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X-ray free-electron laser (XFEL) is the latest generation of the X-ray source that

could become an invaluable technique in structural biology. XFEL has ultrashort

pulse duration, extreme peak brilliance, and high spatial coherence, which

could enable the observation of the biological molecules in near nature state at

room temperature without crystallization. However, for biological systems, due

to their low diffraction power and complexity of sample delivery, experiments

and data analysis are not straightforward, making it extremely challenging to

reconstruct three-dimensional (3D) structures from single particle XFEL data.

Given the current limitations to the amount and resolution of the data from such

XFEL experiments, we propose a new hybrid approach for characterizing

biomolecular conformational transitions by using a single 2D low-resolution

XFEL diffraction pattern in combination with another known conformation. In

our method, we represent the molecular structure with a coarse-grained

model, the Gaussian mixture model, to describe large conformational

transitions from low-resolution XFEL data. We obtain plausible 3D structural

models that are consistent with the XFEL diffraction pattern by deforming an

initial structuralmodel tomaximize the similarity between the target pattern and

the simulated diffraction patterns from the candidate models. We tested the

proposed algorithm on two biomolecules of different sizes with different

complexities of conformational transitions, adenylate kinase, and elongation

factor 2, using synthetic XFEL data. The results show that, with the proposed

algorithm, we can successfully describe the conformational transitions by

flexibly fitting the coarse-grained model of one conformation to become

consistent with an XFEL diffraction pattern simulated from another

conformation. In addition, we showed that the incident beam orientation

has some effect on the accuracy of the 3D structure modeling and

discussed the reasons for the inaccuracies for certain orientations. The

proposed method could serve as an alternative approach for retrieving

information on 3D conformational transitions from the XFEL diffraction

patterns to interpret experimental data. Since the molecules are represented

by Gaussian kernels and no atomic structure is needed in principle, such a
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method could also be used as a tool to seek initial models for 3D reconstruction

algorithms.

KEYWORDS

hybrid method, 3D structure modeling, X-ray free-electron laser diffraction data
analysis, Gaussian mixture model, Monte-Carlo sampling

1 Introduction

Structural information of the biological molecules is

necessary for understanding their functions, and thus

determination of their structure is one of the primary interests

in biology. To determine the 3D structure of biomolecules,

multiple experimental techniques have been developed. X-ray

crystallography is the most widely used technique to determine

the 3D structure at the atomic level (Shi, 2014; Brooks-Bartlett

and Garman, 2015; Kemp and Alcock, 2017). However, since it

requires the crystallization of biological molecules, it can be

difficult to determine the structure of a wide range of

biological molecules that are hard to crystallize, such as

insoluble molecules. The emergence of single particle cryo-

electron microscopy (cryo-EM) enables the imaging of

molecular-sized objects and visualization of different

functional states without crystallization (Saibil, 2000). Cryo-

EM single-particle analysis has yielded protein structures with

increasing levels of detail in recent years (Lyumkis, 2019), even

enabling the visualization of individual atoms in a protein to be

determined (Nakane et al., 2020; Yip et al., 2020). However, the

resolution of cryo-EM is generally still lower than X-ray

crystallography (Shoemaker and Ando, 2018).

X-ray free-electron laser (XFEL) is the latest generation of the

X-ray source that could become an invaluable technique in

structural biology. XFEL can create significantly strong,

coherent X-rays in a femto-second pulse form (Emma et al.,

2010; Ishikawa et al., 2012; Altarelli and Mancuso, 2014),

enabling “diffraction before destruction” (Neutze et al., 2000;

Gaffney and Chapman, 2007) strategy. With XFEL, it is

becoming possible to observe the inner structure of the

biological molecules in near-physiological states at room

temperature without crystallization or cryo-cooling (Seibert

et al., 2011; Kimura et al., 2014; Takayama et al., 2015; van

der Schot et al., 2015; Miyashita and Joti, 2017; Spence, 2017).

