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Methods of electron spin echo of pulse electron paramagnetic resonance (EPR)
spectroscopy are increasingly employed to investigate biophysical properties of
nitroxide-labeled biosystems at cryogenic temperatures. Two-pulse echo-detected ED-
spectra have proven to be valuable tools to describe the librational dynamics in the low-
temperature phases of both lipids and proteins in membranes. The motional parameter,
α2τC, given by the product of the mean-square angular amplitude, α2, and the rotational
correlation time, τC, of the motion, is readily determined from the nitroxide ED-spectra as
well as from theW-relaxation rate curves. An independent evaluation of α2 is obtained from
the motionally averaged 14N-hyperfine splitting separation in the continuous wave cw-EPR
spectra. Finally, the rotational correlation time τC can be estimated by combining ED- and
cw-EPR data. In this mini-review, results on the librational dynamics in model and natural
membranes are illustrated.
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INTRODUCTION

Steady-state, continuous wave electron paramagnetic resonance (cw-EPR) spectroscopy of
nitroxide(NO)-labels (S = 1/2, I = 1) holds a prominent place in membrane biophysics
(Berliner, 1976; Marsh, 1981; Berliner 1998; Hemminga and Berliner, 2007; Marsh, 2019). The
success and relevance of spin-label EPR in biomembrane studies is due to the fact that its timescale is
optimally sensitive to the nanoseconds and matches the timescale of various molecular motions
occurring in membrane components. 9-GHz (X-band) spin-label cw-EPR has notably contributed to
the study of the dynamics of proteins and lipids in membranes as well as in reconstituted
lipid–protein complexes and in lipid model systems (Borbat et al., 2001; Marsh, 2008; Klare and
Steinhoff, 2009; Guzzi and Bartucci, 2015; Sahu and Lorigan, 2021).

Insights into the dynamics of spin-labeled membrane components emerged from the use of
electron spin echo (ESE) methods of time-resolved, pulse-EPR spectroscopy (Freed, 2000; Bartucci
et al., 2006; Dzuba, 2007). ESE methods are based on the use of resonant microwave power pulse
sequences of defined short-time duration, typically 12–64 ns, separated by time intervals in which the
microwaves are off, that produce an echo signal at a given delay time (Kevan and Bowman, 1990;
Schweiger and Jeschke, 2001). The standard two-pulse sequence, π/2-τ-π-τ-primary echo
(Figure 1A), allows experiments on the time domain of the interpulse time spacing τ,
determined by the transverse phase memory time T2M of the spin-labels, and the two-pulse ESE
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technique is optimally sensitive to the spin-label dynamics in the
nanoseconds timescale. The primary echo, recorded at 2τ from
the first pulse, is the result of the refocusing of the spin
magnetization after the action of the microwave pulses. The
first π/2 pulse flips the magnetization by 90° into the X-Y
plane perpendicular to the Z direction of the spectrometer
magnetic field, B. The spins then dephase during τ, with the
time constant T2M, until the inverting p pulse reverses the
magnetization that will refocus after a time τ producing the
echo signal. By integrating the echo while sweeping the static
magnetic field, an echo-detected ED-EPR absorption spectrum is
obtained, the lineshape of which reflects the angular orientation
of the spins. For spin relaxation, the echo amplitude decays
exponentially when the interpulse separation τ is incremented,
and the corresponding collected ED-spectra show variations in
the lineshapes (Figure 1A). Such ED-spectra directly reflect the
amplitude and the rate of motion of spin-labeled biosystems and
contain all the information on their dynamics. Low, cryogenic
temperatures are required for ESE-based measurements because
spin-labeled T2M-relaxation time is generally too fast to produce

detectable echoes at an ambient temperature. Thus, ED-EPR
spectra offer a convenient route to study the dynamics of
spin-labeled biosystems at low temperatures, for samples
cooled with liquid nitrogen down to 77 K or with helium
below 77 K. Moreover, low-temperature studies are
advantageous to reveal dynamical features that occur also at
higher physiological temperatures where they cannot be
resolved explicitly because they are hidden by large-amplitude
motions.

Here, we review results obtained on the low-temperature
dynamics of spin-labeled lipid bilayers and natural Na,K-
ATPase membranes from two-pulse ED-EPR spectra.

