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The presence of plasmalogens in bacteria has been known for 60 years. The

recent discovery of two genes encoding reductases that convert diacyl lipids to

1-alk-1′-enyl 2-acyl lipids has confirmed the derivation of plasmalogens from

the corresponding diacyl lipids in bacteria. These genes are widely distributed in

anaerobic and in some facultatively anaerobic bacteria. Plasmalogens evolved

very early in the history of life on earth. Their persistence during eons of

evolution suggests that they play a fundamental role in living organism. The

phase behavior of plasmalogens and their conformation in membranes is

discussed.
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Introduction

An understanding of specific roles played by individual lipid types has expanded

greatly in the past several decades. Specifically, the importance of a balance between lipids

that assemble into bilayers readily, as opposed to those that easily transition to non-bilayer

assemblages has become widely appreciated. In addition, specific roles played by unusual

lipid species have been uncovered. Plasmalogens, with their alk-1′-enyl ether chain are

different from the more common all acyl lipids chemically, in their phase behavior and in

their three-dimensional structures in membranes. The recent discovery of the genes for

plasmalogen synthesis in bacteria has confirmed their direct formation from the

corresponding diacyl lipids. In this review, the presence of plasmalogens in many

anaerobic and some facultatively anaerobic bacteria will be discussed. These lipids

evolved very early in the history of life on earth. Their persistence suggests that they

play a fundamental role in these living cells.
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Distribution of plasmalogens in
bacteria

The presence of plasmalogens in anaerobic bacteria was

discovered in the early 1960s. The first report, by Allison

et al. concerned the polar lipids of Ruminococcus flavefaciens

(Allison et al., 1962). This anaerobic, Gram-positive species is

related to Clostridium. The ratio of aldehydes released from

plasmalogens to phosphorus was reported to be

0.56–0.80 suggesting that most of the polar lipid was

plasmalogen. At the same time, Wegner and Foster (Wegner

and Foster, 1963) were exploring the lipids of Bacteroides

succinogenes and reported a similar high ratio of aldehyde to

phosphorus. The major polar lipids are

phosphatidylethanolamine and plasmenylethanolamine in this

organism (Figures 1A,B).

The first reports on the presence of plasmalogens in

Clostridium described the polar lipids of Clostridium

butyricum ATCC 6015 (Goldfine, 1964; Baumann et al.,

1965). The strain was subsequently reclassified as Clostridium

beijerinckii because one of its major phospholipids,

phosphatidyl-N-methylethanolamine (PME), is not present in

C. butyricum (Goldfine, 1962; Johnston and Goldfine, 1983). The

major lipids: phosphatidylethanolamine (PE), phosphatidyl-N-

methylethanolamine (PME), phosphatidylglycerol (PG) and

cardiolipin (CL), are all present as all acyl and 1-alk-1′-enyl,
2-acyl species. An additional ether lipid is present among the

phospholipids and was later identified as a glycerol acetal of

plasmenylethanolamine (Figure 1C) (Matsumoto et al., 1971). In

C. butyricum all of the above lipid species except for PME are

present (Johnston and Goldfine, 1983). As in C. beijerinckii, all

the major lipids are present as all acyl and alk-1′-enyl, acyl
species. Many Gram-positive bacteria have

glycosyldiradylglycerols (Figure 1D) and a substantial portion

of these is often 1-alk-1′-enyl 2-acyl lipids. There can be as many

as four sugars, but in most cases, they have not been structurally

identified (Guan and Goldfine, 2021).

In 1969 Kamio et al. published a survey of plasmalogens and

saturated ether lipids in bacteria. The aldehyde/P ratio ranged

from a low of 0.04 in Clostridium perfringens to a high of 1.04 in

Peptostreptococcus elsdenii, now Megasphaera elsdenii (Kamio

et al., 1969; Rogosa, 1984). Most species had very low levels of

saturated ethers, which are characteristic of Archaea (Koga and

Morii, 2005). Since then, there have been several reviews on

plasmalogen distribution in bacteria (Goldfine and Johnston,

2005; Rezanka et al., 2012; Guan and Goldfine, 2021; Vitova et al.,

2021).

