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Osteosarcoma is the malignant tumor with the highest incidence rate among

primary bone tumors and with a high mortality rate. The anti-osteosarcoma

materials are the cross field between material science and medicine, having a

wide range of application prospects. Among them, biological materials, such as

compounds from black phosphorous, magnesium, zinc, copper, silver, etc.,

becoming highly valued in the biological materials field as well as in orthopedics

due to their good biocompatibility, similarmechanical properties with biological

bones, good biodegradation effect, and active antibacterial and anti-tumor

effects. This article gives a comprehensive review of the research progress of

anti-osteosarcoma biomaterials.
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1 Introduction

Osteosarcoma is the malignant tumor with the highest incidence among primary bone

tumors (Mirabello et al., 2009; Rojas et al., 2021). It usually occurs in children and

adolescents and often occurs in the distal femur, proximal tibia, and proximal humerus

(Ritter and Bielack, 2010). For primary osteosarcoma without metastasis, the current

clinical methods are surgery such as amputation, combined with radiotherapy and

chemotherapy and others, with a high 5-year survival rate reaching 70% (Souhami,

1989; Heng et al., 2020). However, there are still 20% of patients who will have metastasis

during treatment, especially prone to lung metastases (Ward et al., 1994; Meazza and

Scanagatta, 2016). Once metastasis occurs, such as lungmetastasis, the 5-year survival rate

may be less than 30% (Tsuchiya et al., 2002). Until recently, extensive radical resection was

used as the main treatment for osteosarcoma. More importantly, the continuous

emergence of chemotherapy resistance in osteosarcoma further reduces the survival

rate of patients, leading to low clinical benefits and poor postoperative quality of life for

patients (Li et al., 2015). But, with the development of imaging, the application of

angiography and interventional techniques, advances in neoadjuvant chemoradiotherapy
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and surgical techniques as well as rapid progress in

immunotherapy, the treatment of osteosarcoma has

undergone major changes and limb preservation surgery has

an increasing ratio (Ferrari et al., 1997; Muscolo et al., 2005;

Wong and Kumta, 2013; Takeuchi et al., 2019; Gill and Gorlick,

2021). Regrettably, to completely remove the tumor, a large

number of tissues need to be removed during a limb-

preserving surgery, which results in some challenges to the

preservation and functional reconstruction of limbs.

Therefore, the treatment of primary lesions is very important,

especially those osteosarcomas that grow in the pelvis or the

spine, which cannot be completely removed due to surgical

limitations. Inevitably, there will be residual tumor tissue after

surgery. However, the currently used autologous bone, allogeneic

bone, and prosthesis only play the role of reconstruction, and

cannot eliminate the local residual tumor tissue. Meanwhile, the

various physical and chemical inactivation methods commonly

used at present, such as neoadjuvant radiotherapy and

chemotherapy, may damage the normal tissues while

destroying the tumor tissue simultaneously, and these

methods have no reconstruction effect. Therefore, finding an

ideal material that can not only fill in but also kill the residual

tumor cells, reducing the probability of recurrence, and

metastasis and thereby promoting bone repair to treat

osteosarcoma, has become a hot topic (Marques et al., 2014;

Ma et al., 2020; Liao et al., 2021).

For this reason, many kinds of anti-osteosarcoma materials

have emerged, and previous studies have mainly focused on the

polymer compounds, such as poly (lactic acid-co-glycolic acid)

(PLGA) and chitosan, etc., (Ma et al., 2014; He et al., 2022). These

polymer compounds often require multiple modifications before

they can function as anti-osteosarcoma, and they have no

obvious advantages in promoting osteogenesis and mechanical

properties (Table 1). For that matter, there’s a limitation to the

clinical application of these polymers.

But, in recent years, biological materials, such as black

phosphorous (BP), magnesium (Mg), zinc (Zn), copper (Cu),

silver (Ag), etc., have become more and more valuable in tissue

engineering and orthopedics fields due to their good

biocompatibility, mechanical properties similar to those of

biological bones, biodegradation, antibacterial and anti-tumor

effects (Figure 1) (Choi et al., 2018; Ambrosio et al., 2021). For

instance, copper, magnesium and other metal ions can inhibit

inflammation by promoting the polarization of macrophages

from M1 to M2, which is conducive to bone regeneration and

repair (Yang et al., 2021c; Diez-Tercero et al., 2021). Of these, the

anti-tumor effect of biomaterials is mainly reflected in

phototherapy. Phototherapy, as a minimally invasive and

high-efficiency anticancer approach, has sparked extensive

research interest (Hou et al., 2018). Phototherapy includes

photodynamic therapy (PDT) and photothermal therapy

(PTT) which have very different therapy mechanisms under

the same stimulus. For PTT, a light at a specific wavelength

irradiates photothermal agents, which heats up and kills tumor

cells; however, in PDT, photosensitizers can produce large

amounts of singlet oxygen (1O2) that can kill tumor cells

under specific light exposure. Besides, several studies have

found that local hyperthermia can activate heat shock proteins

and promote the expression of osteogenesis-related genes, such

as RUNX2, and BMP2, through the PI3K/AKT signaling

pathway and ERK1/2 signaling pathway (Chen et al., 2015;

Sayed et al., 2019; Wang et al., 2022). It can also increase the

expression of alkaline phosphatase and promote bone

differentiation (Shui and Scutt, 2001; Norgaard et al., 2006).