Two-Pulse ED-EPR Spectra of Nitroxide
Labels in Membranes
The pioneering work of Millhauser and Freed, (1984) showed the
sensitivity of the two-pulse echo-induced EPR spectrum for each
value of interpulse separation time τ to variation across the
spectrum of the transverse relaxation time. With this ESE

FIGURE 1 | (A) Two-pulse primary echo sequences and echo amplitudes decrease with increasing the interpulse delay time, τ; simulated examples of
corresponding echo-detected ED-spectra of chain-labeled nitroxide in membranes. (B) Two-pulse (π/2-τ-π with microwave pulse widths of 32 and 64 ns) ED-EPR
spectra of 5-PCSL in DPPC bilayers at T = 200 K recorded at incremented interpulse spacings τ (from top to bottom). Solid lines are the normalized experimental spectra,
and dashed lines are simulations for isotropic librational motion. Underneath are reported the anisotropic part of the relaxation rate,W-spectra, obtained according
to Eq. 1 from pairs of spectra with interpulse separations of τ1 = 168 and τ2 = 296 ns, τ1 = 168 ns and τ2 = 424 ns, or τ1 = 168 ns and τ2 = 552 ns. Schematic illustration of
isotropic librational motion: the nitroxidemolecule performs oscillations of small angular amplitude, α, about the three nitroxide axes. cw-EPR spectra of 5-PCSL in DPPC
bilayers at 150, 220, and 260 K. ED-, W-, and cw-EPR spectra are taken from Aloi et al. (2017).
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technique, the structure and dynamics of cholestane spin-label in
oriented lipid multilayers were studied (Kar et al., 1985). Two-
pulse ED-spectra have been used by Dzuba et al. (1992), Dzuba
(1996), Dzuba (2000), and Kirilina et al. (2001) to investigate the
motion of spin-probes in glassy media. The lineshapes, revealing
anisotropic phase relaxation, showed a decrease of the amplitudes
in the intermediate spectral regions at low and high field with
increasing τ. The ED-spectra have been simulated by assuming
the occurrence of librational motion, that is, an orientational
molecular motion consisting of fast, low-amplitude oscillations
near an equilibrium position.

An analogous dependence on τ has been observed later for the
ED-spectra of chain-labeled lipids in model membranes (Bartucci
et al., 2003; Erilov et al., 2004a; Erilov et al., 2004b). In these
spectra, the regions at intermediate low and high fields, which
correspond to the maximum variation of spin orientation with
the static magnetic field, relax faster than the others, and the
intensities decrease systematically with increasing the interpulse
spacing, τ. Minor changes are instead observed in the outer peaks,
which correspond to stationary turning points (Figure 1B).

The ED-EPR spectra of lipid spin-labels in bilayers are
successfully simulated according to the so-called “isotropic”
model of librations (Erilov et al., 2004b). The model assumes that
librations consist of independent and simultaneous rapid
oscillations, each of small angular amplitude α and with
correlation time τC, around each of the three perpendicular X-,
Y-, and Z-axes of nitroxide (Figure 1B). For fast motion of small
amplitude, that is, Δω2τ2c << 1, and for a polar orientation θ, φ of the
magnetic field, B, relative to the nitroxide X-, Y-, and Z-axes, the
amplitude of a two-pulse echo decay is approximatively described by
E(2τ, θ,φ) ≈ exp(−2τ/T2M) ≈ exp(−2Δω2(θ,φ)τCτ), where Δω
is the shift in resonance frequency that is induced by the motion and
τC is the rotational correlation time (Dzuba et al., 1992; Dzuba,
1996). This term is explicitly included as a factor in the echo-detected
EPR lineshape, ED(2τ, B), details of which are reported in Erilov et al.
(2004b). From spectral simulations, it is possible to extract the
motional parameter, α2τC, given by the product of the mean-
square angular amplitude, α2, and the rotational correlation time,
τC, of the librational motion.

An alternative scheme of analyzing the dependence of the ED-
EPR lineshapes on librational dynamics is given by the
W-relaxation spectra. They are obtained from the
experimental ED-spectra recorded at two different values, τ1
and τ2, of the interpulse delay by using the relation (Erilov
et al., 2004b):

W(B, τ1, τ2) � ln[ED(2τ1, B)
ED(2τ2, B)] · 1

2(τ2 − τ1). (1)

The W-spectra evaluated for different pairs of τ-values
coincide within the noise level (Figure 1B), showing
exponential anisotropic spin relaxation as a function of τ
(especially on the low-field side), as expected for the isotropic
model of librations. The relaxation rate W-curves are
characterized by the maximum values, WL and WH,
determined in the low- and high-field regions, respectively, of
the ED-spectra. The difference in intensity at the two positions

arises simply from the different inherent sensitivities of the two
spectral regions to spin relaxation.

