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High-frequency oscillations (HFOs), observed within 80–500 Hz of
magnetoencephalography (MEG) data, are putative biomarkers to localize
epileptogenic zones that are critical for the success of surgical epilepsy treatment. It is
crucial to accurately detect HFOs for improving the surgical outcome of patients with
epilepsy. However, in clinical practices, detecting HFOs in MEG signals mainly depends on
visual inspection by clinicians, which is very time-consuming, labor-intensive, subjective,
and error-prone. To accurately and automatically detect HFOs, machine learning
approaches have been developed and have demonstrated the promising results of
automated HFO detection. More recently, the transformer-based model has attracted
wide attention and achieved state-of-the-art performance on many machine learning
tasks. In this paper, we are investigating the suitability of transformer-based models on the
detection of HFOs. Specifically, we propose a transformer-based HFO detection
framework for biomedical MEG one-dimensional signal data. For signal classification,
we develop a transformer-based HFO (TransHFO) classification model. Then, we
investigate the relationship between depth of deep learning models and classification
performance. The experimental results show that the proposed framework outperforms
the state-of-the-art HFO classifiers, increasing classification accuracy by 7%. Furthermore,
we find that shallow TransHFO (< 10 layers) outperforms deep TransHFO models (≥10
layers) on most data augmented factors.
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1 INTRODUCTION

It is estimated that about 1% of the population around the world
is affected by epilepsy (Health Quality Ontario, 2012). Long-term
follow-up studies in epilepsy indicate that approximately 30% of
epilepsy cases are intractable to medical therapy (Yang et al.,
2021), but may benefit from surgery (Ibrahim et al., 2012; Zhang
et al., 2019; Guo et al., 2021). A favorable surgical outcome
depends on many factors, one of which is the accurate
identification of epileptogenic zones (Rosenow and Lüders,
2001). Magnetoencephalography (MEG) is a non-invasive
technology for pre-operative workup prior to epilepsy surgery
(Xiang et al., 2009), which help clinicians localize epileptogenic
zones (Rampp et al., 2010; Niranjan et al., 2013). Recently, several
studies showed that high-frequency oscillations (HFOs), which
can be observed within 80–500 Hz of MEG data, are putative
biomarkers to locate the epileptogenic tissue. It has the potential
to improve the presurgical diagnosis and surgical outcome of
patients with epilepsy (von Ellenrieder et al., 2016; Van Klink
et al., 2016; Papadelis et al., 2016).

In current clinical practices, machine learning methods are
widely used for clinical classification problems using one-
dimensional biomedical signal data (e.g., MEG, EEG)
(Fernandez-Blanco et al., 2020; Li et al., 2020; Maiorana,
2020; Lombardi et al., 2021). Detecting HFOs in MEG
signals mainly depends on visual inspection by surgeons.
Such visual identification of HFOs is very time-consuming,
labor-intensive, subjective, and error-prone due to the short
duration and low amplitude of HFOs and the large volume of
MEG signal data (Zelmann et al., 2012). Thus, helping
clinicians with HFO detection can be treated as a clinical
classification problem. To detect HFOs accurately and
automatically, machine learning approaches have been used
(Elahian et al., 2017; Guo et al., 2018; Weiss et al., 2019). Most
existing HFO detection models the first segment a fixed length
of MEG signals from the whole MEG data, then treat these
MEG signal segments as feature vectors. For example, one of
the earlier works on HFO detection models employed the fully
connected feed-forward network to automatically learn the
distribution of segmented MEG signals (Guo et al., 2018).
These studies have demonstrated that machine learning
models were able to achieve promising results on automatic
identification of HFO signals.