TABLE 1 The Comparison of features of different biomaterials.

Type of material Anti-tumor effect Toxicity Inflammatory
response

Bone
regeneration
capacity

Flaw

Magnesium Phototherapy and
nanoparticle targeting

effects

Electrolyte disturbances Less, depending on the
concentration

Excellent Rapid degradation rate
and local hydrogen

production

Zinc nanoparticle targeting
effects

Anemia and impaired
immune function

Less, depending on the
concentration

Good Poor corrosion resistance

Copper Photothermal therapy and
nano drug delivery system

Liver function lesions and
tubular necrosis and

nephritis

Less, depending on the
concentration

Good Potential toxicity

Silver nanoparticle targeting
effects

Potential cytotoxicity Less General Complex preparation
process

Black phosphorus Phototherapy and
nanoparticle targeting

effects

No obvious cytotoxicity Less Excellent Unstable properties and
low preparation

efficiency

Poly (lactic acid-co-
glycolic acid) (PLGA)

nanoparticle targeting
effects

No obvious cytotoxicity More General Poor mechanical
properties
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These make phototherapy, especially PTT, attract the interest of

many researchers in the process of bone repair after

osteosarcoma surgery. At the same time, nanomaterials, such

as nano-silver, BP nanosheets, etc., have shown great advantages

in drug loading, tumor imaging, promoting osteogenesis, and

anti-tumor properties (Gui et al., 2018; Qing et al., 2020; Ge et al.,

2022; Zhu et al., 2022). Nanoparticles (NPs) usually refer to

particles with a diameter between 1 nm and 100 nm, which can

be used as biocatalysts, infrared absorbing materials, etc. Studies

have shown that particles with a diameter of 5.5 nm–100 nm are

not easily filtered by the kidney, but when passing through the

tumor blood vessels, they can pass through the leaking blood

vessels at the tumor, and then accumulate in large quantities in

the tumor (Maeda, 2001; Poon et al., 2019). This is known as the

enhanced permeability and retention (EPR) effect, which makes

nanomaterials excellent for tumor therapy (Wu, 2021). Overall,

this review describes recent advances and challenges in

biomaterials for osteosarcoma treatment, inspiring future

osteosarcoma research.

2 Magnesium, zinc, and their alloy

Mg, Zn, and their alloys exert excellent anti-tumor effects by

influencing the metabolism and phenotype of tumor cells,

inducing tumor cell proliferation inhibition, cell cycle arrest,

and cell apoptosis (Krol et al., 2017; Zhou et al., 2021). Studies by

Wu et al. have shown that magnesium-zinc alloy can inhibit the

proliferation of osteosarcoma cell line U20S cells by arresting the

G2/M phase of the cell cycle, and promote the apoptosis of U20S

tumor cells through a mitochondrial-dependent pathway; at the

same time, the alloy solution can inhibit the metastasis of U20S

tumor cells through the MAPK pathway (Wu et al., 2016).

Moreover, Mg, as an essential trace element in the human

body, indirectly affects mineral metabolism through its role in

ATP metabolism and as a cofactor for more than 300 enzymes

(Palacios, 2006). Therefore, Mg plays a more prominent role in

bone tissue engineering by its excellent biocompatibility and

biodegradability. Besides, the PTT of mg and the hydrogen

generated from its degradation have also received increased

attention in tumor therapy. On the ground, Long et al. have

designed innovative multifunctional PLGA/Mg porous scaffolds

with excellent biodegradability and biocompatibility by low-

temperature three-dimensional (3D) printing technology

(Long et al., 2021). In vivo experiments, Mg particles exhibit

excellent photothermal effects for tumor eradication andMg ions

released from PLGA/Mg porous scaffolds could promote bone

regeneration, which gives the PLGA/Mg scaffolds dual functions

of inhibiting OS recurrence and continuously repairing bone

defects. On the other hand, after intra-tumoral injection, Zhou

et al. found that micro-scale Mg/PLGA exhibited stronger

cytotoxicity, PTT, and anti-tumor effect than nano-scale Mg/

FIGURE 1
Biomaterials in bone reconstruction after osteosarcoma surgery. (A) Under near-infrared (NIR) light, biomaterials eliminate residual
osteosarcoma cells through PTT and PDT to prevent a recurrence. (B) Biomaterials can be used as drug-loaded systems to target residual
osteosarcoma cells, release chemotherapeutic drugs, and kill osteosarcoma cells. (C) After osteosarcoma resection, the 3D printed biomaterial
scaffold can not only play the role of bone support and bone connection but also release some active particles, such as Ag+, Cu+, PO4

3-, etc., to
up-regulate the expression of osteogenesis-specific genes and promote bone regeneration.
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PLGA (Zhou et al., 2021). This inspires the design ofMg scaffolds

in the reconstruction of bone defects after osteosarcoma surgery.

