AUTHOR=Sun Liangqing , Zhao Lanjie , Huang Hui , Zhang Yuexin , Wang Junjuan , Lu Xuke , Wang Shuai , Wang Delong , Chen Xiugui , Chen Chao , Guo Lixue , Xu Nan , Zhang Hong , Wang Jing , Rui Cun , Han Mingge , Fan Yapeng , Nie Taili , Ye Wuwei TITLE=Genome-wide identification, evolution and function analysis of UGTs superfamily in cotton JOURNAL=Frontiers in Molecular Biosciences VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2022.965403 DOI=10.3389/fmolb.2022.965403 ISSN=2296-889X ABSTRACT=

Glycosyltransferases mainly catalyse the glycosylation reaction in living organisms and widely exists in plants. UGTs have been identified from G. raimondii, G. arboreum and G. hirsutum. However, Genome-wide systematic analysis of UGTs superfamily have not been studied in G. barbadense. 752 UGTs were identified from four cotton species and grouped into 18 clades, of which R was newly discovered clades. Most UGTs were clustered at both ends of the chromosome and showed a heterogeneous distribution. UGT proteins were widely distributed in cells, with the highest distribution in chloroplasts. UGTs of the same clade shared similar intron/exon structural features. During evolution, the gene family has undergone strong selection for purification. UGTs were significantly enriched in “transcriptional activity (GO:0016758)” and “metabolic processes (GO:0008152)”. Genes from the same clade differed in function under various abiotic stresses. The analysis of cis-acting element and qRT–PCR may indicate that GHUGTs play important roles in plant growth, development and abiotic stress. We further found that GHUGT74-2 plays an important role under submergence. The study broadens the understanding of UGTs in terms of gene characteristics, evolutionary processes, and gene function in cotton and provides a new way to systematically and globally understand the structure–function relationship of multigene families in the evolutionary process.