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Virtual screening is a cost- and time-effective alternative to traditional high-throughput
screening in the drug discovery process. Both virtual screening approaches, structure-
based molecular docking and ligand-based cheminformatics, suffer from computational
cost, low accuracy, and/or reliance on prior knowledge of a ligand that binds to a given
target. Here, we propose a neural network framework, NeuralDock, which accelerates the
process of high-quality computational docking by a factor of 106, and does not require
prior knowledge of a ligand that binds to a given target. By approximating both protein-
small molecule conformational sampling and energy-based scoring, NeuralDock
accurately predicts the binding energy, and affinity of a protein-small molecule pair,
based on protein pocket 3D structure and small molecule topology. We use
NeuralDock and 25 GPUs to dock 937 million molecules from the ZINC database
against superoxide dismutase-1 in 21 h, which we validate with physical docking using
MedusaDock. Due to its speed and accuracy, NeuralDock may be useful in brute-force
virtual screening of massive chemical libraries and training of generative drug models.
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INTRODUCTION

Drug discovery as carried out by pharmaceutical companies requires an investment of years of
research effort and billions of dollars (DiMasi et al., 2016). The preclinical pipeline for identifying a
small molecule ligand for a protein target is: (1) biochemical screening of small molecules against a
protein target or cellular assay, (2) medicinal chemistry optimization of candidate small molecules,
and (3) validation of promising molecules in animals (Eder and Herrling, 2016). Step (1) is critical in
identifying small molecules which bind tightly to the target (hits) and for their subsequent
optimization in Step (2) (leads). Step (1) is expensive and time-consuming, taking several
months to screen a small library of >105 compounds. Insufficient binding affinities of leads and
hits from Steps (1) and (2) often lead to drug attrition in Step (3) and subsequent clinical trials, with
attrition rates as high as 95% (Hutchinson and Kirk, 2011; Waring et al., 2015). Molecular dynamics
and rational drug design can explore a larger part of the chemical space and potentially increase
binding affinity of hits, but typical docking tools still only dock one compound every few minutes at
moderate sampling accuracy [AutoDock Vina: 1.2 min (Trott and Olson, 2010), DOCK 6: 4.8 min
(Allen et al., 2015), Glide 1.7 min (Schrödinger, 2020), MedusaDock: seconds to minutes (Fan et al.,
2021)], while the chemical space of potential drugs may be as large as 1060 small molecules (Bohacek
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et al., 1996). Neural networks have shown significant promise in
structural biology, accurately reproducing gold standard results
in a fraction of the time (Jumper, 2020). Here, we accelerate the
virtual docking process by 6 orders of magnitude, enabling
docking of 109 compounds in a single day at low cost.

Modern methods of computational drug docking are
implemented by tools such as MedusaDock (Ding et al., 2010;
Wang and Dokholyan, 2019), AutoDock Vina (Trott and Olson,
2010; Forli et al., 2016; Goodsell et al., 2021), DOCK (Allen et al.,
2015), and Glide (Friesner et al., 2004). These tools perform
molecular docking using classical force fields to evaluate the
binding energy or affinity of a small molecule to a protein
pocket of interest. Here, we focus on MedusaDock because it
performs fully flexible conformational sampling of both the
protein and ligand, which mimics the induced fit model of
protein-small molecule binding, whereas other tools generate
ensembles of the protein which are then rigidly fixed and
docked to the small molecule [AutoDock Vina (Evangelista
et al., 2016), DOCK (Allen et al., 2015), Glide (Schrödinger,
2016)]. MedusaDock consists of two independent tasks:
conformational sampling and scoring. Here, we show that
both tasks can be well-approximated by a deep neural network
at a fraction of the computational cost of traditional docking.
Although we used MedusaDock to generate our data, the
framework we have developed can be applied to the results of
other docking tools.