More recently, a novel model architecture, called Transformer,
has attracted wide attention in natural language processing and
computer vision (Vaswani et al., 2017; Zhai et al., 2021). The
Transformer utilized a self-attentionmechanism to learn an input
feature sequence and decide which parts of the sequence are
important. It has outperformed peer models and achieved state-
of-the-art performance on many machine learning tasks, such as
language translation (Vaswani et al., 2017), image classification
(Dosovitskiy et al., 2020), speech recognition (Kim et al., 2020),
time-series data processing (Li et al., 2019), and healthcare
analytics (Peng et al., 2019; Peng et al., 2020; Peng et al.,
2021). Due to the fact that MEG signals are inherently time-
series signal data, we are wondering whether the Transformer
model is able to understand the time dependency embedded in

theMEG signals better than existing fully connected feed-forward
network-based models.

In this paper, we are investigating the suitability of the
Transformer model on the detection of HFOs from MEG data.
Furthermore, we are questioning what the preferred architecture
of the Transformer-based deep learning model is for MEG signal
classification tasks. We propose a Transformer-based HFO
detection framework designed for one-dimensional biomedical
MEG signal data. Briefly, the framework includes signal
segmentation, virtual sample generation, signal classification,
and signal labeling. Within this framework, we developed and
validated a Transformer-based HFO (TransHFO) classification
model to distinguish HFO signals from normal signals. We
designed experiments to investigate whether the TransHFO
model is able to achieve robust and reliable performance on
HFO classification. Furthermore, with the TransHFO
classification framework, we set to conduct exploratory
experiments to test if the relationship between the depth of
TransHFO models and classification performance is positively
monotonic. Namely, we would investigate whether HFO
classification performance would increase as the depth of
TransHFO model increases. This would guide the transformer-
based model design on HFO classification problems, as well as
other similar tasks using one-dimensional biomedical signal data
(e.g., MEG, EEG).

To summarize, our main contributions are as follows:

• We proposed a novel and effective transformer-based HFO
detection framework designed specifically for the
presurgical diagnosis of biomedical one-dimensional
MEG signal data.

• We investigated through quantitative experiments
whether transformer-based deep learning models are
able to achieve robust and reliable performance on
HFO classification task.

• We conducted exploratory experiments to examine the
relationship between the depth of transformer-based deep
learning models and the classification performance, which
would result in principles and insights for future model
design.

The remainder of this paper is organized as follows: Section 2
briefly reviews the related work onMEG data. Section 3 describes
the proposed detection framework. Section 4 presents the
experiments and results on the real-world MEG dataset, and
Section 5 concludes the paper by summarizing the research and
presenting future directions.

2 RELATED WORK

In this section, we briefly reviewed existing works of machine
learning-based approaches for automated identification of the
epileptic HFOs and Transformer-based detector on clinical
applications.

Machine learning provides clinicians and surgeons with a
possible opportunity for improving the performance of
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detecting HFOs and reducing human interference.
Traditional machine learning algorithms, such as logistic
regression (Elahian et al., 2017), have been used for the
identification of epileptogenic zones. Deep neural network-
based models also have been exploited to detect HFOs in MEG
signal data. This includes our prior work using an auto-
encoder-based SMO detector (Guo et al., 2018). In another
study, Weiss et al. (2019) discuss possible machine learning
strategies that can be applied to HFOs to better identify
epileptogenic regions. It set to apply a virtual sample
generation approach to increase the size of training
samples for the deep learning model. Here, we utilize an
adaptive synthetic (ADASYN)-based virtual sample
generation approach for our MEG dataset (He et al., 2008).

More recently, Transformer-based approaches are the current
state of the art in many clinical tasks, such as clinical text
classification (Gao et al., 2021) and predicting depression
(Meng et al., 2021). The key component of the Transformer is
the multi-head attention mechanism, which can avoid
information loss over time steps compared to recurrent
structures. Research has proposed the integration of attention
mechanism and convolutional neural networks (CNN) to classify
categorized images from visual evoked MEG brain signals (Kim
et al., 2019). So far, these approaches have shown promising
prediction accuracy, but some argue that the power of attention
mechanism in a CNN is limited by the weaknesses of the CNN.
Vaswani et al. (2017) used a sole attention mechanism to
construct a sequence-to-sequence model for a neural machine
translation task that achieved a state-of-the-art quality score.
According to Shen et al. (2018), attention mechanism allows for
more flexibility, and is more task/data-driven when modeling
dependencies. Unlike sequential models, attention mechanism is
easy to compute. Computation can also be significantly
accelerated with distributed/parallel computing schemes.
However, to the best of our knowledge, a model based entirely
on Transformer structure has not yet been designed for analysis
of MEG data.