Theoretically, it has been shown that high-resolution 3D

structures can be obtained using millions of single particle

diffraction patterns (Loh and Elser, 2009; Tegze and Bortel,

2012; Tokuhisa et al., 2012). However, the high-resolution 3D

reconstruction is extremely challenging so far because of the poor

scattering power of the biological macromolecules and the

limited amount of experimental data. Currently, only a small

number of low-resolution structures from single-particle

approaches have been reported (Gallagher-Jones et al., 2014;

Xu et al., 2014; Ekeberg et al., 2015; Hosseinizadeh et al., 2017;

Lundholm et al., 2018; Rose et al., 2018; Kobayashi et al., 2021).

Given the current limitations to the resolution and the

amount of data available from the single-particle XFEL

scattering experiments, it is difficult to reconstruct 3D models

ab initio. In such a situation, hybrid approaches, which combine

the computational simulations with experimental data, could be

used to obtain information on 3D structures (Alber et al., 2008;

van den Bedem and Fraser, 2015; Miyashita and Tama, 2018;

Rout and Sali, 2019; Srivastava et al., 2020). In these approaches,

computational methods are used to generate hypothetical models

that most likely represent the experimental data. Examples of

such applications include the recovery of structural details from

small-angle X-ray scattering (SAXS) profiles (Gorba et al., 2008;

Ravikumar et al., 2013; Kikhney and Svergun, 2015; Kikhney

et al., 2016; Schindler et al., 2016; Ekimoto and Ikeguchi, 2018)

and cryo-EM data (Tama et al., 2004; Jolley et al., 2008; Topf

et al., 2008; Trabuco et al., 2008; Grubisic et al., 2010; Vashisth

et al., 2012; Wu et al., 2013; Jin et al., 2014; McGreevy et al., 2016;

Miyashita et al., 2017). Such approaches for XFEL data have also

been proposed (Tokuhisa et al., 2016; Wang and Liu, 2017),

which showed that XFEL diffraction patterns could be used to

assess the plausibility of hypothetical conformations.

In this paper, we propose a new hybrid approach to study

biomolecular conformational transitions by combining a single

2D low-resolution XFEL diffraction pattern with a known

conformational model. Our method derives conformational

changes of biomolecules by flexibly deforming an initial low-

resolution 3D model to match a target XFEL diffraction pattern

using Monte-Carlo (MC) sampling. We refine the initial model

iteratively during the MC sampling to maximize the similarity

between the XFEL diffraction patterns simulated from

candidate models and the target XFEL diffraction pattern.

The basic assumption is that the similarity between

diffraction patterns correlates reasonably well with the

similarity of 3D models, while it is expected that multiple

3D models could match equally well to the target diffraction

pattern. Such a strategy can avoid the difficulties of 3D

reconstruction from limited data sets along with phase

retrieval procedures. Dasgupta et al. developed an algorithm

following the same strategy for atomic force microscopy (AFM)

studies (Dasgupta et al., 2020, 2021) to recover structural details

of the conformational transitions from AFM experimental data.

However, for adaptation to XFEL data, many changes were

needed, such as calculation and similarity detection of

simulated XFEL diffraction patterns.

The proposed algorithm was tested on two biomolecular

complexes of different sizes with different complexities of
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conformational transitions, adenylate kinase, and elongation

factor 2 using synthetic XFEL diffraction patterns. Our

results show that the proposed algorithm can successfully

describe the conformational transitions by refining the

overall 3D shapes of biomolecules against a single

simulated XFEL diffraction pattern. In addition, we

showed that the incident beam orientation has some effect

on the accuracy of the 3D structure modeling and discussed

why the accuracy is low in some orientations. The proposed

method could serve as an alternative approach for retrieving

3D information from the XFEL diffraction, which provides

new insight into the interpretation of experimental data.

Since the molecules are represented by Gaussian kernels

and no atomic structure is needed in principle, this

method could also be used as a tool to seek initial models

for 3D reconstruction algorithms.

2 Materials and methods

2.1 Model systems

To evaluate our proposed algorithm, we performed tests on

two proteins (Figure 1). For each protein, two conformations were

considered, one arbitrarily assigned to the initial conformation and

the other one to the target conformation. The model optimization

process is driven by a target XFEL diffraction pattern and uses a

MC scheme to change the conformation to match the target XFEL

diffraction pattern. The test target XFEL diffraction patterns were

synthetic XFEL diffraction patterns generated from target

conformations, which were assumed unknown in the tests.

