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Computational methods with affordable computational resources are highly desirable for
identifying active drug leads frommillions of compounds. This requires a model that is both
highly efficient and relatively accurate, which cannot be achieved by most of the current
methods. In real virtual screening (VS) application scenarios, the desired method should
performmuch better in selecting active compounds by prediction than by random chance.
Here, we systematically evaluate the performance of our previously developed DFCNN
model in large-scale virtual screening, and the results show our method has approximately
22 times the success rate compared to the random chance on average with a score cutoff
of 0.99. Of the 102 test cases, 10 cases have more than 98 times the success rate of a
random guess. Interestingly, in three cases, the prediction success rate is 99 times that of a
random guess by a score cutoff of 0.99. This indicates that in most situations after our
extremely large-scale VS, the dataset can be reduced 20 to 100 times for the next step of
virtual screening based on docking or MD simulation. Furthermore, we have employed an
experimental method to verify our computational method by finding several activity
inhibitors for Trypsin I Protease. In addition, we also show its proof-of-concept
application in de novo drug screening. The results indicate the massive potential of this
method in the first step of the real drug development workflow. Moreover, DFCNN only
takes about 0.0000225s for one protein–compound prediction on average with 80 Intel
CPU cores (2.00 GHz) and 60 GB RAM, which is at least tens of thousands of times faster
than AutoDock Vina or Schrödinger high-throughput virtual screening. Additionally, an
online webserver based on DFCNN for large-scale screening is available at http://cbblab.
siat.ac.cn/DFCNN/index.php for the convenience of the users.
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HIGHLIGHTS

• The present work demonstrates that the DFCNN achieves
high efficiency and relatively high accuracy. Here, we
systematically evaluate the performance of our previously
developed DFCNN model in large-scale virtual screening,
and the results show our method has approximately
22 times the success rate compared to the random
chance on average with a score cutoff of 0.99. Of the 102
test cases, 10 cases have more than 98 times the success rate
of a random guess. Interestingly, in three cases, there is more
than 1,000 times the success rate compared to the random
guess by a score cutoff of 0.99. This indicates that in most
situations after our extremely large-scale VS, the dataset can
be reduced 20 to 100 times for the next step in virtual
screening, usually based on docking or MD simulation.

• We have employed an experimental method to verify our
computational method by finding several activity inhibitors
for Trypsin I Protease. Among five experimentally tested
compounds, STK573808 has the strongest binding affinity
with the Ic 50 value of 1.16 mg/ml and Ka value of 1.86 ×
106 L mol−1. PB90939671, STK260654, and Z25746562 have
a strong binding affinity, with an Ic 50 of 1.38, 1.42, and
2.98 mg/ml and Ka values of 1.87 × 103, 3.60 × 104, and 1.39
× 106 L mol−1, respectively. To further check the possible
interaction pattern between Trypsin I and each of the five
compounds (Z25746562, STK260654, STK573808,
PB90939671, and S763-0509), we have analyzed the MD
simulation trajectory.

• We also show its proof-of-concept application in de novo
drug screening. Interestingly, most of the novel compounds
form much more hydrogen bonds and pi-related
interactions than the inhibitors obtained from the ZINC
database. This suggests DFCNN can also be applied to de
novo drug screening when combined with a compound
generative model, and it has the potential to discover
new compounds with stronger inhibitory potency.

INTRODUCTION

The Current Status of Large-Scale Virtual
Screening
Over the past several decades, computational-aided drug design-
related technologies have widely been used in all stages of drug
discovery (Yu and Mackerell, 2017). Among these technologies,
large-scale virtual screening is routinely applied in the first stage
of drug development (Kar and Roy, 2013). Many active
compounds were successfully discovered with the help of the
virtual screening method (Kitchen et al., 2004). However, the gap
between the size of the database that the current method can
process (around completing 10,000~100,000 by typical computer
with ~10 CPU in weeks) and the availability of drug-like
compounds (above 10,000,000 current purchasable structure)
pose tremendous challenges, especially for those labs without
supercomputing power. According to reports, the total number of
drug-like molecules that are synthetically feasible theoretically

was estimated to be around 1030 to 1060 (Popova et al., 2018).
Among many virtual screening methods, the structure-based
methods were the most popular (Lionta et al., 2014). However,
the structure-based method requires correct receptor–ligand
conformation before scoring, while finding the proper
conformation through docking is often time-consuming
(Cheng et al., 2012). Recently, an open-source drug discovery
platform was developed for ultra-large virtual screens. However,
it still requires supercomputers with tens of thousands of CPUs
for screening a dataset with billions of compounds (Gorgulla
et al., 2020).

Therefore, the accuracy of the binding conformation by
docking still needs to be significantly improved (Wang et al.,
2016). The ligand-based virtual screening approach is another
alternative way to find drug candidates over an extensive
chemical database quickly, for instance, LiSiCA (Lešnik et al.,
2015) and LigandScout (Wolber and Langer, 2005). However,
these methods usually require some known drugs that bind
experimentally to the target, limiting their usage in novel drug
development for a specific novel target. In addition, it does not
directly include target information, making its accuracy
questionable in many situations.