3 TRANSFORMER-BASED HFO
DETECTION FRAMEWORK

This section begins with introducing the overview of HFO
detection framework. Then, we described virtual sample
generation. Next, the TransHFO classification model with the
dense layer and transformer model for biomedical MEG one-
dimensional signal data is elaborated.

3.1 Overview of HFO Detection Framework
The overview of transformer-based HFO detection framework is
described in Figure 1. Specifically, the framework includes signal
segmentation, virtual sample generation, signal classification, and
signal labeling. We developed a TransHFO model for HFO signal
classification. The framework contains a training phase and a
testing phase. During the training phase, given the gold standard
of MEG signal segments with a certain duration (i.e., 1,000 ms),
the virtual sample generation method is used to augment the size
of the HFOs and normal control (NC) signals. A TransHFO
model is trained to distinguish HFOs fromNC signals. During the
testing process, given a set of MEG data, the framework split the
data into a series of signal segments with a moving window into
the same length of training data. Then, the trained TransHFO
model is used to classify the segments. The assigned labels can be
visualized by software such as the MEG processor (Xiang et al.,
2015).

3.2 Virtual Sample Generation
To increase the size of training samples for the deep learning
model, a virtual sample generation approach has been applied.
Here, an adaptive synthetic (ADASYN)-based virtual sample
generation approach is utilized for our MEG dataset (He et al.,
2008). ADASYN was originally proposed to perform over-
sampling for imbalanced datasets. However, it has also been
applied to increase sample size when the training samples of
machine learning models are insufficient (Kawahara et al., 2017).
The ADASYN approach first calculates the degree of imbalance

FIGURE 1 | The proposed Transformer-based HFO detection framework is designed specifically for the presurgical diagnosis of biomedical one-dimensional MEG
signal data. Briefly, the HFO classification framework includes signal segmentation, signal augmentation, TransHFO signal classification, and signal labeling. This
framework achieves more robust and reliable performance on HFO classification than baseline models. Furthermore, we find that shallow TransHFO (< 10 layers)
outperforms deep TransHFO (≥10 layers) on most data augmented factors, revealing the importance of human labeled data and the potential of deep-learning
methods for automatic diagnosis of medical signal.
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between minority and majority class samples. If the degree of
imbalance is smaller than a preset threshold for maximum
tolerated imbalance, it estimates the number of virtual samples
to be generated from the minority class. For each sample in the
minority class, this approach finds the k-nearest neighbors
(KNN) based on Euclidean distance and calculates the density
distribution of the minority class for the given minor sample.
Eventually, it generates virtual samples for each minority sample
based on estimated sample size and density distribution.

To utilize the ADASYN as the virtual sample generation
method for our balanced MEG dataset, we manually create an
imbalanced dataset from our ground truth data. Specifically, both
HFOs and normal control (NC) samples are separated into three
bins, respectively. One bin of HFO samples and three bins of NC
samples are combined as an imbalanced dataset. The ADASYN is
then applied to generate virtual ripple samples for this temporary
imbalanced dataset. Similarly, the ADASYN is utilized to
synthesize NC samples. This procedure is repeated until the
pre-defined number of virtual samples is generated. By varying
different data augmented factors, we conducted exploratory
experiments to examine the relationship between the depth of
deep learning models and the classification performance,
resulting in several principles and insights for future model
design [t].

3.3 TransHFO Classification Model
We propose an HFO classification framework called the
“Transformer-based HFO (TransHFO)” classification. The

architecture of TransHFO is shown in Figure 2. The
framework consists of a dropout layer, a stack of N identical
layers, and two dense layers.