The relaxation rateWL orWH can also be used to characterize
the librational dynamics in membranes. Indeed, they are related
to the motional parameter α2τc via the calibration constant, Ccal,
established from simulations. For example, WL or WH = (Ccal

rad−2s−2) × α2τc (Erilov et al., 2004b).
To fully describe the librational motion of spin-labels in

membranes, it is desirable to know the mean-square angular
amplitude, α2, and the rotational correlation time, τC, of the
motion. An independent evaluation of α2 is obtained by
acquiring spin-label cw-EPR spectra at the same low
temperatures as those of ED-spectra and measuring the
motionally averaged 14N-hyperfine splittings, 2Azz, that is, the
separation between the two outer spectral peaks (Figure 1B). For
small amplitude librations around the X-axis, α2 can be obtained
from the relation: Azz � Azz − (Azz − Axx)α2, where Axx and Azz

are the principal values of the hyperfine interaction tensor (Van
et al., 1974; Dzuba, 2000). Axx is obtained from the literature
(Marsh, 2019), whereas Azz is derived by linear extrapolation of
2Azz vs. temperature data to zero temperature. From Figure 1B,
it is evident that 2Azz decreases with the temperature and,
according to the aforementioned expression, to this
corresponds an increase of α2 due to librations. Finally, the
correlation time τC of librations is evaluated from the quotient of
the pulsed α2τc and the continuous wave α2 data. In this way,
combining two-pulse ED-EPR and cw-EPR spectra, the low-
temperature librational dynamics has been fully characterized
in a number of spin-labeled membranes and proteins (De Simone
et al., 2007; Bartucci et al., 2008; Scarpelli et al., 2011; Guzzi et al.,
2012).

An alternative approach to analyze ED-spectra is to evaluate
the ratio of the echo amplitude at the two field positions with the
largest and smallest anisotropies. For molecular librations, the
resulting exponential decay rate Wanis is proportional to α2τC
(Isaev and Dzuba, 2008; Golysheva et al., 2018; Golysheva and
Dzuba, 2020).

Segmental Chain Librations of Lipids in
Model Membranes
In this section, we present results on the segmental librations of
chain-labeled lipids in the low-temperature phases of model
membranes. Bilayers composed of the most prevalent types of
lipids present in the cell membrane of the three domains of life,
that is, Eukarya, Bacteria, and Archaea, are considered (van Meer
et al., 2008; Lombard et al., 2012). They include bilayers of
diacylglycerophosphocholine and dialkylglycerophosphocholine
lipids which consist of a phosphocholine (PC) polar head group
and an apolar region formed by two fatty acid chains covalently
bound to a glycerol moiety through ester or ether linkages,
respectively (Figure 2A). For the ester-linked diacyl-PC bilayer
forming lipids, we used dipalmitoylphosphatidylcholine (DPPC)
and the unsaturated palmitoyloleoylphosphatidylcholine (POPC)
and dioleoylphosphatidylcholine (DOPC) lipids. For ether-linked
lipids, we used dihexadecyl phosphocholine (DHPC), which is
analogous to DPPC.
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From a biophysical standpoint, the single species lipid
membranes show different properties and thermotropic phase
behavior (Marsh, 2012). Notably, DPPC and DHPC form bilayers

with gel to fluid main phase transition temperature Tm ca. 315 K
but DHPC spontaneously forms lamellae gel phase with
interdigitated chains, whereas DPPC forms noninterdigitated

FIGURE 2 | (A) Chemical structure of the lipids DPPC, DHPC, POPC, and DOPC and of the chain-labeled phosphatidylcholine spin-label 5-PCSL and 16-PCSL.
Characterization of the segmental librational motion in DPPC, DHPC, POPC, and DOPCmembranes spin-labeled with 5- and 16-PCSL via the temperature dependence
of the (i) amplitude-correlation time product, α2τC, (ii) mean-square angular amplitude, α2, and (iii) correlation time, τC. Error bars for α2 are within the symbols. Data for
DPPC andDHPC are adapted fromAloi et al. (2017), and those for POPC and DOPC are fromAloi et al. (2019). (B)Na,K-ATPasemembrane: crystal structure of the
enzyme (PDB ID 4RES (Laursen et al., 2015)) and schematic bilayer region. Temperature dependence of the relaxation rateWL for 5- and 14-SASL in the Na,K-ATPase
membrane, in bilayers of extracted lipids and at the lipid–protein interface. Chain positional profile, that is,WL vs. n, at T = 180 K of n-SASL in Na,K-ATPase membranes,
in bilayers of the extracted lipids and at the lipid–protein interface. Temperature dependence of WL for 14-SASL in bilayers of extracted lipids and at the lipid–protein
interface and for 5-MSL in the Na,K-ATPase protein. Data are adapted from Guzzi et al. (2015).
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gel phase bilayers. POPC and DOPC, for the presence of cis-
bonds in the lipid chain, form low-Tm bilayers, Tm being ca. 271 K
for POPC and ca. 253 K for DOPC. For EPR measurements, the
bilayers were spin-labeled with phosphatidylcholine lipids
bearing the nitroxide group either at the 5th or at the 16th
carbon atom positions of the sn-2 chain, namely, 5- and 16-PCSL,
to probe, respectively, the first acyl chain segments and the
terminal chain region of the hydrocarbon zone of the bilayers
(Figure 2A). Lipids and spin-labeled lipids were purchased from
Avanti Polar Lipids (Birmingham, AL).