Besides, Zan et al. designed a magnesium-based biomaterial that

can release hydrogen in a controlled manner, giving full play to

the anti-tumor effect of Mg (Zan et al., 2022). Then, the

generated hydrogen can promote the expression of tumor

suppressor gene P53 and activate the mitochondria-related

apoptosis pathway. At last, several studies also revealed that

Mg can induce the apoptosis of osteosarcoma cells (MG63 and

U2-OS cells) by shortening the half-life of Snail1 (Zan et al.,

2020). However, although the human toxicity of Mg has been

controversial, recent studies have reported that high

concentrations of magnesium particles can inhibit osteoblast

activity (Wang J. L. et al., 2020). This contradicts the potential

osteogenic ability of Mg, which may be related to the

concentration of Mg2+ in the bone microenvironment. The

underlying mechanism is still unclear, and more research is

needed to explore the metabolic mechanism of Mg2 in the

bone microenvironment. In general, the toxicity study of

magnesium-containing bone repair materials requires further

studies (Table 1).

Nano-zinc biomaterials have also received increased

attention in anti-tumor. For instance, He et al. (2018) revealed

that zinc ions from ZnO NPs could suppress osteosarcoma cell

proliferation by causing S phase arrest. Intercellular Zn ions also

can target and damage the mitochondria, which could contribute

to excessive reactive oxygen species (ROS) generation to promote

apoptosis, which contributes to osteosarcoma cell death. They

also found that there is an enhancing autophagosome formation

and impaired lysosomal function with an upregulation of the

LC3-II/LC3-I ratio after ZnO NPs treatment. Furthermore, there

is crosstalk, in which apoptosis inhibition would contribute to

autophagy, between apoptosis and autophagy in ZnO NPs-

induced human osteosarcoma cell death. In addition, He et al.

also revealed firstly an interplay between HIF-1α and the

autophagy−Zn2+−reactive oxygen species (ROS)−autophagy

cycle axis and confirmed that ZnO NPs could up-regulate

HIF-1α in osteosarcoma cells mainly due to the combined

effect of Zn2+ and ROS (He et al., 2020). Then, the studies in

vivo experiments have shown that ZnO NPs could inhibit

subcutaneous osteosarcoma proliferation with good biosafety

by activating HIF-1α, apoptosis, and autophagy. Besides, Zn,

like Mg, is mostly stored in the bones and may play a significant

role in bone disease and osteogenesis (Palacios, 2006; Huang

et al., 2020; Song et al., 2020). Based on this, a zinc-containing

hydroxyapatite nanorod that promotes osteogenic differentiation

of bone marrow mesenchymal cells in the absence of osteo-

inductive factors is engineered (Fernandes et al., 2020). However,

scaffolds of Mg, Zn, and their alloys often require a high-

temperature fabrication process and are prone to corrosion

after being placed in the body, which limits their clinical

application (Table 1) (Koons et al., 2020). Therefore, while

ensuring the degradability of metals, future research also

needs to focus on the corrosion resistance of metallic

materials. Additionally, to further exert the role of Zn and Mg

biomaterials in bone repair after osteosarcoma surgery, the

underlying molecular mechanisms need to be further explored.

3 Copper

As a constituent microelement of the human body and a

cofactor for metalloenzymes, Cu plays an important role in

human tissue regeneration, hemostasis, antibacterial, and anti-

tumor (Harris, 1992; Palacios, 2006; Mendel et al., 2007; Yang

J. et al., 2021). Thus, the imbalance of Cu in the internal

environment will affect the normal function of tissues and

organs, leading to adverse reactions such as anemia,

malnutrition, neurodegenerative disease, and osteoporosis

(Palacios, 2006; Brewer, 2010). Recently, some studies

reported the design of scaffolds with antitumor and bone

repair promotion by adding Cu elements (Kargozar et al.,

2021; Solak et al., 2021). A new type of metal framework

copper tetrakis (4-carboxyphenyl) porphyrin (Cu-TCPP)

nanosheet interface structure is combined with β tricalcium

phosphate (TCP) to make a Cu-TCPP-TCP scaffold (Dang

et al., 2020). On one hand, the Cu-TCPP-TCP scaffold

material uses near-infrared (NIR) irradiated light to exhibit

photothermal performance, then killing the osteosarcoma cells

by releasing heat energy. On the other hand, in vitro studies have

found that the Cu-TCPP-TCP scaffold stimulates human bone

marrow stromal stem cells (hBMSCs) and human umbilical vein

endothelial cells (HUVEC), and significantly enhances the

expression of osteogenic differentiation-related genes in

hBMSCs and differentiation-related genes in vascular

endothelial cells. In animal experiments, implanting a Cu-

TCPP-TCP scaffold into a rabbit’s bone defect site can

promote bone regeneration.

In addition, it is worth noting that a nano-Cu-based drug-

targeted delivery system will also bring new benefits to

osteosarcoma patients (Figure 2). For example, Wang et al.