However, for evaluating the modeling results, the 3D

conformations of the target structures were used to compare

against the modeled 3D conformation.

FIGURE 1
Systems studied: structures of adenylate kinase (AK); (A) the initial conformation (PDB: 1ake, chain A) (Whitford et al., 2007) and (B) the target
conformation (4ake, chain A) (Müller et al., 1996). Structures of elongation factor 2 (EF2); (C) the initial conformation (1n0u, chain A) (Jørgensen et al.,
2003) and (D) the target conformation (1n0v, chain C) (Jørgensen et al., 2003). The initial conformations are superposed to target conformations by
Chimera (Pettersen et al., 2004).
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First, we consider E. coli adenylate kinase (AK), a protein

comprising 214 residues. Two X-ray structures with different

conformations, PDB 1ake (Whitford et al., 2007) (closed state)

and 4ake (Müller et al., 1996) (open state) differing by 7Å RMSD

(backbone atoms), were assigned to the initial conformation and

target conformation, respectively (Figures 1A,B).

The second system is elongation factor 2 (EF2), a protein that

consists of 842 residues. Two X-ray structures of EF2, PDB 1n0u

(Jørgensen et al., 2003) and 1n0v (Jørgensen et al., 2003),

differing by 14.4Å RMSD, were assigned to the initial

conformation and target conformation, respectively

(Figures 1C,D).

2.2 Coarse-grained atomic model by
Gaussian kernels

In the MC conformational sampling process, we need to

efficiently generate a large number of simulated diffraction

patterns from structure models in order to compare the 3D

candidate models to a target XFEL diffraction pattern. In

addition, the current target systems in XFEL experiments are

large macromolecular complexes, where atomic details are not

essential, and our aim is to provide a method to describe large-

scale protein conformational transitions. Therefore, we employ

Gaussian mixture models (GMMs) as a coarse-grained

approach to represent the structures instead of atomically

detailed models. GMMs were found able to capture shape

details at a specified resolution (Kawabata, 2008).

Furthermore, in the proposed approach, the GMMs were

considered as electron densities, which diffract the coherent

X-ray beam. We have shown that this approach enables fast

calculations of simulated diffraction patterns (Section 2.3 for

details) (Nagai et al., 2018).

In the Gaussian mixture model (GMM), a macromolecule is

represented by the sum ofNg Gaussian distributions. A molecule

is represented as density function

f(r|Θ) � ∑Ng

i�1 πiϕ(r|μi,Σi) (1)

where r denotes a position in three-dimensional real space,

ϕ(r|μi,Σi) is the ith Gaussian distribution in three-

dimensional space, πi is its weight, and Θ indicates the set of

parameters for describingNg Gaussians. The sum of the weights

πi is set to be 1:

∑Ng

i�1 πi � 1.

The individual Gaussian distributions are written as

ϕ(r|μi,Σi) � (2π)−3/2|Σi|−1/2 exp[ − 2−1(r − μi)TΣ−1
i (r − μi)]

(2)
where μi is the mean position and Σi is the covariance matrix of

the distribution, and |Σi| is the determinant of the matrix Σi.

One advantage of the proposed approach is that Gaussian

kernels can be flexibly defined to describe molecular structures

at different scales. We used gmconvert (Kawabata, 2008) to

obtain the optimized GMM for generating the target

diffraction pattern. For a given macromolecule, gmconvert

uses an expectation-maximization method to estimate the

parameter Θ. We used residue-level-kernel GMMs, where

Ng is set to be the number of residues, for simulating target

diffraction patterns in the tests to simulate the electron

density of the protein molecule as accurately as possible.

However, for structure modeling, to decrease the

dimensionality of the problem to avoid overfitting and

higher computational costs, we consider the domain level

kernels instead of residue level kernels. In addition, in

GMM optimization by gmconvert (Kawabata, 2008), there

is no guarantee that the kernels are defined in relation to

the structural domains conserved during conformational

transitions. Therefore, we define the Gaussian kernels of

the initial model aligned with protein domains (domain

level kernels) to capture the conformational dynamics

better. The set of residues included in each structural

TABLE 1 Tested proteins and definition of residue blocks.