The principal advantages of a neural network over traditional
docking tools include differentiability (propagation of gradients
in model training through automatic differentiation) and speed.
Neural networks are also valuable for their composability, in
which they can be used as subnetworks of larger neural networks
while providing gradients for training (Rocktäschel and Riedel,
2017; Feng et al., 2020). Neural network inference is highly
optimized on modern processors, and particularly on GPUs.
One can achieve many orders of magnitude higher
performance with neural network approximation than with
traditional algorithms based on exact calculation (Basu et al.,
2010). As molecular dynamics is already a significant
approximation to a quantum mechanical and statistical reality,
inaccuracies in neural network predictions may be acceptable for
virtual docking purposes (He et al., 2014).

Deep neural networks for predicting binding affinities have
been successful; however, there are drawbacks to specific
approaches (Cang et al., 2018; Jiménez et al., 2018; Francoeur
et al., 2020; Gentile et al., 2020). For example, Francoeur et al.
(2020) proposed to approximate force fields using neural
network-based scoring while still relying on extensive
conformational sampling, hence retaining the major
computational bottleneck of virtual docking. Gentile et al.
(2020) used neural networks to aid in chemical screening, but
the predictions were nonspecific: information about the protein
pocket was not used in the screening (Gentile et al., 2020). KDEEP

by Jiménez et al. (2018) uses computationally expensive
convolutional architectures which limit inference speed, and
was trained directly on protein-small molecule 3D crystal
structures. Due to the inclusion of protein-small molecule
crystal structures, KDEEP is biased and has limited

generalizability to proteins not bound to small molecules. This
issue of bias has been discussed in Francoeur et al. (2020) and
arises from self-docking, in which the neural network is provided
with a low conformational energy crystal structure as input, and
therefore does not perform conformational sampling. Cang et al.
(2018) use convolutional networks with manually constructed
ligand features based on ligand topology but provide no forward
validation with docking tools; instead, only binding affinity is
predicted, increasing the risk of overfitting and self-docking bias.

In stark contrast to work such as in Francoeur et al. (2020), we
do not explicitly train our neural network to predict the energy of
a specific conformation. Rather, we train our network in a
conformation-invariant manner by withholding
conformational information in the inputs and by predicting
population parameters like minimum energy and binding
affinity. Unlike in work from Jiménez et al. (2018) and Cang
et al. (2018), we limit bias from self-docking and overfitting. We
train the neural network to directly predict the minimum binding
energy evaluated by MedusaDock, based on a coarse 3D
representation of the protein and a graph representation of the
small molecule. The direct prediction of binding energy makes
conformational sampling implicit in the neural network. The
coarse protein representation and graph representation of the
small molecule withholds the optimal orientation, alignment, and
conformation of the small molecule in the protein pocket of
interest from the neural network. Since we augment our training
data with MedusaDock energies, we also reduce the likelihood of
overfitting. With these design elements in our neural network
NeuralDock, we achieve class-leading performance, as tested on
the PDBbind 2013 core set. We perform a proof-of-concept
docking for benchmarking and external validation purposes,
using NeuralDock to dock nearly 109 molecules from the
ZINC database against the enzyme superoxide dismutase-1
(SOD1), which is not present in the training, validation, or
test sets. Finally, we validate the predicted energies using
MedusaDock.

MATERIALS AND METHODS

Data
For NeuralDock inputs, we used crystal structures of 3875 known
protein-ligand pairs from the PDBbind 2017 refined set (Wang
et al., 2004), which were shuffled into a training set (N = 2,712,
70% of structures), and a validation set (N = 1,163, 30% of
structures). One of these structures was not processable by
MedusaDock 2.0, and 127 structures exceeded our
computational resources. A further 496 ligands were not
processable by rdkit 2020.09.327. This left a training set of N =
2,279 (84.0% of original) and a validation set of N = 972 (83.6% of
original). The core set of PDBbind 2013 was used as the test set (N
= 195); 154 of these were processable by rdkit. There is no overlap
of proteins among the training, validation, and test sets.

