retinal

angiogenesis (Sawaguchi et al., 2017). This laboratory is

investigating effects of deleting Eogt and O-GlcNAc glycans

on hematopoiesis, lymphopoiesis and myelopoiesis in Eogt

null mice. In Eogt[−/−] thymus, T cell progenitors and DP

T cell numbers were reduced, while SP T cells were slightly

increased (Tanwar and Stanley, 2022), as observed when all three

Fng genes are deleted (Song et al., 2016). Consistent with Notch

signaling being inhibited due to the loss of Eogt and O-GlcNAc

glycans, B cells and myeloid cells were increased in thymus, and

Notch target genesHes1 and Il2ra were reduced in expression. In

spleen, CD4+ and CD8+ T cells were not reduced, but NK T cells

were reduced along withmyeloid cells. Surprisingly, B cell subsets

were slightly increased. The Eogt null hematopoietic phenotype

was largely cell-autonomous following bone marrow transfer.

The fact that loss of Eogt caused effects on T and B cell

development consistent with reduced Notch signaling suggested

that O-GlcNAc glycans might support Notch signaling in the

absence of Pofut1 and O-fucose glycans. This hypothesis was

tested by deleting Pofut1 via Vav1-Cre in HSCs, in the presence

and absence of Eogt. Deletion of Pofut1 in HSCs caused myeloid

hyperplasia and a drastic reduction in T cell development and

MZ B cell production, as described previously (Yao et al., 2011;

Yu et al., 2015). The additional deletion of Eogt enhanced the

Notch-defective phenotype in bone marrow, thymus and spleen

(Tanwar and Stanley, 2022). Thus, EOGT and O-GlcNAc glycans

are required for optimal Notch signaling in the development of

myeloid and lymphoid cells. In addition, O-GlcNAc glycans

promote Notch signaling in the absence of O-fucose glycans

and partially rescue HSCs and descendants that lack Pofut1.

Congenital diseases affected in EGF repeat
modification by O-glycans

Congenital disorders of glycosylation (CDG) are rare in human

populations, but there are many distinct diseases. At latest count,

congenital mutations have been reported in >140 different genes

involved in glycosylation (Sosicka et al., 2021; Lefeber et al., 2022). Of

the glycosyltransferases that modify Notch EGF repeats and promote

hematopoiesis, deleterious mutations compatible with life in humans

have been identified in POFUT1, LFNG, and EOGT. Mutations in

POFUT1 cause an autosomal dominant disease termed Dowling

Degos Disease 2 (DDD2) which causes skin hyperpigmentation and

follicular skin lesions (Li et al., 2013). However, genome sequencing

and mosaic analysis have identified mutations in POFUT1 that are

not classified as a classical DDD2 phenotype. A recessive mutation in

a personwithmicroencephaly and developmental delay was found to

correlate with weak POFUT1 activity (Takeuchi et al., 2018b).

Another recessive POFUT1 mutation expands the

DDD2 phenotype with new features such as dermatitis (Atzmony

et al., 2019). Given the requirement for POFUT1 for lymphopoiesis

and myelopoiesis described above, patients with weak POFUT1 may

have deficiencies in innate and adaptive immunity. Skin lesions

observed in these patients may reflect reduced activity of the

immune system in skin (Nguyen and Soulika, 2019).

Humans with inactivating mutations in LFNG have

Spondylocostal Dystosis Type 3 (SCDO3), an autosomal

recessive disease that gives rise to malformation of the

skeleton during embryogenesis (Sparrow et al., 2006;

Dunwoodie, 2009). Deletion of Lfng in the mouse causes

severe skeletal damage with loss of the tail (Evrard et al.,

1998; Zhang and Gridley, 1998), and may be embryonic

lethal, depending on genetic background (unpublished

observations). LFNG promotes T and MZ B cell development,

but is partially compensated for by MFNG and RFNG (Tan et al.,

2009; Song et al., 2016). Consequently, effects of the loss of LFNG

activity on immune cell development would be expected to be

relatively minor in humans, and thus impacts on the immune

response of SCDO3 patients would also presumably be minor.