Proteins Number of residues in the initial conformation Residues to define structural domains

Adenylate kinase 214 1–29, 68–117, 161–214

30–67

118–160

Elongation factor 2 819 3–48, 74–221, 329–344

67–73, 345–485

222–270

271–328

486–561

562–569, 722–828

570–721, 829–842
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domain is given in Table 1. For each of these domains, we

defined one kernel. The kernel center is defined as the center

of the domain, while the covariance matrix is obtained from

the atomic coordinates of the domain. The weight of a kernel

is defined to be the mass-fraction of the included atoms

(Figure 2). The reference GMMs of target conformations

for evaluation for modeling results were also generated

following the same protocol.

2.3 Calculation of diffraction patterns

The Fourier transformation of GMM can be performed

analytically, which enables rapid computation of diffraction

patterns; the structure factor of GMM is given by

F(s) � ∫∫∫f(r|Θ)eis·rdr

� ∑N

i�1πie
is·μi exp[1

2
sTΣis],

(3)

where s represents a diffraction wave vector. Hereafter, we use

k � s/(2π) (Nagai et al., 2018).
In our formalism, we assumed that the incident beam

comes from the positive side of Z-axis, i.e., the wave vector of

the incident beam is (0, 0, −kinc), that the object is at (0, 0, d),
and that the detector is set perpendicular to Z-axis with its

center being at (0, 0, 0), where d is the distance between object

and detector (d > 0). In elastic scattering, the intensity of

diffraction at (x, y, 0), I (x, y), is proportional to |F(kx, ky, kz)|2
such that

kx � kinc
x











d2 + x2 + y2
√ , (4)

ky � kinc
y











d2 + x2 + y2
√ , (5)

kz � kinc −












k2inc − k2x − k2y

√
. (6)

The coordinates (kx, ky, kz) form half of the Ewald sphere. We

obtained two-dimensional diffraction pattern I (x, y) relative to

the intensity at the image center, and, in the following, the

diffraction patterns are discussed using k values corresponding

to pixels as the coordinates, i.e., I(x, y) → I(kx, ky).
In all the diffraction calculations, the wavelength of the

incident beam was set to 1 Å, i.e., kinc= 1 Å
−1
. The resolution

of the diffraction pattern is (0.0003 Å–1/pixel)2 near the center.

Following the above protocol, we simulated the initial and target

diffraction patterns for AK and EF2 (Figure 3) by converting

atomic structures shown to GMMmodels as in Figure 1. Noise is

not considered in this theoretical work, as we focus on describing

large conformational transitions of biomolecules. We use a low-

resolution coarse-grained model, GMM, to describe molecular

structures, and accordingly, we use only the part of diffraction

patterns close to the center where the signal is strong and the

effect of noise is weak.

2.4 Correlation coefficient between
diffraction patterns

In our modeling process, a critical step for accurate modeling is

the computation of the correlation coefficient between diffraction

patterns simulated from candidate GMM models and the target

diffraction pattern. We used Pearson’s correlation coefficient to

compare the diffraction patterns. To enhance the sensitivity of the

similarity detection during MC sampling, we consider the circle

matching region instead of comparing the whole pattern (Tokuhisa

et al., 2016; Nagai et al., 2018).

We first obtained the logarithm of the intensity of two

diffraction patterns as a function of polar coordinates k and ϕ,

i.e., log10I1(k,ϕ) and log10I2(k,ϕ). Then we calculated the

Pearson’s correlation coefficient between log10I1(k,ϕ) and

log10I2(k, ϕ) for a resolution ring k and defined it as CCk. Each

k value defines a circle on the diffraction pattern and we used N

number of k values spacing by Δk, i.e., N equidistant circles on the

diffraction pattern with a circle spacing of Δk. Finally, the

diffraction patterns simulated from candidate and target GMM

models are compared using the similarity score that we defined as

CC2D � (1/N)∑N

i�1CCi. (7)

We used N = 6 and Δk = 0.004 Å-1 in this study (Figure 4).