Each layer in N stacked transformer has two sub-layers
(Vaswani et al., 2017). The first is a multi-head self-
attention mechanism, and the second sub-layer is a feed-
forward network. Residual connection (He et al., 2016) is
employed around each of the two sub-layers, followed by
layer normalization (Ba et al., 2016). That is, the output o of
each layer is

oi � Norm(ReLU(sublayer(oi−1) + oi−1)), (1)
where i is the ith layer in transformer blocks and sublayer (oi−1) is
the function implemented by the layer itself.

The two dense layers are fully connected to change the number
of units in the framework. The dense layer (lower) and layer
(upper) are set with activation “ReLU”, and 128 and 10 units of
the output space, respectively. The third dense layer is “Sigmoid”
in the framework with 1 unit of the output space and sigmoid
activation function.

A standard cross-entropy loss is used as the training objective
of TransHFO, defined as

L � −∑k
i�1

yi log(ŷi), (2)

where y is the one-hot target for medical outcome and ŷi is the
probability of the ith class given patient journey.

3.3.1 Dense Layer
Dense layer can be thought of exploring the importance of each
signal within a sequence and compresses the sequence of
signals into a low-dimension vector representation. For
simplicity, we take the dropout output s as an example.
Formally, it is written as:

o � wTσ(w(1)s + b(1)) + b, (3)
where σ is ReLU function and w, w(1), b(1), o are learnable
parameters.

3.3.2 Transformer
To learn relationships between patients’MEG, the Transformer
module is proposed to capture the inherent dependencies, which
is calculated as follows:

v � Transformer(o) (4)
The Transformer is identical to that of BERT (Vaswani et al.,

2017) and (Devlin et al., 2018), which has two sub-layers. The first
is a multi-head attention mechanism (explained below), and the
second is a position-wise addition and normalization layer. A
residual connection (He et al., 2016) is employed around each of
the two sub-layers, followed by layer normalization (Ba et al.,
2016).

The multi-head attention mechanism relies on self-attention,
where all of the keys, values, and queries come from the same
place. The self-attention operates on a query Q, a key K, and a
value V:

FIGURE 2 | Transformer-based HFO (TransHFO) classification model.
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Attention(Q,K ,V) � sof tmax
QKT��
d

√( )V (5)

where Q, K, and V are n × d matrices, n denotes the number of
diagnoses in a visit in a patient record, and d denotes the
embedding dimension.

The multi-head attention mechanism obtains h (i.e., one per
head) different representations of (Q, K, V), computes self-
attention for each representation, and concatenates the results.
This can be expressed as follows:

headi � Attention(QWQ
i ,KW

K
i ,VWV

i ) (6)
MultiHead(Q,K ,V) � Concat(head1, . . . , headh)WO (7)

where the projections are parameter matrices WQ
i ∈ Rd×dk ,

WK
i ∈ Rd×dk , WV

i ∈ Rd×dv and WO ∈ Rhdv×d, dk = dv = d/h.

4 EXPERIMENTS

We conducted experiments based on a real-worldMEG dataset to
compare the performance of our proposed method TransHFO
with several state-of-the-art methods in terms of the classification
performance. We also evaluated the impact of the data
augmentation on the baseline methods and our TransHFO
model. Furthermore, we explored the influence of the network
depth on TransHFO model.

4.1 Dataset Description
MEG data were obtained from 20 clinical patients (age: 6–60 years,
mean age 32; 10 female patients and 10 male patients) affected by
localization-related epilepsy, which is characterized by partial
seizures arising from one part of the brain, and were
retrospectively studied. The data were acquired under approval
from an Institutional Review Board. MEG recordings were
performed in a magnetically shielded room (MSR) using a 306-
channel, whole-head MEG system (VectorView, Elekta Neuromag,
Helsinki, Finland). The sampling rate of MEG data was set to
2,400 Hz, and approximately 60 min of MEG data were recorded
for each patient. MEG data were preliminarily analyzed at a sensor
level with MEG Processor (Xiang et al., 2015; Li and Yin, 2020).
The spike was visually identified in waveform with a band-pass
filter of 1–70 Hz, while HFOs were analyzed with a band-pass filter
of 80–500 Hz. For the model evaluation purpose, the clinical
epileptologists selected HFOs and NC signal segments based on
intracranial recordings (iEEG) for these patients. By comparing the
MEG sources and the brain areas generating HFOs, the clinical
epileptologists marked HFOs. The duration of each signal segment
which contains a series of 2000 signal time points is 1 s. A total of
202 signal segments (101 HFO samples and 101 NC samples) were
composed as a gold standard dataset for model evaluation.