Autosomal recessive EOGTmutations in humans give rise to

a disease termed Adams-Oliver Syndrome type 4 (AOS4), which

is characterized by aplasia cutis congenita of the scalp, limb and

digit malformations, and in some cases, vascular and cardiac

defects (Schröder et al., 2019). The O-GlcNAc-transferase

activity of EOGT containing AOS4 mutations is greatly

reduced (Ogawa et al., 2015). Considering that AOS4 disease

varies in severity and that AOS4 patients may live to adulthood,

and given the defective T and altered B cell development

observed in Eogt null mice (Tanwar and Stanley, 2022), EOGT

mutations would be expected to affect immune cell development

in humans with AOS4, and potentially to compromise certain

immune responses. Further experiments on innate and adaptive

immune responses in Eogt null mice will assist in predicting

immune response concerns in AOS4 patients.

Lymphoid and myeloid malignancies with
altered Notch signaling

Notch signaling was first discovered in mammals in acute T

lymphoblastoid leukemia (T-ALL) which arises in many cases

from a chromosomal translocation that causes constitutive
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activation of NOTCH1 (Ellisen et al., 1991). Subsequently,

activating mutations in the NOTCH1 gene were found to

cause >50% of T-ALLs (Weng et al., 2004). A proportion of

these mutations occur in the NOTCH1 heterodimerization (HD)

domain just above the plasma membrane (Figure 1) and render

NOTCH1 active independently of Notch ligand stimulation.

However, Notch ligands may theoretically stimulate such

activated NOTCH1 mutants, since the ECD with its attached

O-glycans is present. Another class of NOTCH1 mutations in

T-ALL occurs in the PEST domain and functions by prolonging

the life of NICD in the nucleus (Weng et al., 2004). In this case,

Notch ligand induces Notch signaling which is sustained due to

the lack, or inactivation of, the PEST domain on NICD. Several

other types of leukemia also arise from PEST domain mutations

inNOTCH1, including chronic lymphocytic leukemia (CLL), and

Diffuse Large B cell lymphoma (Siebel and Lendahl, 2017). While

there have been no reports of an involvement of O-glycan

synthesis in leukemogenesis or other blood disorders with

disrupted Notch signaling, amplification of the POFUT1 gene

has been observed in certain cases of myeloid malignancy

(Mackinnon et al., 2010). Thus, loss of the long arm of one

copy of chromosome 20, that occurs in cases of acute myeloid

leukemia (AML) and myelodysplastic syndrome (MDS) and is

presumed to assist leukemogenesis by removal of a tumor

suppressor-like gene, is often accompanied by amplification of

the remaining portion of chromosome 20 (20q11.2). The

POFUT1 gene resides in the smallest amplified domain at

20q11.21, along with the HCK, TM9SF4 and PLAGL2 genes.

Investigation of a functional role for POFUT1 gene amplification

in models of AML and MDS might reveal enhanced Notch

signaling due to increased O-fucosylation of Notch receptors,

or ligands. A similar amplification of chromosome region

20q11.21 is seen in colon cancer (Chabanais et al., 2018).

However, the website Tumor Portal sponsored by the BROAD

Institute (http://www.tumorportal.org/), which reports

expression levels and mutations across many cancer types,

notes that neither POFUT1, LFNG nor EOGT are “near

significance” for mutation or expression changes in any

lymphoid or myeloid tumor type.

Discussion

The development of HSCs, the many HSPCs, myeloid, and

lymphoid cells reflects a complicated set of lineage decisions

requiring co-ordination at the molecular and cellular levels.

Notch signaling is a key regulator of several stages of

differentiation through different combinations of Notch

receptors, Notch ligands and glycosyltransferases that modify

extracellular domain EGF repeats (Figure 1). The focus of this

review is on Notch receptors, ligands and glycosyltransferase

genes that have been manipulated to uncover specific roles in

hematopoiesis, myelopoiesis and lymphopoiesis for regulation by

glycosylation. Table 1 summarizes key experimental systems and

findings discussed in the text. NOTCH1 is essential for T cell

development and DLL4 is required, but Dll4 deletion in thymic

stroma can be rescued by Dll1. NOTCH2 is essential for MZ B

cell development and DLL1 is also required. It is not known

whether DLL4 could substitute for DLL1 in splenic stroma.