FIGURE 2
Coarse-grained model by GMM. The number of Gaussian
kernels is 3, made from AK target conformation. The domains are
defined according to Table 1. The 3 individual kernels are shown
with the embedded atomic structure. The kernels were
rendered by UCSF Chimera (Pettersen et al., 2004).
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2.5 Monte-Carlo optimization

In our modeling process, we optimize the initial model

based on the target XFEL diffraction pattern simulated from

the target conformation (Figures 3B,D). This optimization is

performed by Monte-Carlo (MC) update of the Gaussian

kernel parameters using the Metropolis scheme. In this

scheme, the positions and orientations of the Gaussian

kernels are randomly updated (from state j to k), and then

corresponding XFEL diffraction patterns are simulated (jth

and kth patterns). Then the updated kth representation (or

candidate) is accepted or rejected based on the correlation

FIGURE 3
Simulated XFEL diffraction patterns of GMM models from structures shown in Figure 1. The patterns of the initial structure of AK (A) and of the
target structure (B). The patterns of EF2 for the initial (C) and the target (D). kx and ky represent the wavenumbers of diffraction vectors (without 2π).
The intensities in the diffraction images are shown as log10 [I(k)/I (0)].

FIGURE 4
Circlematching region in the diffraction patterns. Only the circles filled with white were used for the calculations of Pearson correlation. (A) and
(B) are simulated diffraction patterns of initial and target GMM models of EF2, respectively. The radii of the circles on the patterns are 0.010, 0.014,
0.018, 0.022, 0.026 and 0.030 Å−1.
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coefficient between kth pattern to the target pattern and jth to

the target pattern. The Metropolis scheme depends on the

difference between correlation coefficients at an arbitrary

temperature T. In this study, T was set to 1.0.

In the above scheme, Gaussian kernels should not extensively

overlap each other during conformation transitions. Therefore,

repulsive interactions between the kernels during the updates are

also considered. The overlap between two three dimensional

Gaussian kernels ϕi(r|μi,Σi) and ϕj(r|μj,Σj) is given by

ξ ij � 1

(2π)3/2 · ∣∣∣∣Σij

∣∣∣∣1/2 exp[ −
1
2
(μi − μj)TΣ−1

ij (μi − μj)], (8)

where Σij � Σi + Σj, |Σij| is the determinant of the matrix Σij

(Kawabata, 2008). This overlap is normalized to (Dasgupta et al., 2020)

ξNij � ξ ij/ 




ξ iiξjj

√
. (9)

Before performing the Metropolis method with two-

dimensional comparison, candidate models in which any of the

normalized overlaps between the pairs of kernels was greater than a

threshold ξmax were rejected. The threshold parameter ξmax is

decided based on the maximum overlap correlation value from

the initial GMM models.

2.6 Evaluation of optimized 3D models

Our algorithm uses the MC scheme to refine the initial model

based on the assumption that increases in diffraction patterns

similarity correlate reasonably well with increases in the 3D

model similarity between the candidate and target

representations. Therefore, to evaluate the performance of the

algorithm, we measured the 3D similarity between the

initial model and the target structure (initial 3D CC) and the 3D

similarity between the final candidate models and the target

structure (final 3D CC). The 3D similarities were calculated

using the ‘Fit in Map’ tool in Chimera (Pettersen et al., 2004) to

superimpose the maps. We only applied the translation when fitting

the maps. The correlation is given by

CC3D � 〈u, v〉
|u||v| , (10)

where u and v are the vectors containing the fit map values and

corresponding reference map values.

3 Results and discussion

3.1 Modeling adenylate kinase open
conformation from closed conformation

The algorithm was tested on a large conformational transition

observed between two conformations of AK. Our aim is to obtain a

low-resolutionmodel of the open state AK conformation (PDB ID:

4ake) from the corresponding XFEL diffraction pattern. The initial

model is the closed state AK conformation (PDB ID: 1ake). Since

AK has three distinct domains, we used 3 Gaussian kernels to

represent the initial model (see domain definition in Table 1 and

Figure 1). The GMM models at the start of the optimization are

shown in Figure 5D.