(2016) reported that a smart therapeutic nanoplatform based

on CuS@Zeolitic imidazolate framework-8 (ZIF-8) NPs have

been developed (Gao et al., 2019). On this basis, they observe for

the first time that after the loading of DOX the CuS@ZIF-8 NPs

have synergistic chemo- and PTT effects on tumor cells in vitro/

vivo studies. The low pH-sensitive property of the ZIF-8

framework makes a progress in integrating light/low

pH triggered the release and chemo-photothermal therapy

into one system which shows superior anticancer effects over

the chem- or phototherapy alone. However, the toxicity of Cu

limits further applications (Brewer, 2010; Ameh and Sayes,

2019). Several works of literature point out that Cu2+ can

combine with a variety of organic substances and disrupt the

normal homeostasis and physiological processes of the human

body. In the body, Cu2+ is often accumulated in the liver, affecting
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liver metabolism and causing liver function lesions; in the kidney,

it can cause tubular necrosis and nephritis (Table 1) (Chen et al.,

2006). Based on this, more research is needed to explore the

biodegradability or controlled release of Cu2+ in bone repair

scaffolds.

4 Silver

Ag has been employed for biomedical purposes since ancient

times owing to its anti-microbial properties (Xu et al., 2020).

And, in the early 19th century, Ag preparations were developed

for wound disinfection and burn care, and Ag nitrate was used

for wound care and instrument disinfection. Regrettably, in the

1940s, the medical use of Ag gave way to the clinical use of

antibiotics. But, with the development of nanotechnology, nano-

silver particles (AgNPs) have received special interest due to their

excellent antibacterial and antitumor effects. They are also used

to promote wound repair and bone healing, as well as vaccine

adjuvants, anti-diabetics and biosensors, etc., (Qing et al., 2018).

Besides, several studies have also reported the role of Ag

nanorods in photoacoustic (PA) imaging of inflammatory

tissue, which is worthy of further exploration in the role of

osteosarcoma imaging (Mei et al., 2020).

Then, AgNPs have been observed to exhibit good anticancer

activities in breast cancer, cervical cancer, colon cancer, ovarian

cancer, pancreatic ductal adenocarcinoma, lung cancer,

hepatocellular carcinoma, melanoma, osteosarcoma, etc.,

(Chugh et al., 2018; Xu et al., 2020). And several studies have

confirmed that the anticancer activity of AgNPs varies in various

sizes, shapes, and doses/concentrations in different cancer cells

(Jo et al., 2015; Dziedzic et al., 2016). In general, AgNPs show

broad-spectrum anticancer effects through size, dose/

concentration, and time-dependent ways. Smaller AgNPs can

induce enhanced endocytosis and more significant cytotoxicity

and genotoxicity. Compared with other shapes, spherical AgNPs

exhibit greater cytotoxicity due to a higher surface-volume ratio.

And higher doses of AgNPs generally lead tomore apoptosis than

lower doses. On the basis, taking advantage of the lack of function

of the P53 gene in a variety of tumors, Kovacs et al. proposed a

clever idea based on a therapeutic strategy that stimulates the

function of P53, prepared Ag nanoparticles, and tested their

cytotoxic effect on the osteosarcoma cells (U20S, Saos-2) which

lack the function of P53 tumor suppressor gene (Kovacs et al.,

2016). The results showed that the mitochondrial structure and

function of osteosarcoma cells treated with citric acid-coated

AgNPs were disordered, and the apoptosis rate was increased,

indicating that the NPs did not depend on the functional state of

P53 in killing the osteosarcoma cells. This feature makes AgNPs

become another choice for chemotherapy strategies.

Furthermore, Recent research further explores the use of

smaller-scale angstrom silver (one-tenth of a nanometer, AgAP)

in cancer therapy. On the one hand, Xie et al. announced for the

first time the broad-spectrum anti-cancer properties of AgAP

and the body’s good tolerance (no obvious side effects) to AgAP

(Wang Z. X. et al., 2019). It is precise because smaller particles

have greater cellular toxicity, Xie et al. speculated that AgAP

particles have stronger anti-tumor effects (Jo et al., 2015). And

FIGURE 2
Nano-copper-based drug targeted delivery system. (A) Under the irradiation of NIR light, the nano-Cu-chemotherapy drug targeted delivery
system decomposes and releases Cu2+ locally in the tumor, which can destroy the tumor cell membrane structure through PPT, kill tumor cells, and
improve the sensitivity of chemotherapeutic drugs. (B) Under NIR light, the released chemotherapy drugs target tumor cells, causing DNA damage.
At the same time, the damage to normal tissue cells is reduced.
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they independently developed automatic “metal vapor-

condensation” equipment based on physical high temperature

and pressure gasification methods for the preparation of

angstrom material. At the same time, by using fructose to

modify AgAP, AgAP stably existing in the solution was

obtained. The results of cell and animal experiments show

that AgAP injection exhibits killing effects on lung cancer,

pancreatic cancer, and other tumors, but has no obvious toxic

or side effects on normal tissues. Furthermore, Xie et al. found

that fructose-coated angstrom silver (F-AgÅPs; 9.38 nm ±

4.11 nm) can effectively kill a variety of osteosarcoma cell

lines and primary osteosarcoma cells (Hu et al., 2020).