We extracted the atoms in the protein which were within a
cube of side length 20 angstroms, centered at the ligand. These
protein pockets were encoded as 10 × 10 × 10, 2-angstrom
resolution images with 8 channels corresponding to a one-hot
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encoding of (no atom, C, O, N, S, P, H, and other). If multiple
atoms were contained in the same 2-angstrom cube, we took the
maximum of each channel of the one-hot encodings. Using rdkit,
we encoded the ligand as a length 36 atom type vectors with 7
channels (no atom, C, N, O, F, S, and other) and a 36 × 36 bond
adjacency matrix with 5 channels (no bond, single, double, triple,
aromatic/conjugated). For ligands with greater than 36 heavy
atoms (hydrogens were excluded), we removed atoms with the
least bond order until we were left with 36 total heavy atoms, thus
attempting to preserve the important topologies present in the
ligand. These input dimensions were chosen so that a comparable
number of parameters in NeuralDock would be devoted to
processing the protein and the ligand each (Figure 1A), as
well as to prevent the ligand representation from becoming
too sparse. We also chose a limit of 36 heavy atoms since
molecules with greater than 36 heavy atoms are likely to
exceed the 500 Dalton cutoff for Lipinski’s rule of five.

For each protein-ligand pair, we ran MedusaDock for 24 h or
1000 iterations (whichever came first) on a single core of an Intel
Xeon E5-2,680 v3 processor with 6 GB RAM. We collected
summary statistics (mean, median, standard deviation,
minimum, maximum, skew, and kurtosis) on the 13
interaction energies computed in MedusaDock’s force field,
MedusaScore (Yin et al., 2008). Five of these energies were
zero for most or all structures (see Supplementary
Information). An interaction energy is defined as the total
energy of the protein-ligand complex EP−L minus the
contributions from the protein EP and the ligand EL when
they are isolated.

Eint � EP−L − EP − EL

In developing our models, we chose to focus on Ewithout VDWR,
the interaction energy excluding repulsive van der Waals forces.
Ewithout VDWR is the output of MedusaScore which is known to be
the most highly correlated with experimental binding affinity
(Yin et al., 2008).

The compounds (N = 997,402,117) were downloaded from the
ZINC database (Irwin and Shoichet, 2005) (available in Tranches)
and processed into the tensor input format described above. Of
these compounds, 936,054,166 (94%) were processable by rdkit.
We chose the 1UXM SOD1 PDB structure as a protein target
(Berman et al., 2000). The interface between the A and B chains
(Figure 2) was chosen as the binding pocket for 1UXM.

Neural Network
For NeuralDock, we chose a fully connected architecture, with
spectral normalization (Miyato et al., 2018), dropout (Srivastava
et al., 2014) with rate 0.2, LeakyReLU activation (Maas et al.,
2013), and skip connections (He et al., 2016). These
characteristics were chosen as standard methods of model
regularization to prevent overfitting and vanishing or
exploding gradients during training.

The NeuralDock architecture (Figure 1A) was implemented
in TensorFlow 2.4.0 (Abadi et al., 2016) and Python 3.7. The
inputs were the protein pocket and ligand topology, and the
outputs were the 7 summary statistics of the 13 interaction
energies computed by MedusaDock as well as the binding
affinity pK = log10 K (dissociation/inhibitor constant KD/I with