Many efforts for large-scale virtual screening have focused also
on taking advantage of supercomputers and enhancing the
efficacy of parallelization (Sánchez-Linares et al., 2012; Fang
et al., 2016). Nevertheless, access to supercomputers can be
difficult for most labs, and the cost is high.

The Potential of Deep Learning in
Large-Scale Virtual Screening
The docking technique is one of the most commonly used
methods for large-scale virtual screening, and popular docking
programs include Dock6 (Allen et al., 2015), AutoDock (Forli
et al., 2016), AutoDock Vina (Trott and Olson, 2010), and Glide
(Friesner et al., 2004). However, their efficacy is limited by the
exhaustiveness of binding conformation searching. The accuracy
of the traditional scoring function is questionable due to some
implicit contributions such as the solvent effect and entropic
effect that are hard to estimate (Ramírez and Caballero, 2018).

Due to the continuous increase of high-resolution
protein–ligand complex in the PDB database (Goodsell et al.,
2020), the accumulation of protein–ligand binding affinity data,
and the rapid development of deep learning algorithms (Chen
et al., 2018), it is now possible to build models that can detect the
native-like complex efficiently and accurately. Many researchers
focus on increasing the accuracy of structure-based methods
(Back et al., 2019), which are usually obtained by docking.
However, in large-scale virtual screening applications, the
speed and accuracy should be balanced. Searching for correct
protein–ligand binding conformations before the structure-based
deep learning prediction would be too computationally
expensive. Therefore, developing a deep learning method
without the structure dependence would create models that
are suitable for extremely large-scale virtual screening.
DFCNN, our previously proposed model, has an advantage
both in terms of both accuracy and speed (Zhang et al., 2019).

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 8720862

Zhang et al. Examining DFCNN-Based Large-Scale Virtual Screening

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Moreover, as one of the core components of a hybrid drug
screening pipeline, DFCNN has already been successfully
applied to discover novel inhibitors for some important targets
such as RdRp (Zhang et al., 2020b) and TIPE2 (Zhang et al., 2021)
in our previous research. However, the performance of DFCNN
on different types of proteins is urgently needed to be
systematically evaluated.

High Precision Is Essential in Large-Scale
Virtual Screening
Large-scale virtual screening requires some considerations
that would be different from small-scale drug selection.

Precision is one of the most critical performance indicators
for large-scale virtual screening. Furthermore, the large-scale
selection must ensure there are high percentages of activity
compound (high precision) in the final selection pool;
otherwise, the goal of virtual screening is not achieved. To
sum up, high precision, while not so good accuracy is still
acceptable for large-scale virtual screening.

Our Current Work
In this work, we have systematically evaluated the effectiveness of
the DFCNN model in identifying active and non-active
compounds for 102 protein targets for the DUD.E dataset
(Allen et al., 2015). It shows high precision for most of the

FIGURE 1 | Schematic diagram of the systematic estimation of DFCNN performance in extremely large-scale virtual screening. (A)Collecting target protein-related
data, (B) large-scale virtual screening against an extensive compound database (ZINC compounds plus known active compound) for each protein target, (C) doing
various analyses based on the prediction, and (D) considering a good performance case (here, we use Trypsin I Protease) as a test example to find novel active
compounds by combining the computational method with experimental validation.
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cases. Furthermore, we have evaluated the model performance in
extremely large-scale virtual screening using the top 10%, 20%,
30%, 40%, and 50% known active compound recall rate over
around 10 million compounds. We also compare the ratio of TPR
(true positive rate) by selecting compounds using 0.99 and 0.9 as
score cutoff over the TPR of random selection rate. The result
shows the huge potential of our model over most of the protein
targets, except in three situations where the performance of
membrane proteins is poor, especially with multiple pockets;
proteins have a pocket binding with multiple compounds; and
proteins have a pocket buried inside them with a relatively small
cavity size. In addition, we utilize this DFCNN-based screening
method to successfully find five novel active compounds for the
target Trypsin I Protease. It should be noted that Trypsin I
Protease has ranked third in terms of the ratio of predicted
TPR over the TPR of random selection rate by using 0.99 as the
cutoff. The result shows the potential of this method in large-scale
virtual screening. Furthermore, such a systematic evaluation
method has a generalized meaning for many other deep
learning based protein–ligand models, which often make users
uncertain about their scope of application. The poor performance
of the DFCNN in the GPCR proteins also indicates that a GPCR-
specific model should be trained based on the known GPCR-
ligand dataset.