We performed 10 fitting trials using the simulation

parameters given in Table 2. 2D CC between the diffraction

patterns increased significantly from 0.17 to 0.99 for all the

trajectories (Table 3). Regarding the 3D models, 3D CC

increased from 0.75 to the average value of 0.91 for

10 trajectories (Table 3). This result proves our assumption

that the diffraction pattern’s similarity correlates reasonably

well with the 3D model’s similarity. The highest final 3D CC

among the 10 trajectories is 0.98 (Table 3). Such a high final 3D

CC value indicates that it is possible to reconstruct 3D volumes of

AK open conformation with sufficient accuracy. The resulting

best candidate model is shown in Figure 5.

3.2 Modeling elongation factor 2 apo
conformation from holo conformation

The transition observed between two conformations of EF2 is

a hinge-type motion with an RMSD of 14.4 Å. The initial model

is the holo conformation (PDB ID: 1n0v), and the target is apo

conformation (PDB ID: 1n0u). The reference diffraction pattern

was simulated from the GMM model of the target conformation

with 819 Gaussian kernels, which corresponds to one kernel per

residue. Low-resolution models with 7 Gaussian kernels built

from the holo and apo conformations (see domain definition in

Table 1 and Figure 1) were used as the initial and the reference

target model, respectively (Figure 6D).

We performed 10 trial runs using the simulation parameters

given in Table 2. 2D CC between the diffraction patterns increased

significantly from 0.09 to the average value of 0.94 for

10 trajectories (Table 4). Accordingly, 3D CC increased from

0.62 to the average value of 0.81 for 10 trajectories (Table 4).

3D CC between the best candidate model and the target is 0.90

(Table 4). The resulting best candidate model is shown in Figure 6.

Combined with the result of AK, we conclude that the Monte-

Carlo strategy has worked for XFEL, and our approach could

successfully fit an initial low-resolution 3Dmodel to a target XFEL

diffraction pattern.

3.3 Modeling from X-ray free-electron
laser diffraction patterns of adenylate
kinase in different views

An XFEL diffraction pattern represents a particular view of

the biomolecule, and generally, the orientation of the molecule
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cannot be controlled. Therefore, it is important to investigate

how critical the orientation of the observed molecule can be for

the modeling results.

To address this question, we tested the fitting trials for various

simulated XFEL diffraction patterns from AK in different

orientations. The initial closed state conformation and target

open state conformation were rotated by X-and Y-axis (rotation

by X-axis is from 0° to 330° in the step of 30°, rotation by Y-axis is

from 0° to 180° in the step of 30°) to generate corresponding initial

and target GMM representations. In combination, there are

84 modeling cases, and for each orientation, 10 trial runs were

performed. The average and highest 3D CC (final) for

84 orientations are shown in Figure 7. We observe that the

orientation of the biomolecule has a clear impact on modeling

results (Figure 7A). The candidate model with the highest final 3D

CC is observed for the orientationX= 0° and Y= 0° (Figure 7B), with

FIGURE 5
Simulated XFEL diffraction patterns of initial (A), candidate (B), and target (C) GMM models from the fitting of AK. kx and ky represent the
wavenumbers of diffraction vectors (without 2π). Initial 2DCCbetween (A) and (C)was 0.17, which increased to 0.99 between the (B) and (C) after the
MC simulation process. GMM representations of AK before and after the fitting are shown. (D) The initial model is in pink, the reference GMM
representation of the target model is in blue mesh. Initial 3D CC between the initial model and target is 0.75. Incident beam orientation is
directed into the plane of paper for the left-side structure and from right to left for the right-side structure. (E) The candidate model is in pink, the
reference GMM representation of the target model is in blue mesh. The final 3D CC between the candidate model and target is 0.98.

TABLE 2 Simulation parameters.

Simulated XFEL diffraction pattern Excluded volume restraint Kernel random update Monte-Carlo scheme

Circle boundary: 1.1–0.03 Å-1 Overlap threshold (ξ): 0.100 (AK) Maximum translation: 1.0 Å Temperature: 1.0

Steps: 100,000 (AK)Circle number: 6 0.175 (EF2) Maximum rotation: 10.0°

Circle spacing: 0.004 Å-1 50,000 (EF2)

TABLE 3 Summary of the AK modeling results.