FIGURE 1 | The neural network architecture on the left and performance comparison with MedusaDock on the right. (A) Inputs, hidden layers, and outputs are
shown for the architecture. The protein pocket is flattened and fed into a subnetwork, and the ligand is processed similarly. The outputs of the two subnetworks are
concatenated and fed into another subnetwork, which outputs 13 × 7 + 1 values representing the 7 summary statistics of the 13 energies output byMedusaDock, as well
as the pK of the protein-ligand pair. The structure of each FC layer is shown at the bottom. (B) The 45million parameter NeuralDock network achieves class-leading
performance on the PDBbind 2013 core set (r = 0.85, p < 0.0001). (C) The 45 million parameter NeuralDock network achieves good agreement with experimentally
determined pK on the validation set (r = 0.62, p < 0.0001).
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units of molar). We considered KD and KI to be the same for the
training purposes. We chose 10 fully connected (FC) hidden
layers for each of the three parts (protein encoder, ligand encoder,
affinity predictor) of the network (Figure 1A), resulting in
approximately 45 million trainable parameters. We varied the
number of hidden layers as well as their widths during
hyperparameter optimization (Table 1). The loss function was
the L2 (squared difference) loss between the NeuralDock output
energies and theMedusaDock output energies, as well as pKs. The
Adam optimizer was used (Kingma and Ba, 2015), with a learning
rate of 10−6. Training of each model took place on one NVIDIA
Tesla T4 GPU, and the models were trained to convergence
within a week. We trained a convolutional architecture, in which
the FC blocks in the protein encoder (top left of Figure 1A) were
replaced by spectrally normalized 3D inceptionmodules (Szegedy
et al., 2015) with a comparable number of trainable parameters
(Table 1).

Chemical Scoring
We used Lipinski’s rule of five (Lipinski et al., 2012) to evaluate
small molecule lead quality and drug likeness, as well as the
Quantitative Estimate of Drug likeness (QED) (Bickerton et al.,
2012). Octanol-water partition coefficients (log P) were extracted
from HTML files of the ZINC database, while all other quantities
were computed using rdkit (RDKit, 2016).

Statistics
Least squares regression was performed in Python 3.7 using SciPy
1.6.0 (Virtanen et al., 2020). Analysis of covariance (ANCOVA)
was performed in Python 3.7 using Pingouin 0.3.12 (Vallat,
2018).

RESULTS

Validation of the Ability of NeuralDock to
Predict MedusaDock Energy and
Experimental pK
NeuralDock training on MedusaDock energies and
experimental pKs converged, achieving agreement with
experimental binding affinities for the test set, the PDBbind
2013 core set (Figure 1B), and the validation set taken from
PDBbind 2017 (Figure 1C). As discussed by Francoeur et al.
(2020), testing on the core set may offer a biased evaluation of
binding affinity prediction performance. We provide the core
set correlation for comparison with other methods which
solely report that data (Table 2). Given our relatively small
training set (2,331 structures) and the massive diversity of
potential protein pockets and ligands, NeuralDock was able to
learn the binding affinities accurately. We believe that the key

FIGURE 2 | 1UXM A4V SOD1 dimer chains A (gold) and B (lilac), with the protein pocket of interest (green) in billion-molecule docking. A cartoon, stick, and water-
accessible surface representation of 1UXM, an A4V mutant SOD1 dimer structure. The image was generated using PyMOL 2.4.0 (Schrödinger, 2021).

TABLE 1 | Correlation coefficients of NeuralDock predicted minimum energy and MedusaDock output for a variety of architectures.

Number of hidden layers per subnetwork (total) Dimension of hidden layer Number of trainable parameters Correlation coefficient for Ewithout VDWR

10 FC blocks (30 total) 2048 83,221,686 0.794
10 FC blocks (30 total) 1024 45,618,267 0.838*
6 FC blocks (18 total) 512 12,055,131 0.800
6 FC blocks (18 total) 256 4,913,499 0.758
6 inception blocks (18 total) N/A 55,937,979 0.775
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to NeuralDock’s success is using high quality data produced by
MedusaDock, which sampled thousands of conformations for
each protein-ligand pair, while supplying coarse 3D protein
information and only the small molecule’s topology. By using
only the topology of the small molecule as input, we forced

NeuralDock to approximate the effects of conformational
sampling.