4.2 Experiment Setup
4.2.1 Model Evaluation
We conducted a comprehensive evaluation in this study by
employing the proposed TransHFO to classify the HFO
signals from normal controls. A k-fold cross-validation was

designed in our experiments. The whole gold standard dataset
would be divided into k portions. In each repeated iteration, we
randomly used one portion of the data as testing data, and applied
the rest (k-1) portions of the data as training data. This process
would be repeated k times until all data have been tested once.
The classification performance was evaluated by aggregating all
iterations.

4.2.2 Baseline Methods
We choose three baseline methods: Logistic regression, which is
traditional machine learning model; SMO (Guo et al., 2018),
which is the latest deep learning model used inMEG data; and the
ResDen model, which is the simplified version of our proposed
TransHFO model.

• Logistic regression (LR): The maximum-likelihood
estimation algorithm was used to optimize the coefficient
of the logistic regression model.

• SMO: We implemented 4-layer SSAE-based neural
networks with an input layer, three hidden layers, and an
output layer. The number of nodes in three hidden layers
was set to 30. A loss function with L2 regularization and
sparsity regularization terms were utilized. Hyper parameter
sparsity proportion was selected from [0.1, 0.2, 0.3, 0.4, 0.5]
and L2 regularization weight was decided from [0.1, 0.2, 0.3,
0.4, 0.5]. The learning rate was set to 0.01. The training is
stopped if the model returns the same loss on validation data
in three consecutive epochs.

• ResDen: ResDen follows the same framework as TransHFO,
but Multi-Head Attention is replaced with a simple dense
layer with “ReLU” activation and having the same number
of units as that of Dense-1 in the TransHFO model.

4.2.3 Evaluation Metrics
We calculated true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) for the classification by comparing
the classified labels and gold-standard labels. Then, we calculated
accuracy, sensitivity, precision, and F-score by:

Accuracy � TP + TN

TP + TN + FP + FN

Precision � TP

TP + FP

Sensitivity � TP

TP + FN

Specificity � TN

TN + FP

F − score � 2 ×
precision × sensitivity

precision + sensitivity

(8)

4.2.4 Implementation Details
We implement all the approaches with Tensorflow 2.0, except LR.
For training models, we use RMSprop with a mini-batch of 32
patients and 10 epochs. The drop-out rate is 0.1 for all the
approaches. Virtual samples are generated by ADASYN, and
the size of samples is the scalars (1, 5, 10, 20, and 40) times the size

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8228105

Guo et al. Transformer-Based HFO Signal Detection

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


of the original data. The number of the stacked N identical layers
varies from 1 to 40 in the TransHFO framework.

4.3 Results
4.3.1 HFO Performance Comparison Using Different
Models
In this section, we first compared HFO classification performance
of the proposed framework with the-state-of-art models. As
shown in Table 1, we set up two scenarios: with data
augmentation and without data augmentation. The upper part
of Table 1 illustrated HFO performance using only gold standard
data without any data augmentation scheme. In our experiments,
traditional machine learning model LR had the lowest
performance compared to other three neural network-based
models. The proposed model achieved the best performance
with an accuracy of 0.9580, a precision of 0.9929, a sensitivity
of 0.9289, a specificity of 0.9917, and an F-score of 0.9593. It
achieved better performance than our previously developed SMO
detector. Compared to ResDen, our model had higher accuracy,
precision, specificity, and F-score, while both our model and
ResDen reached 0.9289 on sensitivity.