RESULTS

With the increase in the number of experimentally determined
protein–ligand complexes (and binding affinity data) and the
rapid development of deep learning algorithms, deep learning in
protein–ligand interaction prediction and drug virtual screening
will become a new trend. However, the large-scale performance of
deep learning-based methods on different proteins has to be

systematically estimated urgently. Here, we systematically check
the performance of DFCNN, one of our previously developed
protein–ligand binding estimation models (Zhang et al., 2019), in
large-scale virtual screening with the help of some known active
compounds from the DUD.E dataset, shown in Figure 1. There
are four steps. In Step A, we selected 102 diversified disease-
related proteins from the DUD.E database, and each has known
binding pockets and a set of known active compounds. In Step B,
we predicted its pocket binding possibility over each compound
in a large dataset (a ZINC dataset of ~20,000,000 compounds plus
known compounds of the targets). In Step C, we analyzed the
recall rate. We checked which kinds of proteins are suitable for
using this method based on the output from step B. We also
estimated the accuracy of the prediction result of known active
and inactive compounds. In Step D, we applied virtual screening
novel to a target Trypsin I Protease, which was shown to have a
good performance. In addition, MD simulation was used to detect
the interaction details of these novel active compounds with the
Trypsin I Protease.

The Performance Test on the DUD.E
Dataset With Known Inactive and Active
Compounds
There are 101 cases in the DUD.E dataset that have provided both
active and inactive compounds. We use these datasets to evaluate
the performance of our model systematically. We use AUC,
accuracy, TPR, precision, and MCC as performance indicators.
The performance of 101 cases is shown in Supplementary Table
S1. The positive data size and negative data size for each case were
also shown. It can be noted that, for most cases, the precision was
very high with an average value of 0.7736. It should also be noted
that AUC and accuracy, and MCC are not performing in some
cases. However, in a virtual screening application scenario, the

TABLE 1 | Our model’s 20 best performance cases are from 101 cases with known active and inactive compounds. The criteria are AUC ≥ 0.7, accuracy ≥ 0.7, TPR ≥ 0.7,
precision ≥ 0.7, and MCC > 0.

Name AUC Accuracy TPR Precision MCC Pos num Neg num

3PBL 0.9479 0.9089 0.9083 0.9977 0.4347 480 14
3KRJ 0.7976 0.8304 0.8434 0.979 0.1108 166 5
830C 0.7593 0.9465 0.979 0.9655 0.2504 572 26
1LRU 0.815 0.7273 0.7353 0.9615 0.206 102 8
3CHP 0.7334 0.849 0.8713 0.9551 0.4302 171 21
2ZDT 0.8524 0.8189 0.8365 0.9355 0.5007 104 23
2ETR 0.7707 0.7826 0.81 0.931 0.3217 100 15
2OJ9 0.9048 0.8072 0.7703 0.9268 0.6177 148 75
2FSZ 0.8414 0.7789 0.782 0.9082 0.5018 367 126
2AYW 0.8323 0.8587 0.9198 0.9037 0.5584 449 117
1ZW5 0.9089 0.9018 1 0.8854 0.7244 85 27
2ICA 0.8126 0.7725 0.8333 0.8846 0.2883 138 29
2NNQ 0.8976 0.8413 0.9787 0.8364 0.5441 47 16
1SJ0 0.8385 0.79 0.9138 0.8216 0.4071 383 136
2HZI 0.7618 0.7669 0.8516 0.8158 0.4476 182 84
2E1W 0.8169 0.7556 0.8495 0.8061 0.4121 93 42
3KL6 0.7082 0.7938 0.9572 0.8056 0.355 537 176
1E66 0.8738 0.8074 0.8631 0.7667 0.6206 453 487
3EL8 0.7293 0.7374 0.9256 0.736 0.3912 524 287
Average 0.8212 0.8145 0.8752 0.8854 0.4275 268.5 90.2
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high precision of the model is one of the most desirable. The TPR
is also relatively high, with an average value of 0.6728.We selected
the best performance cases with criteria of AUC ≥ 0.7, accuracy ≥
0.7, TPR ≥ 0.7, precision ≥ 0.7, and MCC > 0 and show them in
Table 1. We find that dopamine D3 receptor (3PBL), macrophage
colony-stimulating factor receptor (3KRJ), and matrix
metalloproteinase-13 (830C) also have demonstrated the
highest precision. Still, the conclusion should be carefully
made because of the minimal number of negative data
compared to positive data. In terms of MCC value, farnesyl
diphosphate synthase (1ZW5), acetylcholinesterase (1E66), and
insulin-like growth factor I receptor (2OJ9) have the most reliable
performance. However, the reliability of the test is limited due to
the minimal size of the dataset, average of 225 positive and 90
negative data samples.