Fast (τC from subnanoseconds to nanoseconds) librations of
small amplitude (α < 20°) have been detected in DPPC, DHPC,
POPC, and DOPC membranes in the low-temperature range of
77–270 K. However, the distinctive features of the lipid acyl
chains and the different molecular chain packing between the
membranes affect the characteristics of the librational motion.

A temperature-dependent increase of the motional parameter
α2τC is seen in any lipid matrix, indicating that the segmental
chain librations intensify with the temperature. In DPPC and
DHPC assemblies, the librational oscillations acquire an
appreciable intensity from 190 K onward, much more rapidly
for interdigitated DHPC lamellae, especially for 16-PCSL. In
unsaturated POPC and DOPC bilayers, the librational motion
1) is activated from the lowest temperatures; 2) is more intense in
DOPC than in POPC bilayers; 3) in DOPC bilayers, it is more
intense at the chain termini in the middle of the bilayers (probed
by 16-PCSL) than at the first acyl chain segments close to the
polar/apolar interfaces (probed by 5-PCSL) at any temperature
(Figure 2A).

The linear and fully saturated acyl chains in DPPC and the
interdigitated chains in DHPC impart a well compact and regular
packing density to the lipid lamellae in the frozen state which
restricts the librational dynamics, at least in the low-temperature
regime. In contrast, the presence of double bonds in the
hydrocarbon chain of the unsaturated lipids confers a
loosened packing density to the bilayers which favors the
segmental librations. In agreement with the results in
Figure 2A, data on relaxation rates of stearic acid doxyl-
labeled along the chain indicated more freedom of segmental
chain librations in unsaturated POPC and DOPC bilayers
compared to saturated DPPC bilayers (Surovtsev et al., 2012;
Golysheva et al., 2018; Golysheva and Dzuba, 2020).

As seen for α2τC, the mean-square angular amplitude also
increases with temperature in all model membranes (Figure 2A).
In frozen bilayers of DPPC, POPC, and DOPC with
noninterdigitated chains, α2 depends on the label position, n,
along the lipid chain: the amplitude becomes larger on moving
from the first acyl chain segments (probed by 5-PCSL) toward the
chain termini at the bilayer midplane (probed by 16-PCSL).
These results are expected for noninterdigitated lipid bilayers
and are in agreement with pulsed EPR results in mixtures of
DPPC and equimolar amount of cholesterol and in model
membranes composed of lipids extracted from natural
membranes (Bartucci et al., 2003; Erilov et al., 2004b; Isaev
and Dzuba, 2008; Guzzi et al., 2015). The root-mean-square
angular amplitudes in unsaturated bilayers are among the
highest obtained. Recently, it has been evidenced by pulse-EPR

that the high mobility of unsaturated bilayers is comparable to
that of regions of intrinsically disordered proteins (Maslennikova
et al., 2021).

In DHPC lamellae with interdigitated chains, the librations are
restricted to small angular amplitude at both chain positions of
labeling in the low-temperature regime. Only on entering the
higher temperature regime, the angular amplitudes increase and
are larger at the chain termini than at the beginning of the chain
comparable to that in DPPC. Similar results have been obtained
in lamellae with interdigitated chains formed by mixtures of
DPPC and Lyso-palmitoilphosphatidylcholine or induced in
DPPC by ethanol (Aloi and Bartucci, 2019). The behavior of
the chain-labeled lipids in DHPC is consistent with the
interdigitated phase in which the positional isomers at the
chain termini are motionally restricted to an extent
comparable to those in proximity of the polar/apolar interface
(Boggs et al., 1989; Bartucci et al., 1993; Oranges et al., 2018). At
highest temperatures, it is likely that 16-PCSL acquires significant
freedom of motion relative to 5-PCSL since it is located in the
interfacial region where the polar heads are spaced apart by
interdigitation.