For the data augmentation scenario, the proposed model
had an accuracy of 0.9615, a precision of 1.0, a sensitivity of
0.9286, a specificity of 1.0, and an F-score of 0.9630. This is
again the best among four compared models. Also, the
proposed model and ResDen also had better performance
than the LR model and SMO detector, demonstrating the
superior strength of deep learning models. Compared to
ResDen, our model achieved better performance on
accuracy, precision, specificity, and F-score. We believe
that this is due to the multi-head attention mechanism
added into the model. Furthermore, by comparing the
upper part and lower part of the table, we noted that,
except LR, these three neural network-based models all had
improved performance with data augmentation, illustrating
the effectiveness of data augmentation on neural networks.
For SMO and ResDen, the accuracy increased 4% and 2%,
respectively. However, the proposed TransHFO model only
had a slight increase on accuracy (0.5%). The effect of data
augmentation is very limited.

4.3.2 Impact of Data Augmentation
Figure 3 listed the HFO classification performance of the
proposed TransHFO model as well as the other three models,
tested on dataset augmented by 0- to 40-fold. The LR model has
no performance change using different augmented data. For
TransHFO, the best accuracy and F-score were 0.9615 and
0.963, respectively, at an augmentation factor of 10. For both
ResDen and SMO, the best performance was obtained by using an
augmentation factor of 5. A clear trend showed that all neural
network-based models achieved improved performance with an
augmentation factor of 5 or 10. However, the incremental
changes of performance on accuracy and F-score were limited.
Combined with previous experiment, we believe that data
augmentation is a technique for increasing sample data so as
to avoid model overfitting. This will prevent the model achieved
overfitted low performance. On the other hand, data
augmentation may not be effective to increase the
performance of HFO classification. Considering the training
time cost, an augmentation factor that is able to increase the
sample size to 1,000–2,000 may be sufficient for training a model
with residual links and attention mechanism.

4.3.3 Impact of Network Depth of TransHFO
For the proposed TransHFO, we tested the HFO classification
performance using different architecture and augmentation
factors. As displayed in Figure 4, we listed the accuracy,
F-score, precision, sensitivity, and specificity, respectively.
First, a general trend of these figures showed that the HFO
classification performance decreased dramatically when the
model had more than 10 layers. If we use 10 layers as a
cutoff between shallow TransHFO ( < 10 layers) and deep
TransHFO (≥10 layers), the results demonstrated that the
shallow TransHFO achieved better HFO classification
performance than deep TransHFO. For the one-dimensional
biomedical MEG signals, the more layers of the model may not
increase the performance. This observation needs further
confirmation by using additional experiments with more bio-
signals.

Second, we noted that when the training data were augmented
by a factor of 10, the proposed TransHFO achieved the best

TABLE 1 | Performance comparison of different models. The TransHFO achieved better performance than LR, SMO, and ResDenmodels in both no data augmentation and
data augmentation scenarios.

Model Accuracy Precision Sensitivity Specificity F-score

LR 0.807 7 0.909 1 0.714 3 0.916 7 0.800 0
SMO 0.846 2 0.916 7 0.785 7 0.916 7 0.846 2
ResDen 0.923 1 0.928 6 0.928 6 0.916 7 0.928 6
TransHFO 0.958 0 0.992 9 0.928 9 0.991 7 0.959 3

LR (Aug) 0.807 7 0.909 1 0.714 3 0.916 7 0.800 0
SMO(Aug) 0.884 6 0.923 1 0.857 1 0.916 7 0.888 9
ResDen (Aug) 0.948 7 0.952 4 0.952 4 0.944 4 0.952 4
TransHFO(Aug) 0.961 5 1.000 0 0.928 6 1.000 0 0.963 0

Bold values represents the best performance of different models in the corresponding Evaluation Metrics
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performance. However, as mentioned in the previous section, the
performance of HFO classification was quite similar for shallow
TransHFO using very different augmentation factors from 0 to
40. On the other side, the performance of HFO classification had
very large variations for deep TransHFO using different
augmented training data. The results suggest that for bio-
signal MEG signals, a small augmentation factor and a shallow
TransHFO model would be efficient to achieve a desirable
performance. Additional data augmentation or deeper
architecture may not improve the performance of HFO
classification.