We also carried out AutoDock Vina docking for the 19
proteins with their known active and inactive compounds
from DUD.E for performance comparison, shown in
Supplementary Table S2. DFCNN has a better average
performance than AutoDock Vina (with median scores as
cutoff) in all the used performance metrics. For instance, the
average AUC is 0.8212 versus 0.6186, and the average MCC is
0.4275 versus 0.1819. The Schrödinger high-throughput virtual
screening (HTVS) docking performance on the top five cases
from Table 1 was used for comparison. Since our DFCNN
performs well on these five targets, we want to further check
whether DFCNN can perform better than Schrödinger on these
five targets. If so, we can at least claim in some cases, DFCNN can
even perform better than Schrödinger with a much faster speed.
We admit that DFCNN cannot perform better in all the targets

FIGURE 2 | The 10 top performance proteins and their pocket regions with the known ligand.
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from Table 1 by the current version, but better performance on
some kinds of protein with much faster speed would still
demonstrate its usage in extremely large-scale virtual
screening. As shown in Supplementary Table S3, it can be
seen that Schrödinger has comparable precisions but worse
performance on other calculated metrics. Notably, DFCNN
has an extremely high speed compared with other methods,
such as AutoDock Vina and Schrödinger docking. DFCNN
could screen the 10 million drugs within 5 h using only a
workstation with 80 Intel CPU cores (2.00 GHz) and 60 GB
RAM. One protein–compound prediction only takes
0.0000225 s, while AutoDock Vina takes about 6 s with the
same computational resource, which indicates DFCNN runs
266,667 times faster than AutoDock Vina. The Schrödinger’s
HTVS docking takes about 1~2 s for one protein–compound
prediction on the 6 Intel(R) Core (3.00 GHz), which indicates
DFCNN runs tens of thousands of times faster than
Schrödinger’s HTVS.

The Recall Rate Estimation in Large-Scale
Virtual Screening
To systematically evaluate the model performance on the
large-scale virtual screening, we have constructed a large
drug-like compound dataset, with the size of 10,402,895
compounds. For each case, we predict the binding
possibility of the protein pocket against those compounds
in the dataset and their corresponding known active
compounds. The recall rate of known active compounds in
the top 10%, 20%, 30%, 40%, and 50% are shown in
Supplementary Table S4. It can be seen that the top 50%
of predictions have almost included all the active compounds
for most cases, with an average recall rate of 0.7740. The top
40%, 30%, and 20% predictions all have recall rates higher than

0.5, shown in Supplementary Table S4. However, in a real
application, we usually need a much smaller size of final
compound candidates, so a recall rate of the top 10% would
be more helpful information. For the top 10% prediction, the
recalling rate is 0.3576, about 3.6 times higher than 0.1.

The Estimation of Prediction–Random Ratio
in Large-Scale Virtual Screening
We prefer using a certain score value as the cutoff in real
applications. We tested the performance using score cutoffs of
0.9 and 0.99, respectively. The number of active compounds with
scores more prominent than 0.99 or 0.9 is noted asN0.99 orN0.9.
The total number of active compounds for each protein was noted
as Ntotal. The prediction TPR (P tpr0.99 or P tpr0.9) is defined by
N0.99/Ntotal orN0.9/Ntotal. The total number of compounds with
scores above 0.99 or 0.9 is defined as NN. The total compounds
used in the test were defined as N_all. The random guess rate
(random0.99 or random0.9) is defined as NN/N all. Finally, we
describe the P tpr0.99/random0.99 as the prediction–random ratio
with a cutoff of 0.99, and the P tpr0.9/random0.9 as the
prediction–random ratio with a cutoff of 0.9. We use a
prediction–random ratio with a cutoff of 0.99 and a
prediction–random ratio with a cutoff of 0.9 as essential
performance indicators in this work. The result is shown in
Supplementary Table S5. It can be seen that using the cutoff
of 0.99 and 0.9, most of the cases have a much higher predicted
TPR value compared to random guess, with an average
prediction–random ratio of 6.7321 and 3.1104, respectively.

Interestingly, the prediction–random ratio is hundreds or even
thousands for some cases, which indicates our model can strongly
enrich the active compounds into the high-score range for many
famous therapeutic targets. We show 10 top performance proteins
and their pocket regions with known ligands in Figure 2. It can be

TABLE 2 | The performance indicator of Ratio_0.99 ranks in the top 20 best performance cases.

PDB ID Gene name Protein name Ratio_0.99

3CCW HMDH HMG-CoA reductase 12353
1XL2 HIVPR Human immunodeficiency virus type 1 protease 4552
2AYW TRY1 Trypsin I 1084
1B9V NRAM Neuraminidase 816.3
1ZW5 FPPS Farnesyl diphosphate synthase 803.9
3LQ8 MET Hepatocyte growth factor receptor 697.1
2ZEC TRYB1 Tryptase beta-1 405
2V3F GLCM Beta-glucocerebrosidase 324
1SYN TYSY Thymidylate synthase 137.6
3G6Z RENI Renin 98.2
3KL6 FA10 Coagulation factor X 80.4
1LI4 SAHH Adenosylhomocysteinase 79.3
3BKL ACE Angiotensin-converting enzyme 71
3E37 FNTA Protein farnesyltransferase/geranylgeranyltransferase type I alpha subunit 68.4737
1SQT UROK Urokinase-type plasminogen activator 67.619
1NJS PUR2 GAR transformylase 48.9796
1LRU DEF Peptide deformylase 46.6341
3F9M HXK4 Hexokinase type IV 43.4
3EQH MP2K1 Dual specificity mitogen-activated protein kinase kinase 1 40.5
2E1W ADA Adenosine deaminase 35.0972
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noted that all 10 proteins have large and easily accessed ligand
binding pockets, and the pocket regions are relatively polar
which favors hydrophilic interaction. This indicates our model
can identify precise hydrophilic interactions, which has the
potential to overcome the low specificity existing in
traditional docking.