From Figure 2A, it can be seen that the rotational correlation
time lies on the subnanosecond–nanosecond timescale,
indicating that fast rapid segmental chain oscillations are
detected in the considered model bilayers. On the whole, the
differences in the librational dynamics in the various bilayers are
attributable mostly to the variations in the angular amplitude
rather than in the rotational correlation time. It is interesting to
point out that the temperature dependence of α2 shows close
similarities with that of the mean-square atomic displacement r2

measured in neutron studies (Fenimore et al., 2004; Dzuba, 2007;
Golysheva et al., 2017; Peters et al., 2017; Golysheva et al., 2018;
Aloi and Bartucci, 2022). Both curves show a rapid increase at a
temperature in the range of 200 K ascribed to the dynamical
transition from harmonic to anharmonic diffusive motion.

Librations in Na,K-ATPase Membranes
Membranous Na,K-ATPase is a complex transport system. The
lipid bilayer sector is spanned by the sodium pump, a large
integral protein (Figure 2B) that is responsible for maintenance
of the electrochemical gradients of Na+ and K+ across the
membrane in eukaryotes. Specific regions within the Na,K-
ATPase membrane, including the protein, the cationic binding
site, and the lipid bilayer environment, have been recently studied
by cw- and pulse-EPR of spin-labels and spin-labeled lipids
(Guzzi et al., 2009; Guzzi et al., 2015; Guo et al., 2018; Aloi
et al., 2021).

The hydrophobic bilayer region of the sodium pump
membrane has been investigated exploiting the affinity of
ionized chain-labeled stearic acids (n-SASL) for the membrane
(Bartucci et al., 2014; Guzzi et al., 2015). n-SASL was either
purchased from Avanti Polar Lipids or synthesized as described
elsewhere (Marsh and Watts, 1982). The studies in these samples
include measurements of both the Na,K-ATPase membranes and
the lipid model systems formed with the extracted membrane
lipids and determination of the data at the lipid–protein interface
as described in Bartucci et al. (2014) and Guzzi et al. (2015).
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The temperature-dependent increase of the WL-relaxation
parameter in Na,K-ATPase membranes is rather similar to that
at the lipid–protein interface: the mobility is more evident for T
> 180 K and independent on the label position (Figure 2B). It
differs notably from that in bilayers of extracted lipids, where
mobility is evident from a lower temperature (120 K) and more
intense at the end of the chain (i.e., data for 14-SASL) than at the
top (i.e., data for 5-SASL) (Guzzi et al., 2015). These features
have been confirmed by the positional dependence of the
transmembrane librational dynamics. Indeed, the profile of
WL vs. label position is almost flat for lipid chains at the
protein interface and in the Na,K-ATPase membrane where
WL remains at a relatively low level, comparable to that at the
top of the chain in the bilayer lipids. In the lipid bilayers, WL is
larger toward the end of the chain, with a transition in the region
of C10-C12.

Insights into the low-temperature dynamics of Na,K-ATPase
have been gained from a comparison of the librational
fluctuations of the extracted lipids and interfacial lipids with
those of the protein alone studied with a maleimide spin-labels
(5-MSL) covalently attached to cysteine–SH residues (Guzzi et al.,
2009; Guzzi et al., 2015). The temperature dependence of the
WL-rates for interfacial lipids resembles that of protein side-
chains, but not that for the bilayer lipids (Figure 2B). Librational
motions of lipids at the protein interface are coupled both to those
of the protein and to those of the bilayer lipids: protein and
membrane lipids communicate via the interfacial lipids. It is most
likely that these librational oscillations could drive transitions

between the different conformational substates in Na,K-ATPase,
which are frozen at lower temperatures but contribute to the
pathways between the principal enzymatic intermediates at
higher temperatures.

CONCLUSION

In this mini-review, we have illustrated the potential of ESE
spectroscopy for the study of the nanosecond dynamics in
bilayers and Na,K-ATPase membranes at cryogenic
temperatures via two-pulse ED-spectra. Fast, low-amplitude
librations that are readily detected and characterized at
cryogenic temperatures must be present in the higher
temperature phases of biomembranes, in addition to larger-
scale rotational motions. The low, cryogenic temperatures
contribute to highlight specific structural, dynamic, and
kinetics features of biosystems, and spin-label pulse-EPR
results deepen the biophysical characterization of membranes
that are normally studied at higher temperatures. Therefore, ESE
methods are increasingly used for studying complex
macromolecular assemblies.
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