Compared with cisplatin, one of the first-line drugs for

osteosarcoma treatment, F-AgÅPs can more effectively inhibit

the growth of osteosarcoma transplanted subcutaneously in nude

mice and situ osteosarcoma, reduce the damage of in situ

osteosarcoma to bone and inhibit its metastasis to lung, and

has no obvious effect on normal cells and tissues at therapeutic

doses. Tissue distribution and metabolism results show that after

intravenous injection of F-AgÅPs, Ag presents a high level of

accumulation in tumor tissues and is mainly excreted through

feces (the excretion rate through feces after one week is about

68% of the injected dose). On the other hand, tumor cells still

mainly use glycolysis rather than mitochondrial oxidative

phosphorylation to break down glucose and produce ATP

(Warburg effect) even under the condition of adequate oxygen

supply (Bonnet et al., 2007). Aerobic glycolysis can prevent

tumor cells with active oxidative metabolism from producing

excessive ROS and protect them from apoptosis caused by ROS

(Stacpoole, 2017; Woolbright et al., 2019). Pyruvate

dehydrogenase kinase (PDK) is a mitochondrial enzyme that

can selectively phosphorylate pyruvate dehydrogenase (PDH)

E1α subunit to inactivate it, thereby prompting the cell glucose

metabolism to switch from aerobic oxidation to glycolysis.

Mechanism studies have shown that F-AgÅPs can activate

PDH by inhibiting PDK so that the glucose metabolism state

of osteosarcoma cells changes from glycolysis to mitochondrial

aerobic oxidation, thereby selectively inducing osteosarcoma

cells (rather than normal cells) to generate ROS-mediated

apoptosis (Hu et al., 2020).

Moreover, several studies have reported on the creation of

nanocomposites that promote bone regeneration (Xu et al.,

2020). AgNPs are one of them, exhibiting an excellent ability

to promote bone repair. For example, Zhang et al. have

uncovered that AgNPs induce proliferation and osteogenic

differentiation of MSCs in vitro, stimulate callus formation

and accelerate the healing of fractured bone in an osteogenic

mouse model (C57BL/6 mice) (Zhang R. et al., 2015). Mahmood

et al. have confirmed that AgNPs significantly enhanced

osteocyte mineralization and differentiation in MC3T3-E1

cells (an in vitro model) compared with several other NPs and

many genes related to the osteogenesis pathway were expressed

in both control cell cultures and those exposed to AgNPs (Qing

et al., 2018). However, in response to AgNPs exposure, there was

a significant increase in key factors including Bmp4, Bmp6, and

Fosl1, associated with osteoclast pathways. At last, they revealed

that AgNPs accelerated the differentiation and proliferation of

McT3-e1 cells by the differential expression genes (DEGs) and

functional analysis. Besides, Han et al. fabricated AgNPs-loaded

Gel hydrogels (AgNPs/Gel) by a simple method under sunlight

using gelatin as a stabilizing agent which shows an excellent effect

on bone regeneration and fracture treatment (Han et al., 2021).

These innovative explorations reveal the advantages of AgNP as a

multifunctional biomaterial, which may help to solve the

problem of large bone defects and recurrence after

osteosarcoma surgery.

In addition, Xie et al. also first reported that Carbomer gel

loaded with AgAPs (simplified as AgAPs gel) can promote the

repair and regeneration of damaged skin by potent sterilization

and reducing inflammation (Chen et al., 2020). It has been

proved that AgAPs gel can effectively kill a variety of bacteria

in vitro (including Pseudomonas aeruginosa, methicillin-

resistant, and methicillin-sensitive Staphylococcus aureus),

inhibit the bacteria colonization in skin defect sites of diabetic

mice, and the large scalded area of the common mice, reduce the

inflammation of the wound, and thus accelerate the healing of the

wound. The AgAPs r gel of therapeutic dose has no significant

effect on the in vitro activity of normal skin repair-related cells

and the multiple physiological functions and organ tissue

structures in mice and the topical application of AgAPs gel

for several days did not cause Ag accumulation in other

organs in mice. This significant discovery will inspire us to

further explore the potential and more meaningful

applications, such as bone repair, of AgAPs s in nanomedicine.

However, despite the remarkable effects of AgAPs and

AgNPs in anti-inflammatory, anti-tumor, and promoting bone

repair, the process requirements and high energy consumption of

its fabrication also hinder wide clinical applications (Zhang X. F.

et al., 2016). Moreover, due to the natural high affinity of Ag to

sulfur, AgAPs and AgNPs can bind proteins or sulfur-containing

macromolecules in vivo, thereby promoting membrane damage,

ROS generation, protein oxidation, and denaturation,

mitochondrial dysfunction, DNA damage and inhibition of

cell proliferation (Table 1) (Tortella et al., 2020). But, there is

no doubt that AgNPs biomaterials still hold great promise in

bone tissue engineering, and further exploration to obtain slow-

release or locally degraded silver biomaterials may help to

address these challenges.