JAG1 and JAG2 have roles in the generation of HSCs from

hemogenic endothelium and the glycosyltransferases have

various roles. Deletion of Poglut1 is embryonic lethal

(Fernandez-Valdivia et al., 2011), and to date there have been

no reports on the consequences of conditionally deleting Poglut1

and O-glucose glycans in HSCs, or other immune cells, or

stromal cells. However, the effects of knocking out Pofut1,

Lfng, Mfng, Rfng and Eogt on myeloid and lymphoid cell

development have been investigated. Deletion of Pofut1 in

HSCs causes altered generation of B cells, myeloid cells, and

thymus-seeding progenitors in bone marrow. Pofut1 null T cells

that enter the thymus are mainly converted to B cells andmyeloid

cells, and T cell development is blocked. A similarly dramatic

phenotype is observed when Lfng is overexpressed in thymic

T cells. Loss of Lfng causes a relatively mild reduction in T cell

development which is ameliorated by the presence of Mfng and/

or Rfng. In spleen, Lfng and Mfng are required together for

optimal MZ B-cell development. Mice lacking Eogt exhibit

altered cell numbers in bone marrow B cells and myeloid

cells, thymic T cells and MZ B cells in spleen. As structural

methods develop it should become possible to analyze the actual

changes in O-glycans occupancy and extension among Notch

receptors in mouse models. For now, the combined data suggest

that sugars added to the EGF repeats of Notch receptors and

ligands play a part in optimizing the generation of appropriate

numbers of cells during hematopoiesis, myelopoiesis and

lymphopoiesis. Reduced ligand binding to progenitor cells

identifies one mechanism for reduced Notch signaling

strength. Consistent with this, reduced ligand binding is

observed in DN T cells expressing NOTCH1[12f] in which

there is no O-fucose attached to EGF12, or no expression of

LFNG,MFNG or RFNG. LSK cells in bonemarrow show reduced

Notch ligand binding when POFUT1 is absent. However, loss of

EOGT does not significantly affect soluble Notch ligand binding

to DN T cells, although Notch signaling is reduced, indicating

that binding strength may be impaired. Since glycosyltransferases

that modify Notch promote immune cell development, people

with deleterious mutations in one of these glycosyltransferase

genes may have immune response defects. Functional

consequences were observed in responses of activated T cells

lacking Fringe activity, but many more studies are needed to

uncover potential problems with immune responses. In immune

cell cancers, inhibition of Notch signaling might be achieved by

inhibition of glycosylation. One example of this approach used

incorporation of a chemically modified fucose into EGF repeats

to block Notch signaling (Schneider et al., 2018). A better

understanding of how Notch signaling is regulated and
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TABLE 1 Notch Signaling-Defective Mutants and Hematopoiesis.

Gene Mouse Models Bone marrow Thymus Spleen References

Notch1 Notch1lox/loxMx1-Cre BM transfer gave T cell defects,
spleen and lymph nodes populated
with Notch1-/- cells

T cells greatly reduced.
Increased B cells and
myeloid cells

No effects on B cells, erythroid or
myeloid cells

Radtke et al. (1999),
Wilson et al. (2001)

Notch1[12f/12f] BM transfer of T cell phenotype ~50% less thymocytes,
reduced T cells. No increase
in B-cells.

Not investigated Ge and Stanley, (2008)

Notch2 Notch2-/- Mx1-Cre Normal HSC function No effects on T cell
development

Largely abolished MZ B cells and
precursors

Kumano et al. (2003)

Notch1,
Notch2

Notch1-/-Notch2-/- HSC
deletion by CRISPR/Cas9

Not applicable T cell development on OP9
cells reduced in N1-/-N2-/-

compared to N1-/- HSC

Not applicable Romero-Wolf et al.
(2020)

RBPJ RBPJ-kf/f Mx1-Cre Dysregulated HSPC differentiation Reduced T cell development
Increased B cells and
myeloid cells