To test the robustness, generalizability, and speed of
NeuralDock, we performed virtual screening of a massive
library of ligands (N = 936,054,166) against the pocket at the

TABLE 2 | Correlation coefficients for binding affinity prediction of a variety of neural networks.

Model PDBbind core set binding affinity
correlation

Number of test set
structures

Number of training set structures

Def2018 General Ensemble [Francoeur et al.
(2020)]

0.80 280 18,450 protein-ligand complexes and
22,584,102 poses

KDEEP [Jiménez et al. (2018)] 0.82 195 13,308 protein-ligand complexes
TopBP-ML [Cang et al. (2018)] 0.85 195 22,886 compounds against each of 102 protein

targets
NeuralDock 0.85 154 2331 protein-ligand complexes

FIGURE 3 | Comparisons among MedusaDock energies, NeuralDock predicted energies, and experimental binding affinity data. (A) The correlation between
NeuralDock predicted Ewithout VDWR and MedusaDock Ewithout VDWR on the validation set (blue circles, r = 0.83, p < 0.0001) and 100 random small molecules docked to
1UXM (orange triangles, r = 0.69, p < 0.0001). NeuralDock performs well on the validation set in predicting MedusaDock energies, and the trend generalizes to 1UXM
with no significant difference (2-way ANCOVA F = 0.67, p = 0.41). (B) The correlations of MedusaDock Ewithout VDWR (blue circles), NeuralDock predicted Ewithout
VDWR (magenta triangles), and experimental binding affinity (pK) on the validation set (r = −0.48 for both data sets, p < 0.0001), with no significant difference (2-way
ANCOVA F = 1.27, p = 0.26). (C) The 100 small molecules with maximumNeuralDock pK (green triangles), from docking of 936,054,166 small molecules from the ZINC
library against 1UXM; the corresponding predicted Ewithout VDWR is plotted (lilac circles). The left is higher binding affinity (higher pK) and lower energy (lower Ewithout VDWR).
(D) and (E) The relative frequency distributions (300 bins) of NeuralDock predicted pK (mean 4.07, std 0.47) and Ewithout VDWR (mean −36.6, std 4.1), respectively, on
8,099,176 (9%of total) randomly selected small molecules from the docking of 1UXM. The plots are centered at themeans, the x-axis ranges are ± 5 standard deviations from
the mean, and colors are repeated from (C). Note that both the Ewithout VDWR and pKs in (C) are drawn from the extreme tails of the distributions shown in (D).
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dimeric interface of SOD1 (Figure 2). We compared
relationships among MedusaDock Ewithout VDWR, NeuralDock
Ewithout VDWR, and experimental binding affinities (pK), and
found that they agree (Figure 3). Ewithout VDWR is the
component of MedusaScore which is most highly correlated
with experimental pK (Yin et al., 2008). We demonstrate the
correlation between NeuralDock andMedusaDock Ewithout VDWR,
first on the validation set drawn from PDBbind 2017 refined set
(r = 0.83, p < 0.0001), and then on 100 random small molecules
from ZINC docked to 1UXM, an A4V mutant of the human
superoxide dismutase-1 enzyme (r = 0.69, p < 0.0001)
(Figure 3A). Therefore, NeuralDock was successful in learning
to predict the minimum Ewithout VDWR in a single shot.
Additionally, we performed 2-way ANCOVA, which measures
the effects of a categorical variable. In this instance, it showed no
statistically significant difference in the trends for the validation
set and the external validation on 1UXM (F = 0.67, p = 0.41),
which provides evidence that NeuralDock successfully
generalizes from the training set to other protein-small
molecule pairs, as well as achieving cross-docking success.
Since the native structure 1UXM was not bound to any small
molecule and MedusaDock performs fully flexible
conformational sampling of both the protein and the small
molecule, our results provide external validation of
NeuralDock and demonstrate robustness under cross-docking,
i.e., docking of small molecules to a protein as it appears in its
native, unbound conformation.