System studied Number of Gaussians Number of trials 2D CC 3D CC

Initial Average Maximum Initial Average Maximum

AK 3 10 0.17 0.99 ± 0.00 0.99 0.75 0.91 ± 0.04 0.98
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2D CC increased from 0.17 to 0.99 and 3D CC increased from

0.75 to 0.98 (Figure 5). On the other hand, 3D CC did not increase

for some orientations. In 52% of the 84 modeling orientations, the

highest final 3D CC values are higher than 0.90 (Figure 7B).

3.4 Modeling from X-ray free-electron
laser diffraction patterns of elongation
factor 2 in different views

Furthermore, we consider simulated XFEL diffraction patterns

from EF2 in different orientations. The initial holo conformation and

target apo conformation were rotated by the same rule as the AK test.

The average and highest 3D CC (final) for 84 orientations are shown

in Figure 8. Similar to the AK test, we can observe that the orientation

of the biomolecule has a clear impact onmodeling results (Figure 8A).

The highest 3D CC between the candidate and the target models is

observed for the orientation corresponding to X = 150° and Y = 180°

(Figure 8B), with 2D CC increased from 0.05 to 0.98, and 3D CC

increased significantly from 0.62 to 0.93 (Figure 9).

We could observe from Figure 7A and Figure 8A that 3D CC

even decreased in some orientations. This can be explained from the

shape of the molecule and the incident beam orientation. For

example, X = 60° and Y = 60° is one of the orientations that

does not work well for EF2 tests (Figure 8A). The average final 3D

CC of the ten trajectories is 0.63, which barely increased from 0.62,

the initial 3D CC.We could observe from the GMM representations

of the initial and final conformations (Figure 10C) that the middle

FIGURE 6
Simulated XFEL diffraction patterns from the initial (A), candidate (B), and target (C)GMMmodels from the fitting of EF2. kx and ky represent the
wavenumbers of diffraction vectors (without 2π). Initial 2D CC between (A) and (C) was 0.09, which increased to 0.97 between the (B) and (C) after
the MC simulation process. GMM representations of EF2 before and after the fitting are shown. (D) The initial model is in pink, the reference GMM
representation of the target model is in blue mesh. Initial 3D CC between the initial model and target is 0.62. (E) The candidate model is in pink,
the reference GMM representation of the target model is in blue mesh. The final 3D CC between the candidate model and target is 0.90.

TABLE 4 Summary of the EF2 modeling results.

System studied Number of Gaussians Number of trials 2D CC 3D CC

Initial Average Maximum Initial Average Maximum

EF2 7 10 0.09 0.94 ± 0.04 0.97 0.62 0.81 ± 0.05 0.90

Frontiers in Molecular Biosciences frontiersin.org09

Asi et al. 10.3389/fmolb.2022.913860

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.913860


FIGURE 7
Modeling AK from different orientations. Average (A) and the highest (B) final 3D CC for 10 trajectories for all combinations of rotation degrees
by X-axis and Y-axis with the color scale.

FIGURE 8
Modeling EF2 from different orientations. Average (A) and the highest (B) final 3D CC for ten trajectories for all combinations of rotation degrees
by X-axis and Y-axis with the color scale.
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part has greater densities in the projected orientation, and the

diffraction patterns are not sensitive to the repositioning of

the kernels along the incident beam path. Thus, conformation

details are not well captured in the diffraction pattern for this

beam direction. Accordingly, fitting is also strongly affected by

the part that has greater densities. Note that a comparably

high initial 2D CC (Figures 10A,B) is also observed for this

orientation. In contrast, there were no such ‘thick’ parts in

orientations that have a clear increase in 3D similarity

(Figure 6 and Figure 9) with much more conformational

details exposed in the incident beam direction.

Accordingly, these orientations have lower initial 2D CC

(Figure 6 and Figure 9).

3.5 Sensitivities of initial model alignment
accuracy

In the proposed structure optimization approach, the initial

model needs to have an orientation similar to the orientation that

the XFEL diffraction pattern represents. This is a common

requirement for flexible fitting approaches, including the

fittings to 3D information such as electron density maps. The

orientation of a protein molecule observed in XFEL diffraction

patterns can also be estimated by calculating correlation

coefficients (Tokuhisa et al., 2016; Tiwari et al., 2021).