Analysis of the Top 20 Performance Cases
The top 20 best performance cases are listed in Table 2. HMG-CoA
reductase (HMDH) is the best performance target by our model,
whose performance rate is ~12,353 times that of random selection.

HMDH’s function is related to the production of serum low-density
lipoprotein cholesterol (LDL-c). Many of its inhibitors are effective
drugs for the treatment of hypercholesterolemia. The second top
performance target is human immunodeficiency virus type 1
protease (HIVPR), a well-known target for the treatment of HIV
disease. Our method’s performance rate is 4,552 times that of a
random selection of active compounds. The third best performance
target is Trypsin I, a target for treating pancreatitis (trypsin inhibitors
for the treatment of pancreatitis). Interestingly, our model performs
well on several antihypertension-related targets, for instance, renin,
an angiotensin-converting enzyme. Other top performance targets

FIGURE 3 | The top performance proteins and their corresponding potential inhibitors.
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are also well known. Since our model can perform very well on these
proteins, it is highly possible, among the compounds in the database
that have a higher score than 0.99, there are many potential novel
active compounds for those targets. The predicted compounds of
these targets may greatly facilitate experimental groups to discover
novel drugs. We have put this information on GitHub (https://
github.com/haiping1010/potential_drug_compounds_of_20_
target).

Analysis of the Top 10 Best Performance
Cases
Since the method performed well on these 10 protein targets,
the high-score compounds from the ZINC database are highly
possible potential binders or inhibitors of these 10 targets. We
clustered the high-score compounds into six groups for each of
the targets shown in Figure 3. Clusfps (https://github.com/
kaiwang0112006/clusfps), which depends on RDKit
(Landrum, 2006), was used to complete the clustering with
the algorithm of Murtagh (Murtagh and Contreras, 2012).
Other experimental groups may gain clues from the structure

of those compounds for developing drugs against these 10
therapeutic targets.

Analysis of the Poor Performance Cases
We select those cases with ratio values smaller than 1 with both
score cutoffs of 0.9 and 0.99, as shown in Figure 4 and
Supplementary Table S6. These poor performance cases can be
categorized into three kinds of proteins: first, membrane proteins
(including ADRB2, AA2AR, and CXCR4); second, cases where
there are multiple ligands in the active pocket or ions in the active
pockets (including CP2C9, DHI1 INHA, ALDR, and COMT); and
third, cases where the pockets are deeply buried inside the protein,
and the pocket space is relatively small, or the ligand–protein
contact region is relatively small (including PARP1, FKB1A, KITH,
and VGFR2). This indicates that on such cases, we should not use
our model or add extra restraints during the ligand selection. This
information also helps us design specific models instead of using
DFCNN for GPCR-ligand prediction. It is indicated from Figure 4
that membrane proteins and proteins that have more than one
ligand (or contain metal ions) are still too challenging by the
current DFCNN method.

FIGURE 4 | The poor performance proteins by the DFCNN. The gene names are annotated below, with the corresponding PDB ID shown in the bracket. The
proteins within the red box have multiple ligands in one pocket, and the proteins within the green box are membrane proteins.
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Selecting Novel Compounds for Trypsin I
(PDBid 2AYW)
Trypsin I is an important therapeutic target for hypercholesterolemia
disease. We have some previous work on this target (Feng et al.,
2018). In this work, our model performance was excellent in this
target, ranked third in Table 2 and Supplementary Table S5 by a
cutoff of score 0.99. The results strongly indicate some other novel
active compounds in the prediction list (score higher or equal to
0.99). The 3D structure of all the compounds in the prediction list
was downloaded from the ZINC database. After doing docking by
AutoDock Vina, we selected that high-affinity one based on docking
score and experience.

We manually checked the interaction pattern and binding
affinity. Based on calculations and experience, we selected six
compounds for the final experimental validation, shown in
Supplementary Table S7.

Experimental Validation of the Selected
Compounds’ Binding With Trypsin I
The fluorescence quenching of the intrinsic Trp and Tyr
fluorescence can be used to study the interactions between
small-molecules and trypsin (Feng et al., 2018). As Figures
5A–E shows, with each compound’s gradual addition, the

FIGURE 5 | Fluorescence emission spectra of trypsin–S763-0509 (A), trypsin–PB90939671 (B), trypsin–STK573808 (C), trypsin–STK260654 (D), and
trypsin–Z25746562 (E) as well as double-log plots of the quenching effect of PPGs on trypsin fluorescence (F). (a–k) The trypsin concentration was 1.0 × 10–5 M, and the
compound concentrations were 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0 (×10–4 M).
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fluorescence intensity of trypsin decreased, thus implying that
the compound might interact with trypsin Figure 5F shows
double-log plots of the quenching effect of PPGs on trypsin
fluorescence. The binding variables are shown in
Supplementary Table S8. The lower value of IC50 or
higher value of Ka indicates a stronger binding affinity.