We found agreement of MedusaDock Ewithout VDWR and
NeuralDock Ewithout VDWR with experimental pK, with similar
correlations for both tools (r = −0.48 for both, p < 0.0001), and no
statistically significant difference in correlations with 2-way
ANCOVA (F = 1.27, p = 0.26) (Figure 3B). The correlation of
MedusaDock Ewithout VDWR with experimental pK (r = −0.48) is
comparable to that of AutoDock Vina scoring (r = 0.41) as
reported in Francoeur et al. (2020), with MedusaDock
performing better, likely due to our extensive sampling and
computational effort for each protein-ligand pair. NeuralDock
predicts experimental pK better than MedusaDock on the
validation set (Figures 1B, C, 3B), however, experimental
validation of the pKs is needed to confirm that this result
holds for SOD1 and other proteins. NeuralDock’s agreement
with MedusaDock predictions demonstrates that it may be useful
in replacing traditional docking tools such as MedusaDock and
AutoDock Vina.

For the billion-molecule docking of 1UXM, we find that the
100 small molecules with the highest NeuralDock-predicted pKs
also have low binding energies, with agreement of NeuralDock
and MedusaDock Ewithout VDWR on those small molecules
(Figure 3C). Furthermore, NeuralDock predicts that few other
molecules have such high pK and low energy (Figure 3D).
Combining these results with our validation set regression
(Figure 1C), we predict that some of the 100 small molecules
chosen have pK of approximately 8 (K ≈ 10 nanomolar). Ninety-
five of the 100 compounds satisfy Lipinski’s rule of five, and all
have reasonable QED scores (median 0.50, range 0.33–0.66). The
drug likeness of these compounds can be explained as bias from
the ZINC Tranches, in which only 14,744,513 (1.5% of the over

997 million) compounds have molecular weight exceeding 500
Daltons or log P exceeding 5.

Comparison of Various NeuralDock
Architectures
Various architectures for NeuralDock yielded similar results
(Table 1). We optimized the NeuralDock architecture based
on Ewithout VDWR correlation, as Ewithout VDWR is most highly
correlated with binding affinity (Yin et al., 2008). Optimizing the
network based on Ewithout VDWR prevents overfitting the
hyperparameters (i.e., number of layers and total number of
trainable parameters), as MedusaDock Ewithout VDWR is an
external source of training information. Including other
MedusaDock energies in training also helped to prevent
overfitting (Supplementary Table S2). Even a limited network
such as the 4.9 million parameter model was able to generalize
from the training set to the validation set (Table 1).

NeuralDock Dramatically Accelerates
Large-Scale Docking-Based Virtual Drug
Screening
Benchmarking on a single Tesla T4 GPU was able to predict
energies and pKs of 96,000 protein-small molecule pairs in
203.8 s, or 2 ms per protein-small molecule pair. Docking of
the 937 million ZINC compounds with NeuralDock took 21 h on
25 GPUs, which matches our benchmarking of 2 ms per protein-
small molecule pair per GPU. For 3875 structures (including
those that exceeded our computational resources), it took 120
processors 4 weeks to perform extensive MedusaDock sampling
(1000 iterations), or an average of 20 h per structure per
processor. Note that the ability of MedusaDock to find low
energy binding poses requires repeated conformational
sampling, which can be controlled by running many iterations
of MedusaDock, with each iteration taking seconds to minutes.
Taking 10 h as a conservative minimum compute time for 1000
iterations of MedusaDock, NeuralDock performs 1.7 × 107 times
faster. NeuralDock performs 105 times faster than DOCK 66, and
100 times faster than KDEEP (Jiménez et al., 2018). NeuralDock is
also faster than the Def2018 General Ensemble by Francoeur et al.
(2020), since we directly predict binding affinity in a single
forward pass instead of requiring many conformational
samples and forward passes through the network (Francoeur
et al., 2020).