However, such an alignment cannot be exact since the

conformations are different and the resolution of the data is

low. Therefore, we examined the effect of orientation errors

(misalignment) of the initial conformation in relation to the

target conformation on the modeling accuracy.

For the same target diffraction pattern of EF2 as Section

3.2, we changed the orientation of the initial model by

combining rotations around X, Y, and Z-axis by –5, 0, and

5 degrees, and repeated the same test with 10 trial runs

(Figure 11A). We also tested the combination of –10, 0,

and 10 degrees (Figure 11B). The misalignment by

5 degrees has small effects on the final fitted models. The

resulting 3D CC values were between 0.83 and 0.9 (best CC)

and 0.78 and 0.84 (average), which are similar to the values

obtained when the initial model was pre-aligned using the

original atomic models, 0.9 (best CC) and 0.81 (average).

When the initial model was misaligned by 10 degrees, some

effects on the final CC scores appeared. Although the resulting

FIGURE 9
Simulated diffraction patterns from the initial (A), candidate (B), and target (C) GMMmodels from EF2 fitting for X = 150° and Y = 180°. kx and ky
represent the wavenumbers of diffraction vectors (without 2π). Initial 2D CC between (A) and (C)was 0.05, which increased to 0.98 between the (B)
and (C) after the MC simulation process. GMM representations of EF2 before and after the fitting for X = 150° and Y = 180° are shown. (D) The initial
model is in pink, the referenceGMM representation of the targetmodel is in bluemesh. Initial 3DCCbetween the initial model and target is 0.62.
(E) The candidate model is in pink, the reference GMM representation of the target model is in blue mesh. The final 3D CC between the candidate
model and the target is 0.93.
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FIGURE 10
Diffraction patterns and GMM representations of initial and target conformations of EF2 test obtained for X = 60° and Y = 60°, one of the
orientations that did not work well. (A) and (B) are simulated XFEL diffraction patterns from initial and target GMM models, respectively. 2D CC
between (A) and (B) is 0.30. (C) The initial model is in pink, the reference GMM representation of the target model is bluemesh. Initial 3D CC between
the initial model and target is 0.62.

FIGURE 11
Effect of orientation errors (misalignment) of the initial conformation in relation to the target conformation on the modeling accuracy. (A)
Rotation by −5, 0, and 5 degrees. The initial 3D CC for each orientation (blue), the average (yellow) and the standard deviations (error bar), and the
highest (green) of the final 3D CC values are shown. (B) Rotation by −10, 0 and 10 degrees.

Frontiers in Molecular Biosciences frontiersin.org12

Asi et al. 10.3389/fmolb.2022.913860

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.913860


3D CC values are comparable to the original alignment for

many initial orientations, they are less consistent; the resulting

3D CC values are lower for some initial orientations, especially

when the initial structures are misaligned by larger angles.

Therefore, applications of this approach to experimental data

would require repeated fitting trials starting from the initial

orientations with slight variations, and examinations of the

obtained models to assess their reliabilities. Nonetheless, the

final 3D CC values increased from the initial value for all the

cases, demonstrating sufficient robustness of the proposed

fitting algorithm.

4 Conclusion

In this study, we proposed a new hybrid method that can be

applied to single particle XFEL diffraction patterns to produce a

low-resolution 3D model and study conformational transitions.

In the current single particle XFEL experiments on biological

systems, it is still difficult to perform 3D reconstruction directly

from the diffraction patterns. We explored the strategies to

obtain plausible 3D structural models by optimizing a known

structure to maximize the similarity between the target XFEL

diffraction pattern and simulated diffraction pattern from

candidate models using MC sampling. A set of Gaussian

kernels are used to represent the candidate models. There

were significant increases in the similarity between the

candidate models and target conformation in most cases.

Thus, our method could successfully refine initial models of

AK and EF2 to infer target conformations using just one XFEL

diffraction pattern. In addition, as the biomolecules are

represented by Gaussian kernels, this approach could be used

to study the conformational changes of the molecules where only

low-resolution structural information without atomic details is

available. Therefore, the proposed algorithm can be a new

approach to studying the dynamics of biomolecules from XFEL

experiments, as an addition to the structure determination via 3D

reconstruction from a large dataset.
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