5 Black phosphorus

BP nanomaterials, also known as phosphenes, a new member

in the two-dimensional (2D) material family, have sparked

considerable research interest (Kou et al., 2015). In the

monolayer BP, each phosphorus atom is covalently linked
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with three adjacent phosphorus atoms to form a puckered

phosphorus layer structure, and the phosphorus layer and

surface are closely bonded by the van der Waals force (Choi

et al., 2018). Compared with other 2D nanomaterials, the BP at

the nanometer level has a fold structure and a bilayer structure

along the Zigzag direction, which makes the BP have a higher

specific surface area. This structural anisotropy contributes to its

excellent properties, including its optical properties, mechanical

properties, electrical conductivity, thermoelectric properties, and

properties that distinguish its topology from other 2D materials.

In addition, another zero-dimensional structure nanomaterial of

BP, black phosphorus quantum dots (BPQDs), was successfully

synthesized by chemical methods and attracted wide attention

(Sun et al., 2015). In 2015, Zhang et al. achieved the first

breakthrough in the preparation of BPQDs (Zhang X. et al.,

2015). Using a facile liquid-phase sonication technique to

fabricate BPQDs, Zhang and colleagues successfully prepared

BPQDs with uniform size and better dispersion. Then, BPQDs

have exhibited significant application in biomedicine (Gui et al.,

2018). In general, BP nanomaterials have attracted widespread

attention for biomedical applications, such as PTT, PDT, drug

delivery, bioimaging, and tissue engineering since it was first

discovered in 2014 (Figure 3). For example, Yang et al. (2018)

based on the PTT and osteogenesis of BP, made a breakthrough

in integrating 2D BP nanosheets into 3D printed bioglass (BG)

scaffolds (Figure 4A). From the micro-scale to the macro-level,

Yang successfully prepared multifunctional biomaterials with

osteogenic and anti-osteosarcoma properties in vitro and in

vivo. And, in this section, we will discuss the biomedical

applications of the properties of black phosphorus.

5.1 Anticancer properties of BP

Owing to its excellent photothermal conversion properties,

black phosphorus has been explored and used as a PTT agent or a

photosensitizer in PDT in vivo cancer therapy (Qi et al., 2021).

Shao et al. (2016) used the emulsification solvent

volatilization method to prepare core-shell structured

nanospheres with high polymer (PLGA) encapsulating

BPQDs. PLGA is a degradable hydrophobic biomedical

polymer, and the formed polymer shell can isolate the

internal BPQDs from the physiological environment, ensuring

the stable performance of the BPQDs during the treatment

process. After the PTT is over, the BPQDs will be slowly

released and degraded with the gradual degradation of the

PLGA shell, and then safely metabolized out of the body. Cell

and animal experiments show that BPQDs/PLGA has good

biological safety and passive tumor targeting, and shows high

PTT efficiency. Five minutes of near-infrared light can effectively

kill tumors. This promotes the actual clinical application of PTT.

In addition, several reports have revealed that a large number of

tumor antigens and alarmins, acting as an endogenous

stimulatory signal that can improve tumor immunogenicity,

are produced when BP kills tumors through PDT (Li W.

et al., 2019; Alzeibak et al., 2021).

More importantly, recent studies have attempted to combine

BP phototherapy with tumor immunotherapy, to achieve

innovative breakthroughs in the treatment of osteosarcoma.

Generally speaking, in the tumor microenvironment, when

interacting with signal regulatory protein-alpha (SIRPα) which
is expressed on macrophages, CD47 can realize the function of

“do not eat me” (Liu M. et al., 2019). On the ground, Xie et al.

(2020) found that BP-based PTT plus in combination with anti-

CD47 antibodies (aCD47) can prompt the repolarization of

tumor-associated macrophages (TAMs) from M2-like to M1-

like macrophages, block the “do not eat me” signal of CD47-

SIRPα in tumor cells and promote phagocytosis of macrophages

(Figure 4B). Then, activated macrophages may enhance the local

cross-presentation of tumor-specific antigens and facilitate the

production of tumor antigen-specific T cells against distant

metastatic tumor cells. Yang et al. (2017) have fabricated a

novel nanocomposite, showing highly biocompatible and

excellent tumor suppression due to synergistic PTT and PDT

mediated by low-power near-infrared lasers, by assembling iron

oxide (Fe3O4) NPs and Au nanoparticles on BP sheets (BPs@

Au@ Fe3O4). Besides, there are also several reports that more

precise and efficient PTT and PDT have been obtained by

modifying black phosphorus or combining it with other

materials. For example, by combining the plasmonic

photothermal effect of Au nanoparticles with MRI of Fe3O4

FIGURE 3
Biomedical applications of BP. With its unique structure, BP
has been more and more favored in anti-tumor, drug-targeted
delivery, photoacoustic imaging, and bone tissue engineering after
various modifications.
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NPs for the first time, BPs@Au@ Fe3O4 shows a more significant

photothermal treatment effect and more selective targeted

therapy. However, although BP-based phototherapy has

achieved some gains in cancer treatment, its clinical

application in osteosarcoma remains a formidable challenge,

and more research is needed to achieve this translation.

Meanwhile, the damage of PTT of BP to the normal tissue

around the tumor has also sparked controversy, and the

subsequent mild photothermal therapy may be its potential

solution (Jiang et al., 2021).