Hence, STK573808 has the strongest binding affinity with
an IC 50 value of 1.16 mg/ml and a Ka value of 1.86 ×
106 L mol−1. The PB90939671, STK260654, and Z25746562
have relatively strong binding affinities, with an IC 50 of
1.38, 1.42, and 2.98 mg/ml and Ka values of 1.87× 103,
3.60× 104, and 1.39 × 106 L mol−1, respectively. The S763-

FIGURE 6 | Analysis of the MD simulation result of Trypsin I with Z25746562 (A), STK260654 (B), STK573808 (C), PB90939671 (D), and S763-0509 (E). The left
panel shows the RMSD of Trypsin I and ligand (dark green and magenta) and indicates the number of hydrogen bonds between the protein and ligand. The middle panel
shows the protein–ligand conformation of the last frame from the 100 ns MD simulation. The right panel shows the 2D diagram of the protein–ligand interaction from the
last frame of MD simulation.
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0509 has a weaker binding affinity with an IC 50 of 5.21 mg/ml
and Ka of 6.77× 103 L mol−1.

DISCUSSION

To explore the efficiency of DFCNN in virtual screening, we have
checked the speed of our model in single prediction and large-

scale virtual screening over 10402895 compounds. The virtual
screening process took about 4 h of computational time under a
Linux system with ~40 CPU cores (1,000 MHz/core) for
screening over each target. The virtual screening process took
only 1.5 h of computational time with ~ 1 CPU core (1,000 MHz/
core) and GeForce RTX 2080 Ti for screening over each target.
The high efficiency guarantees large-scale virtual screening over
millions or even billions of compounds in a relatively short time

FIGURE 7 | Representative structures of de novo candidates and their predicted interaction with the Trypsin I Protease.
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and with accessible resources. The large scale turns back to
increase the success rate of selecting desired drug candidates.

To make the DFCNN-based screening easy to access for most
users, we have deployed an online webserver (http://cbblab.siat.
ac.cn/DFCNN/index.php). Currently, it allows high-speed
screening against Targetmol-Approved_Drug_Library,
Targetmol-Natural_Compound_Library, and Targetmol-
Bioactive_Compound_Library datasets for the known pocket
of a given protein. In the future, we will progressively add new
modules to make it able to screen larger datasets once we have
more computational resources.

To explore the score distribution of the extensive virtual
screening, we have plotted Supplementary Figure S1. Most
compounds are at a low score range for these three top
performance cases.

To check the interaction pattern between Trypsin I and each of
the five compounds (Z25746562, STK260654, STK573808,
PB90939671, S763-0509), we have analyzed the MD
simulation trajectory, shown in Figure 6. Consistent with the
experimental result, the MD simulation also shows that
STK573808 has a stable binding with ligand RMSD around
~0.4 nm. The last frame conformation has formed one
hydrogen bond and four pi-related interactions. The
PB90939671 and STK260654 also have relatively stable
binding after 60 ns simulation. The Z25746562 and S763-0509
have relatively weaker binding stability with an RMSD value of
around 0.6 nm. We noticed that S763-0509 forms a relatively
more number of hydrogen bonds along 100 ns simulation, and it
is known that hydrogen bonds may contribute to more binding
specificity. By carefully examining the binding pose and
interaction pattern of the five compounds (Figure 6, middle
and right panel), we find that the detailed binding site and
interaction residues in the pocket have relatively significant
differences among the five ligands, indicating the different
parts of the pocket may have the ability to bind relatively
diversified compounds. This also suggests that our method can
explore various binding compounds for one single pocket. This
may help overcome the traditional drug design limitation, which
often generates too similar compounds, and provides more
opportunity to generate novel drugs for a given therapeutic target.

To show the proof-of-concept application of DFCNN in de
novo drug virtual screening, we carried out virtual screening by
DFCNN over a de novo compound dataset, which was generated
by a generative model LSTM_Chem with pre-trained weights.
The detailed procedure of the compound’s generation process is
shown in Supplementary Material Section S1. We only kept
compounds that fulfilled Lipinski’s rule of five, and obtained 32
compounds with a DFCNN score ≥ 0.99 and AutoDock Vina
score ≤ −8.5 kcal/mol. It should be noted that the number of
totally generated unique compounds is 641582, the number of
compounds that have a DFCNN score ≥ 0.99 is 2348, and among
them, the number of compounds that fulfilled Lipinski’s rule of
five is 317, with 32 out of 317 compounds ≤ −8.5 kcal/mol. We
grouped the finally selected 32 compounds into six clusters,
showing the representative compounds in Figure 7. We can
also examine their predicted protein–ligand interaction pattern
from the docked complexes. It can be noticed that most of the

indicated compounds formed many strong interactions with
Trypsin I Protease, including hydrogen bonds, pi-related
interaction, and hydrophobic interaction, shown in Figure 7.
Interestingly, most of the novel compounds form much more
hydrogen bonds and pi-related interactions than the inhibitors
obtained from the ZINC database in Figure 6. The representative
compounds of Cluster 4 have six hydrogen bonds and four pi-
related interactions. This suggests that DFCNN can also be
applied to de novo drug screening when combined with a
compound generative model and that it has the potential to
discover new compounds with stronger inhibitory potency.