Plasmalogen biosynthesis--the
anaerobic pathway

The elucidation of the eukaryotic biosynthetic pathway for

plasmalogen biosynthesis in the early 1970s revealed a

requirement for molecular oxygen to affect the desaturation of

a saturated ether precursor (Snyder, 1972; Snyder, 1999). It

became apparent that nature has evolved two mechanisms for

formation of lipids containing an alk-1′-enyl ether bond

(Goldfine, 2010). Since early life evolved in an anaerobic

environment, the anaerobic pathway is presumably the more

FIGURE 1
(A) phosphatidylethanolamine; (B) plasmenylethanolamine; (C) glycerolacetal of plasmenylethanolamine; (D) glycosyldiacylglycerol.
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ancient. At that time in Earth’s history, respiration had not yet

evolved.When respiration appeared as the concentration of O2 in

the earth’s atmosphere increased, reactive oxygen species (ROS)

were produced as a by-product of respiration. Plasmalogens are

highly sensitive to ROS and thus became undesirable membrane

constituents. Aerobic and facultative organisms were able to

survive and reproduce with lipids containing only acyl ester

lipids (Goldfine, 2010).

As described in other articles in this series, the eukaryotic

pathway to plasmalogens begins with the synthesis of a

saturated ether lipid formed first by the acylation of

dihydroxyacetone phosphate (DHAP) catalyzed by

glycerone phosphate acyl transferase (GNPAT). A long-

chain alcohol then displaces the sn-1 acyl chain to form 1-

O-alkyl-2-hydroxy-glycerol-3-P catalyzed by alkylglycerone

phosphate synthase (AGPS) on the luminal side of the

peroxisomal membrane (da Silva et al., 2012). After

acylation of the sn-2 hydroxyl group to form 1-O-alkyl-2-

acyl glycerol-2-P and the subsequent formation of 1-O-alkyl-

2-acyl-glycerol-P-ethanolamine, there is an oxygen-

dependent desaturation of the 1-O-alkyl chain to produce

plasmenylethanolamine (PlsE) (Figure 1B) (Gallego-García

et al., 2019; Werner et al., 2020).

It has been clear for several decades that the formation of

plasmalogens in anaerobes succeeds the formation of the cognate

diacylglycerol-phospholipids. The earliest studies indicated a

precursor-product relationship between PE and PlsE (Baumann

et al., 1965). DHAPwas eliminated as a precursor of plasmalogens in

Clostridium beijerinckii (Hill and Lands, 1970), Veillonella parvulla,

and Megasphaera elsdenii (Prins and Van Golde, 1976). DHAP is

also not a precursor to plasmalogens in two anaerobic protozoa,

indicating that the dividing line is anaerobic vs. aerobic, rather than

prokaryotic vs. eukaryotic (Prins and Van Golde, 1976). Long-chain

alcohols were not utilized for plasmalogen biosynthesis in bacteria,

but long-chain aldehydes were (Goldfine and Hagen, 1972). The

formation of plasmalogens in bacteria from diacylphospholipids

received further support in later experiments with whole cells in

which the decarboxylation of phosphatidylserine (PS) was inhibited.

The mostly diacyl PS that accumulated was rapidly converted to PE

followed by PlsE when the block was removed (Koga and Goldfine,

1984). Mass spectrometric analysis showed that precursors of

phospholipids in bacteria including: phosphatidic acid, CDP-

diacylglycerol, and PS were essentially devoid of alk-1′-enyl ether
species (Johnston et al., 2010; Guan et al., 2011). In more recent

experiments, PS containing odd-chain fatty acids (C17), not present

in C. beijerinckii, was taken up by growing cells, it was then

decarboxylated to form PE, which was transformed to PlsE

containing the identical odd-chains (Figure 2) (Goldfine, 2017).