5.2 BP-based drug delivery system

For cancer, traditional drug therapy often has more or fewer

defects, such as easy degradation, adverse reactions, and lack of

targeting ability. But, Over the past decade, as 2D nanomaterials,

such as graphene oxide (GO), BP, and molybdenum disulfide

with various unique physical and chemical properties have been

widely studied, more and more research is turning interest in

these biomaterials to overcoming these challenges (Biju, 2014;

Yin et al., 2017; Liu et al., 2018). Among them, BP has also been

widely discussed as a drug delivery system with a large surface

area, fold-like structure, good biodegradability, and active nano-

interactions (Tao et al., 2017; Wang S. et al., 2019; Liu W. et al.,

2021).

On the one hand, the current exploration is mainly to modify

BP through polymer compounds, such as hydrogels, and PLGA,

to increase the anti-tumor drug carrying capacity of BP

nanosheets, increase the stability of the BP structure, and

achieve a controllable and sustained drug release (Tao et al.,

2017; Choi et al., 2018). Qiu et al. (2018) used the non-contact

probe ultrasonic liquid peeling method to successfully prepare

two-dimensional layered phosphorene nanosheets, and integrate

them with anticancer drugs into the biodegradable temperature-

sensitive hydrogel material to prepare black phosphorus hydrogel

material. Under the irradiation of near-infrared light, the black

phosphorus in the material can generate local high heat, which

can not only kill tumor cells directly through photothermal

action but also target tumor tissue to release drugs. The rate

of drug release can be more precisely controlled by various

parameters such as the intensity of the laser light field,

irradiation time, and black phosphorus concentration, and

ultimately achieve the effect of treating tumors. Besides, Li Y.

et al., 2021 have designed a BP nanosheet-based nano-assembly

containing cisplatin and used polydopamine (PDA) and

hyaluronic acid (HA) to modify the surface of black

phosphorus, achieving higher stability, a stronger

photothermal effect, and targeting ability. Then in the tumor

microenvironment, cisplatin/BP/PDA-HA (CBPH) would start

to degrade and release cisplatin in a controlled manner by

responding to internal or external stimuli, such as low pH,

hydrogen peroxide, and near-infrared light. Therefore, in vivo

experiments further revealed that there is a greater accumulation

of cisplatin in tumor tissue and smaller primary tumors, and

fewer lung metastases under the stimulation of light.

FIGURE 4
(A) 2D-Black-Phosphorus-Reinforced 3D-Printed Scaffolds. Schematic illustration of the fabrication process for BP-BG scaffold and the
stepwise therapeutic strategy for the elimination of osteosarcoma followed by osteogenesis by BP-BG. (B) Black phosphorus-based photothermal
therapy with aCD47-mediated immunotherapy. Black phosphorus in combination with anti-CD47 antibody activates innate and adaptive immunity
and promotes local and systemic anticancer immune responses, thereby providing a synergistic enhancement in inhibiting tumor progression
and suppressing metastatic cancer. (A): Yang et al. (2018). 2D-Black-Phosphorus-Reinforced 3D-Printed Scaffolds: A Stepwise Countermeasure for
Osteosarcoma. Adv Mater 30(10). doi: 10.1002/adma.201705611. (B): Xie et al. (2020). Black phosphorus-based photothermal therapy with aCD47-
mediated immune checkpoint blockade for enhanced cancer immunotherapy. Light Sci Appl 9, 161. doi: 10.1038/s41377-020-00388-3.
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On the other hand, it has been pointed out that after black

phosphorus is taken up by tumor cells, the active phosphorus

produced can play an anti-tumor effect. Studies by Geng et al.

(2020) have found that due to the vigorous endocytosis of cancer

cells compared to normal cells, faster metabolic rate, and strong

oxidative pressure, BP nanosheets are easily taken up by cancer

cells rather than normal cells through endocytosis, and are

rapidly degraded, resulting in the production of a lot of

phosphate ions in the cell. This process leads to changes in

the internal environment of cancer cells, causing G2/M phase

blockade, thereby effectively inducing apoptosis and autophagy

in cancer cells, which brings a better therapeutic effect than the

traditional chemotherapy drug doxorubicin (DOX) in vitro and

in vivo experiments. The research team named this selective

killing of cancer cells derived from the natural biological activity

of black phosphorus, “Bioactive Phosphorus-based

Therapy” (“BPT”).

So, the deepening of biomaterial research also provides new

therapy options for the treatment of recurrent or metastatic

osteosarcoma.

5.3 BP for cancer imaging

Recently, with high image contrast and sensitivity, high

spatial resolution with depth up to several centimeters, and

depth resolution 3D imaging, photoacoustic (PA) imaging has

attracted widespread interest, then reducing unnecessary biopsies

and facilitating image-guided therapy (Lemaster and Jokerst,

2017). However, although PA imaging has been researched to

be superior to many other traditional optical imaging techniques,

there are still many problems to be solved in its clinical

application. In the early stage of the tumor, the PA signal

from the tumor is very low, so we need a contrast agent to

enhance the signal and obtain more accurate in vivo imaging of

PA. Lately, several studies have reported nanomaterials, such as

metals, semiconductors, and reduced graphene oxide (RGO)

with NIR absorption as contrast agents for better imaging, but

have been limited by their potential toxicity in clinical

applications (Fu et al., 2019).