The traditional docking methods consider shape
complementary but sometimes overestimate hydrophobic
interaction, while our method emphasizes physical–chemical
features and seems to have no such problems. This method is
highly complementary to the traditional structure-based
docking and MD simulation method. Assigning them in one
pipeline greatly increases the success rate of first-stage drug
development.

CONCLUSION

The systematic evaluation demonstrates that the method can
perform well in large-scale virtual screening. We evaluate the
various performance indicators using the proteins’ known
active and inactive datasets. Precision has a high score
(average 0.766), which strongly supports the model suitable
for virtual screening as precision is the most critical
performance indicator in virtual screening. The performance
of the very diverse protein types guides which type of protein is
most suitable for our method. Analyzing several poor
performance cases provides clues for further improving our
model in some specific cases.

We have found a novel active compound for Trypsin I, which
ranked third in the top best performance list. The successful
finding of novel compounds in minimal test cases supports the
effectiveness of our method in real applications. The method has
performed impressively well in many other cases. For instance,
the top 20 best performance proteins showed an average
performance rate ~1,093 times that of the random guess. It
strongly suggests the candidate list, which contains
compounds with DFCNN scores larger than 0.99, still
potentially contains many activity compounds. The prediction
list may be useful for other researchers who plan to design novel
compounds for those targets. Our method is peer work that uses a
limited number of CPU cores to screen whole 10 million
compounds within several hours with high accuracy. The
accuracy is guaranteed by incorporating protein pocket and
ligand information as input, high-level deep learning
architectures, and a comprehensive training dataset. This
method shows strong potential in first-stage large-scale virtual
screening. Since it is complementary to the traditional methods,
such as docking, MD simulation, and structure-based
protein–ligand binding estimators, it would be easier to
identify novel drug leads by combining those methods in one
pipeline.
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METHODS

The Model of Protein–Ligand Interaction
Prediction
We adopt the trained model (DFCNN) from our previous work
(Zhang et al., 2019; Zhang et al., 2020a; Zhang et al., 2020b; Zhang
et al., 2021). Previously, the model was used for inverse target
searching; here, we used it as a core module in extremely large-
scale virtual screening. In addition, we have used DFCNN as a
core model in a hybrid pipeline to help identify inhibitors for
protein targets RdRp and TIPE2 in our previous works (Zhang
et al., 2020b; Zhang et al., 2021). We have also applied DFCNN to
do a virtual screening over the main protease of SARS-CoV-2
(Zhang et al., 2020a).

The deep learning-based method, DFCNN (Dense fully
Connected Neural Network), has been developed for
predicting the protein–drug binding probability (Zhang et al.,
2019). DFCNN utilizes the concatenated molecular vector of
protein pocket and ligand as input representation. The
molecular vector is generated by Mol2vec (Jaeger et al.,
2018), which is inspired by the word2vec model in natural
language processing. The pocket was defined as residues within
1 nm of the known ligand. The DFCNN model was trained on a
dataset extracted from the PDBbind database (Liu et al., 2015).
The dataset’s negative samples were generated by cross-
combination of proteins and ligands from PDBbind database,
and positive data samples were taken from protein–ligand pairs
in the experimental structure. DFCNN achieved an AUC value
of around 0.9 for the independent testing set (Zhang et al.,
2019). The model is about ~100,000 times faster than AutoDock
Vina in predicting the protein-ligand binding probability (range
0~1) because it does not rely on the protein–drug complex
conformation.

The architectural structure of the DFCNN model is illustrated
in Supplementary Figure S2. We can see that DFCNN has 10
densely connected layers outputting 100 units simultaneously
plus a standard fully connected layer outputting one unit as
the final output of this model. Specifically, a densely connected
layer means a layer taking all outputs of its preceding layers as its
input that could remarkably solve the gradient vanishing
problem. The CNN comprises two convolution blocks
consisting of two 1D convolutional layers, a max pool layer
severally and a dropout layer, a flattening layer, a dense layer
outputting 256 units, and a dropout layer, and finally, a dense
layer outputting a single unit. Rates for dropout layers are all 0.25.
All of the convolutional and dense layers employed the ReLU
activation function except the output layers, which employed the
sigmoid activation function. Input for the two networks has been
normalized to make its mean and standard deviation be 0 and 1
separately. The RMSprop optimizer was used to minimize the
binary cross entropy of CNN and the Adam optimizer was used
to minimize the binary cross entropy of DFCNN. The model
architecture, the training data preparation, and the training and
testing procedures can be found in our previous work in detail
(Zhang et al., 2019; Zhang et al., 2020a; Zhang et al., 2020b; Zhang
et al., 2021).