DISCUSSION

Potential Improvements to NeuralDock
There are several potential improvements to NeuralDock. First,
NeuralDock takes a coarse atomic image of the 20 Å protein
pocket as input. Including inputs such as protein amino acid
composition, secondary structure, and hydrophobicity may
improve NeuralDock predictions. This potential change in
inputs is supported by the fact that NeuralDock was able to
learn local contributions to the energy well (i.e., EVWDA,
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Supplementary Tables S1, S2), while having difficulty with
global contributions (e.g., Esolv, Supplementary Tables S1, S2).
Second, NeuralDock is trained on a relatively small training
set, and we did not use any small molecules which are off-
target, i.e., do not bind to the given protein. However, our
external validation with MedusaDock indicates that this
potential source of bias was at least partially addressed by
the variety of binding affinities present in our training set.
This deficiency may be remedied by docking more targets with
MedusaDock as a reference, such as the PDBbind general set,
which incurs a significant computational cost in data
preparation. Additionally, the PDBbind general set
experimental pKs may be noisier than in the refined set.
Third, the binding energies and pK are invariant under
rotations of the protein pocket as well as under
permutations in the atom order for the small molecule
bond adjacency matrix and atom type vector. Newer neural
network architectures which directly leverage these physical
symmetries have been proposed (Finzi et al., 2020; Wu et al.,
2021).

NeuralDock Performance and Training Past
the Interpolation Threshold
We posit that our small training set is not necessarily a major
impediment to NeuralDock performance. The so-called
double descent phenomenon occurs when the number of
tunable parameters in a statistical model significantly
exceeds the number of training samples (or degrees of
freedom) (Belkin et al., 2019). The traditional tradeoff
between bias and variance constitutes the first descent in
test error, in which the optimal number of model
parameters lies below the number necessary to precisely fit
the data, a number known as the interpolation threshold.
Contrary to conventional statistical wisdom, however, over-
parametrizing may provide benefit in the model performance,
causing a second descent in test error. In certain cases,
additional training data may actually hurt model
performance, whereas training past the point of 0 training
set error (another instance of the interpolation threshold)
provides a similar benefit to over-parametrization
(Nakkiran et al., 2020). Although the double descent
phenomenon has yet to be formally proven for deep neural
networks, we observed the phenomenon in practice while
training NeuralDock. With 46 million parameters and
roughly 2000 data points for training, NeuralDock takes
advantage of the second descent to achieve its high accuracy.

Applications of NeuralDock
MolGAN is a generative adversarial approach to drug discovery,
which does not take into account the protein pocket (Goodfellow
et al., 2014; de Cao and Kipf, 2018). Since NeuralDock is end-to-
end differentiable, one can augment MolGAN training with
NeuralDock acting as a scoring function to create drugs
targeting specific proteins. The addition of such guidance may
improve the stability of MolGAN training. While automatically
differentiable force fields are currently being developed for

molecular dynamics (Schoenholz and Cubuk, 2019), the
advantage of NeuralDock is it can immediately evaluate the
quality of a generated small molecule, implicitly performing
conformational sampling, whereas conformational sampling
must still be done for a differentiable force field. NeuralDock
does not predict the explicit minimum energy configuration for
the protein-small molecule pair, however, once specific
compounds are identified via NeuralDock, the candidates can
be docked by MedusaDock or another docking software prior to
experimental validation, as the computational cost of doing so is
much less than the cost of traditional docking for the entire
compound library.

CONCLUSION

NeuralDock is a robust neural network for predicting binding
energies and affinities for protein-small molecule pairs. The key
design elements that result in its class-leading performance
include high quality scoring of thousands of protein-small
molecule conformations, coarse 3D image representation of
the protein pocket, and topological representation of the small
molecule. Because NeuralDock is trained to output predicted
energies and pK in a single shot, NeuralDock is faster than
competing methods and can be used in billion-molecule
virtual screening. NeuralDock has been validated using the
fully flexible docking tool MedusaDock and is ready for
experimental validation.
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