4.4 Discussion
HFO classification task is a crucial step towards surgical treatment on
epilepsy patients. With the ground truth training dataset, the
TransHFO detector achieves an accuracy of 96.15% on the HFO
classification task. This sheds light on the feasibility of using
transformer-based networks techniques. Meanwhile, we find that
shallow TransHFO (< 10 layers) outperforms deep TransHFO
models (≥10 layers) on most HFO classification tasks with
different data augmented factors. This finding offers us the
possibility to use interpretable and shallow models based on

appropriately expressing the structure of MEG data for precise
HFO detection.

This study mainly focuses on the shallow transformer-
based model that can achieve better performance than the
deep learning model in HFO detection tasks. Supported by the
results, the TransHFO detector benefits from both the virtual
sample generation technique and the multi-head attention
mechanism. However, according to Figure 4, the shallow
TransHFO achieved better performance than deep
TransHFO in HFO classification tasks with different data
augmented factors. For the HFO detection task, more layers
of the model may decrease the performance. The strengths of
shallow TransHFO over deep TransHFO in the HFO
classification tasks may partially be attributed to the nature
of the dataset. The dataset is a small dataset that consists of
one-dimensional biomedical MEG signals from one
institution. For such a dataset, the virtual sample generation
technique may not augment enough higher-level features of
MEG signals that can be learned by deep TransHFO.
Additionally, our observation needs further confirmation by
using additional experiments with more bio-signals from
external data sites.

FIGURE 3 | Performance of different models with varying augmentation factors from 0 to 40. The models had better performance with augmentation factors 5, 10,
and 20. (A) Accuracy. (B) F-score. (C) Precision. (D) Sensitivity. (E) Specificity.
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There are several limitations in this study. First, we have a
small cohort of epilepsy patients. We only collect 202 samples
from 20 patients. Although the virtual sample generation
approach mitigates the insufficient issue in a way, a larger
cohort possibly provides better biological varieties. Second,
according to clinical routine, we pre-defined the duration of
MEG signal segments as 1 s. Additional information for HFO
classification may be revealed by other signal duration (e.g.,
0.5–2 s). Third, this paper treats the MEG segments from
different channels equally and independently. However, there
are complex timing and co-occurrence relationships among
segments. Mining and utilizing these relationships may
improve the effectiveness of HFO detection. Finally, only
internal validation was conducted on a set of data from one
institution. Additional datasets from external data sites are
required to test the generalizability of our detector.

5 CONCLUSION

In this paper, we presented a novel Transformer-based HFO
detection framework designed specifically for biomedical MEG
one-dimensional signal data. The proposed HFO detection
framework employs Transformer models with a self-attention
mechanism and virtual sample generation technique. Compared
with the previously developed HFO classifiers, the proposed
framework increased classification accuracy by 7%. With this
new framework, we designed experiments to investigate whether
deep TransHFO models are able to achieve robust and reliable
performance on HFO classification. Furthermore, with the
proposed classification framework, we set to conduct
exploratory experiments to discover whether the relationship
between the depth of TransHFO models and classification
performance is positively monotonic. Based on exploratory

FIGURE 4 | Performance of different augmentation factors (0, 1, 5, 10, 20, and 40) with varying N, the number of identical layers in TransHFO framework, from 1 to
40. (A) Accuracy. (B) F-score. (C) Precision. (D) Sensitivity. (E) Specificity.
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experiments, we find that shallow TransHFO (< 10 layers)
outperforms deep TransHFO (≥10 layers) on most data
augmented factors. The experimental results demonstrate that
our proposed framework is a promising computer-aided
diagnosis tool for clinical usage. Several future directions are
clarified as follows. The first is to extend our framework into a
multi-label classifier with a function to recognize additional
patterns or sub-patterns (e.g., spike, ripple and fast ripple) in
MEG. The second direction includes external validation and
clinical applications of the proposed framework on other
neuromagnetic data such as iEEG. The final direction is to
design an interpretable and shallow network based on
appropriately expressing the structure of MEG data for precise
HFO detection.
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