Drug-Like Compound Database for Virtual
Screening
We have downloaded the 2D compound files in smi format from
the ZINC15 database (Sterling and Irwin, 2015). The compounds
were selected based on the following criteria: drug-like
compound, pH 7, pursuit status was in stock, having available
3D structures, and can be processed by RDKIT (Landrum, 2011).
We collected 10,402,895 compounds as the final virtual screening
database (VS_DB).

Building the Virtual Screening Pipeline
The virtual screening pipeline is shown in Figure 1. The
protein pocket was extracted and converted into a 300-
dimension vector by the mol2vec tool (Jaeger et al., 2018);
the atoms around 1 nm within the known ligand were defined
as the protein pocket in this work. All the ligands in the VS_DB
were converted into a 300-dimension vector by the mol2vec
tool (Zhang et al., 2019). A homemade python script was then
used to combine the protein vector with each ligand vector in
the VS_DB as later input vectors. The model was used to
evaluate the binding possibility of each protein–ligand in the
VS_DB by learning the input vectors.

Systematically Evaluating the Model
Performance on the DUD.E Dataset
We selected 101 DUD.E protein datasets, which both have known
activity compounds and known inactivity compounds. We use
AUC, accuracy, TPR, MCC, and precision as performance
metrics. We also test the performance of AutoDock Vina in
the same dataset for comparison.

Systematically Validating the Efficacy of the
Model on Large-Scale Virtual Screening
We use the 102 protein targets from the DUD.E dataset to do the
validation. We have done a virtual screening for these 102 proteins
against the virtual screening database. We also conducted virtual
screening for the 102 protein targets with their known active
ligands (we chose the one from CHEMPB here). The known
active ligands were downloaded from the DUD.E webserver. An
average of ~225 known activity compounds and ~90 known
inactive compounds are for one target.

After the virtual screening, the score was ranked. The
percentage of activity compounds within the top 10%, 20%,
30%, 40%, and 50% of predicted scores for each case was
calculated, respectively, and taken as performance indicators.

We also checked howmany active compounds have possibility
scores higher than 0.99 and 0.9. We also evaluated the total
number of compounds with possibility scores higher than 0.99
and 0.9. The number of active compounds with scores higher
than 0.99 or 0.9 is noted as N0.99 or N0.9. The total number of
active compounds for each protein was noted as Ntotal. The
prediction TPR (P tpr0.99 or P tpr0.9) is defined byN0.99/Ntotal or
N0.9/Ntotal. The total number of compounds with a score above
0.99 or 0.9 is defined as NN0.99 or NN0.9. The total number of
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compounds used in the test is defined as N_all. The random guess
rate (random0.99 or random0.9) is defined as NN0.99/N all or
NN0.9/N all. Finally, we describe the P tpr0.99/random0.99 as the
prediction–random ratio with a cutoff of 0.99 (Ratio_0.99), and
the P tpr0.9/random0.9 as the prediction–random ratio with a
cutoff of 0.9 (Ratio_0.9).

Ratio 0.99 � Ptpr0.99/random0.99

� (N0.99/Ntotal)/(NN0.99/N all), (1)
Ratio 0.99 � (N0.99/NN0.99)/(Ntotal/N all), (2)

Ratio 0.9 � Ptpr0.9/random0.9 � (N0.9/Ntotal)/(NN0.9/N all),
(3)

Ratio 0.9 � (N0.9/NN0.9)/(Ntotal/N all). (4)
The Ratio 0.99 can be expressed by either Eqs 1 or 2, and the

Ratio0.9 can be expressed in either Eqs 3 or 4. The Eqs 2, 4 can be
easily understood in terms of statistics.

Docking for the Top 20 Performance
Targets
We have selected 20 targets that show the best performance in the
prediction–random ratio with a cutoff of 0.99
(P tpr0.99/random0.99). For all compounds in VS_DB that have
scored better than 0.99, we downloaded their 3D compounds from
the ZINC database and performed traditional AutoDock Vina
docking. We docked all the compounds that had predicted
DFCNN scores above 0.99 to the Trypsin I protein known pocket
by AutoDock Vina. The scripts named “prepare_receptor4.py” and
“prepare_ligand4.py” from AutoDockTools were used for preparing
AutoDock Vina input files, respectively (Morris et al., 2009). The
pocket size was set to include the active binding site, using a box size
of 25, 25, 25 Å. The docking center is the center of the known protein
pocket, composed of residues within 1 nm of the known ligand. For
each protein–ligand docking, we generate a maximum of 20
conformations. The top 40 docking conformations in terms of
scores were selected. We use structure-based docking here because
it has considered spatial information, which is highly complementary
to our method.

Identifying Novel Active Compounds of
Trypsin I by Our Pipeline for Experimental
Validation
We selected potential inhibitors for Trypsin I based on the
DFCNN score, docking score, and visional observation of
docking conformation. Nine compounds were chosen for final

experimental validation. The experimental protocol to evaluate
the binding strength and activity is described in Supplementary
Material Section S2. We also carried out molecular dynamics
simulations to check the ligand-binding mode and detailed
binding pattern. The detailed procedures are illustrated in
Supplementary Material Section S3.
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