The long-sought bacterial genes for the formation of

plasmalogens by direct reduction of the sn-1 acyl chain were

identified in Clostridium perfringens (Jackson et al., 2021). The

genes plsA and plsR encode reductases that sequentially convert

the acyl ester to an alk-1′-enyl ether. As expected, these genes are
present in many Firmicutes, which includes Costridiales,

Veillonellales, Tissierallales, Selenomonadeles, Erysipelotrichales

and Acidaminococcales. Among Actinobacteria, these genes are

also present in Propionibacteriales, Eggerthellales,

Coriobacteriales, Bifidobacteriales and Actinomycetales. Some

groups of Proteobacteria have orthologs of these genes (Jackson

et al., 2021).

FIGURE 2
Pathway for the biosynthesis of plasmalogens in Clostridium butyricum. The shaded boxed intermediates have essentially no plasmalogen
species in C. novyi and C. tetani. Abbreviations: ACP, acyl carrier protein; CL, cardiolipin; DAG, diacylglycerol; GAPlsE, glycerolacetal of
plasmenylethanolamine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PlsE, plasmenylethanolamine; PlsG, plasmenylglycerol, PS,
phosphatidylserine.
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Unexpectedly, these studies have revealed the presence of

plsA and plsR orthologs in facultatively anaerobic bacteria such as

Listeria, which appear to be active when the cells are grown under

anaerobic conditions, confirming earlier reports of the presence

of plasmalogens in L. monocytogenes and Enterococcus faecalis

(Farizano et al., 2019). A TetR/AcrR-like transcriptional

regulator (EF1326) is present directly upstream of the pls gene

in E. faecalis (EF1327) and other facultative anaerobes. This

potentially O2-sensing transcriptional regulator is not present in

strict anaerobes. These findings open the question of the need for

plasmalogens under anaerobic, but not aerobic conditions, which

is discussed below.

The conformation of plasmalogens
and their biophysical properties

With respect to gel to liquid phase transition temperatures, the

presence of the sn-1-vinyl ether bond has a modest, but measurable

effect, lowering the transition temperature 4–6°C (Goldfine et al.,

1981; Lohner et al., 1984). A more dramatic effect is seen in the

transition from a lamellar to non-lamellar phase. The lamellar to

hexagonal II (L→ H) for a semi-synthetic PlsE was 30°C compared

to 68°C for the diacyl form (Lohner et al., 1984). In biological

membranes rich in PlsE, the ability to prevent this transition, which

is incompatible with normal membrane function, is necessary. This

is usually accomplished by the presence of negatively charged lipids

such as PG, CL or PS, and in the case of solvent-producing bacteria,

by the presence of a glycerolacetal of PlsE (Figure 1C) (Johnston and

Goldfine, 1985; Goldfine et al., 1987).

Diacyl PE molecules in model membranes display a bend

at C-2 in the sn-2 acyl chain so that the first and second carbon

atoms lie essentially parallel to the bilayer plane (Hitchcock

et al., 1974). In contrast, this chain in plasmalogens appears to

be perpendicular to the bilayer surface (Malthaner et al.,

1987a; Malthaner et al., 1987b; Han and Gross, 1990). A

molecular dynamics simulation study supports the closer

packing of the proximal regions, which results in thicker

lipid bilayers. These simulation studies have shown that in

plasmalogens the vinyl-ether linkage increases the ordering of

the sn-1 chain and the sn-2 acyl chains in PlsCs and PlsEs

(Rog and Koivuniemi, 2016; Koivuniemi, 2017). Taken

together, these studies indicate tighter packing of

plasmalogens in biomembranes, consistent with studies

showing that artificial membranes with plasmalogens are

less permeable to small molecules (Chen and Gross, 1994;

Zeng et al., 1998).