No change in B cells Han et al. (2002), Yu et
al. (2015)

RBPJ-kf/f Vav1-Cre Reduced LMPP/MPP4 progenitors
Increased GMP

Reduced T cell development
Increased B cells and
myeloid cells

Dysregulated B cell development
Myeloid hyperplasia

Chen et al. (2019),
Lakhan and Rathinam,
(2021)

Dll1 Dll1lox/loxMx1-Cre No change in hematopoiesis No change in T cell
development

MZ B cells largely absent Hozumi et al. (2004)

Dll4 Dll4f/f Foxn1-Cre with
Dll1or Dll4 transgene in
ROSA-26 locus

Not applicable Loss Dll4 reduces T cell
development. Dll1 or Dll4
transgene rescued

Not applicable Hozumi et al. (2008),
Hirano et al. (2022)

Jag1 Jag1lox/loxMx1-Cre No effect on HSC or HSPC No phenotype No phenotype Mancini et al. (2005)

Jag1(ECKO) VE-
cadherin-Cre

Reduced LT-HSC, LSK cells;
increased stress sensitivity (LSK)

Not investigated Not investigated Poulos et al. (2013)

Jag1-/- embryos Block in HSC generation
from AGM

Not investigated Not investigated Gama-Norton et al.
(2015)

Jag2 Jag2(ECKO) VE-
cadherin-Cre

Reduced HSPC and T cells
following myeloablation

No effects No effects Guo et al. (2017)

Lfng PrLLfng transgenic
(Proximal Lck promoter)

Not investigated T cell development blocked
at pro-T stage. Increased
pro- B and more mature B
cells

No apparent effects Koch et al. (2001),
Visan et al. (2006)

Lfng,
Notch1

PrLLfng:Notch1[12f/12f] Not investigated Ameliorated PrLLfng
phenotype

Not investigated Visan et al. (2010)

Lfng, Mfng Lfng-/-; Mfng-/-

Lfng-/-; Mfng-/- dKO
BM transfer of spleen phenotype
from all mutants

Not investigated Reduced MZ B cells in single and
double KO. Lfng and Mfng
complementary

Tan et al. (2009)

Lfng,Mfng,
Rfng

Fng tKO BM transfer of thymus and spleen
phenotypes

Retarded T-cell
development No increase in
B cells Corrected by each
Fng alone

Reduced MZ B and Fo B cells.
Increased MZP, neutrophils and
NK T cells. Reduced activation of
T cells

Song et al. (2016)

Pofut1 Pofut1F/FMx1-Cre
Pofut1F/F Vav1-Cre

Myeloid hyperplasia, reduced B
cells. Increased GMP, reduced
CMP, MEP. BM transfer of thymus
and spleen phenotypes

Blocked T cell development
Increased B cells and
myeloid cells

Reduced T cells, MZ B cells
Increased myeloid cells

Yao et al. (2011), Yu et
al. (2015), Tanwar and
Stanley, (2022)

Eogt Eogt-/- Increased B cells and myeloid cells.
Phenotype partially transferred
by BM

Reduced T cell development
Increased B cells and
myeloid cells

Increased B cells Reduced NK T
cells and myeloid cells

Tanwar and Stanley,
(2022)

Eogt, Pofut1 Eogt-/-Pofut1F/FVav1-Cre Increased ST-HSC, LSK, HSPC,
GMP Reduced MPP, CLP, CMP,
MEP, T cells, B cells

T cell development
abolished Increased B cells,
myeloid cells, NK cells

Reduced Fo B, MZ B, mature B
cells and T cells. Increased MZ P
and myeloid cells

Tanwar and Stanley,
(2022)
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becomes dysregulated will enable promotion or inhibition of

signaling in order to optimize immune responses in humans.

Other signaling pathways such as those directed by cytokines or

NFκB also influence lymphoid and myeloid cell development

(Tsaouli et al., 2020). However, these pathways should not be

directly affected by inactivation of any of the EGF repeat-

modifying glycosyltransferases discussed in this review, unless

a critical member of the signaling pathway contains one or more

EGF repeats with O-glycans required for the function of the

parent molecule.
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