Functions of plasmalogens

Animals including humans require plasmalogens for normal

development and function. As discussed in other articles in this

series, humans lacking plasmalogens suffer from Rhizomelic

chondrodysplasia punctata (RCDP), a condition that impairs

normal development of the bones in the upper arms and thighs

(rhizomelia). Other consequences of the absence of plasmalogens

include intellectual disability, cataracts and heart defects

(Braverman and Moser, 2012).

The recent discovery of an operon in bacteria that encodes

two reductases needed for plasmalogen biosynthesis in bacteria

has opened the field to discovery of the effects of plasmalogen

deficiency in bacteria. As of now, there have been no reports on

the effects of these mutations on bacterial structures and

physiology. In the past, plasmalogen-deficient strains of

Megasphaera elsdenii were isolated after serial subculture.

Strains of this species were isolated in which the normal ratio

of plasmalogen to lipid phosphorus was reduced from 0.8 to less

than 0.05. Only small changes in morphology and end-products

of fermentation were reported. A notable change was a large

decrease in saturated fatty acids in the major lipids (Kaufman

et al., 1988; Kaufman et al., 1990). Physical studies that compared

the membranes and lipids of the wild type and the plasmalogen-

deficient strain revealed somewhat lower ordering of the

phospholipids compared to the wild type. Both 31P NMR and

X-ray diffraction revealed that lipids from the wild-type strain

underwent transition from the bilayer arrangement to a

hexagonal phase, beginning at 30°C. Phospholipids from

plasmalogen-deficient strains appeared to form a relatively

stable lamellar phase. Thus, the presence of plasmalogens

promoted the formation of non-lamellar phases as found in

studies with model membranes (Lohner et al., 1984).

Examination of the polar lipids of Clostridium tetani ATCC

10779, the parent strain of strain E88, which was the firstC. tetani

strain to have its genome sequenced, revealed that it did not have

plasmalogens. Analysis of several other C. tetani strains showed

that they all had mixtures of all acyl and plasmalogen polar lipids

including PE, PG, CL and N-acetylglucosaminyl diradylglycerol

(Johnston et al., 2010). Strain ATCC 10779 was used for

production of tetanus toxoid, and it is possible that the ability

to form plasmalogens was lost during serial passage. No physical

studies were done on the polar lipids of the wild-types and the

plasmalogen-deficient strain ATCC 10779.

In general, the results with natural membrane lipids from M.

elsdenii, support previous work with semisynthetic plasmalogens

and those isolated from fatty acid auxotrophic bacteria. The presence

of plasmalogens results in closer packing and destabilization of the

lamellar organization. As Koivuniemi has pointed out, it seems

probable that plasmalogens play an important role in exosome

fission, but this is an unlikely general role in bacteria. More likely is

the tighter packing they provide resulting from the absences of a

bend at the C-2/C-3 carbons of the sn-2 acyl chains. The retention of

the ability to synthesize plasmalogens in anaerobic and facultatively

anaerobic species over eons of evolution speaks to a generalized

function. One characteristic of fermentative organisms is the

production of acids and expulsion of protons into the
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extracellular space. This is true for saccharolytic and proteolytic

species of Clostridium (Holdeman et al., 1977). As the surrounding

medium acidifies, the concentration of protons increases and it is

imperative that protons do not return to the cytoplasm. Hence,

membranes containing plasmalogens that are less permeable than

those containing diacyl phospholipids alone would be favored. As

the concentration of oxygen in the atmosphere increased, the

development of respiration disfavored fermentation and the

concomitant production of acids. As noted above, respiration

produces reactive oxygen species, which are destructive of

plasmalogens. As organisms that are more complex evolved,

plasmalogens again appeared, but in animal cells, they were

formed by an oxygen-dependent mechanism. It is instructive to

note that in higher organisms, plasmalogens are concentrated in

conductive tissues such as the heart and central nervous system,

where their enhanced barrier function plays an important role.
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