Fortunately, BP is emerging as an alternative material for

contrast agents in photoacoustic imaging, considering its

excellent electronic and optical properties (Gui et al., 2018).

On the other hand, the degradation of black phosphorus to

phosphate in vivo avoids potential toxicity limitations. In the way

that mixes BPQDs prepared by a liquid exfoliation technique and

titanium ligand (TiL4) in N-methyl-2-pyrrolidone (NMP) at

room temperature for 15 h, Sun et al. (2017) have fabricated

TiL4-coordinated BPQDs, showing better PA performance in

vivo. Titanium ligand sulfonates made BPQDs more stable in

aqueous media through the surface ligands of BPQDs. In

addition, a few studies have further reported that BPQDs

exhibit higher spatial resolution, deeper penetration, lower

optical absorption and scattering from biological tissues, and

lower autofluorescence for PA imaging in the second NIR (NIR-

Ⅱ, 950 nm–2,000 nm) window (Fu et al., 2019; Xu et al., 2019).

On this basis, an exogenous NIR stimulus responsive BPQDs

vesicle (BP Ve) was constructed by Li Z. et al. (2020) and can

chelate and release Ag+ ions. Then Ag+ ions-coupled BP Ve

shows not only more effective NIR-II PA imaging ability but also

synergistic photodynamic/Ag+ therapy owing to enhanced light

absorption and PA intensity in the NIR-II window. Therefore,

more research is needed to further explore the potential value of

BP in oncology, to address these challenges in the early diagnosis

and treatment of recurrent or metastatic osteosarcoma.

5.4 BP for bone tissue engineering

According to recent research, BP nanomaterials have many

advantages in bone regeneration. First, compared with other 2D

materials, they have good biocompatibility and are biodegradable

in the physiological environment (Qing et al., 2020). The BP is

completely biodegradable, and the final degradation products are

harmless H2O, CO2, and PO4
3-, which can be used as essential

bone components (Tong et al., 2019). Based on this, the

preparation of a photo-responsive BP@Hydrogel provides an

in situ mineralized model controlled by timing and direction of

light, exhibiting high potential for mechanical properties and

bone induction (Shao et al., 2020). Therefore, this platform

provides a good mimicking extracellular matrix (ECM)

microenvironment for promoting osteoblast differentiation

and bone regeneration (Figure 5A).

Besides, due to the strong light absorption capacity of BP in

the NIR, BP based nanomaterials or 3D printed scaffolds have a

stable and reliable light-controlled release mode, to achieve the

purpose of targeted and sustained release. Simultaneously, its

unique photothermal conversion ability can both promote bone

regeneration and repair by up-regulating alkaline phosphatase

(ALP) and heat shock proteins (HSP) through hyperthermia, and

also killing tumor cells by increasing local temperature

(Figure 5B) (Qing et al., 2020). In this regard, a chitosan/

hydroxypropyl trimethylammonium chloride chitosan/

hydroxyapatite/black phosphorus (CS/HC/HA/BP) composite

scaffold is designed to take advantage of these characteristics

of black phosphorus, aiming to deal with the clinical problems of

tumor recurrence, bone defect and chronic bone loss after bone

tumor surgery (Zhao et al., 2023).

At last, due to their large surface area and fold-like structure,

BP nanomaterials have greater active agent-carrying capacity

including various drugs, biomolecules, and nanoparticles. For the

first time, Li Z. et al. (2021) designed a Ca+ ion-supplying BP-

based 3D nanocomposite fiber scaffold via microfluidic

technology, which brings new therapeutic prospects to elderly

patients with bone defects or bone damage caused by calcium

loss. In addition, by integrating BP nanosheets and
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hydroxyapatite-silica (SiO2) nanoparticles onto 3D PLGA

nanofibers, the scaffold has a better Ca/P ratio, variable pore

size distribution, and highly porous interconnected structure,

providing a better microenvironment for the bone repair

compared to other composites based on BP. Further, based on

black phosphorus can provide a negative surface and strong bone

morphogenetic protein2 (BMP2) loading capacity, BMP2-

modified black phosphorus (BP@BMP2) nanosheets are used

to bind on a polylactic acid (PLLA) electrospun fibrous scaffold

by microsol-electrospinning technique, realizing successfully a

bioinspired staged bone regeneration strategy (Figure 5C)

(Cheng et al., 2020). On this basis, BMP-2 can recruit pre-

osteoblasts and promote their differentiation. Phosphate

generated from BP also chelates Ca+ ions to deposit on

electrospun fibrous scaffolds in a 3D manner. At last, P-BP@

BMP2 nanofibrous scaffolds exhibit excellent bone regeneration

ability.

A recent study has also found that the binding of extracellular

vesicles (EVs) to black phosphorus can regulate intercellular

communication to promote bone regeneration. In 2019, wang

et al. engineered matrix bioinspired matrix vesicles (MVs),

termed Apt-bioinspired MVs, through the intercalation of

black phosphorus and functionalization of cell-specific

aptamers (Apt) (Wang Y. et al., 2019). MVs, as a kind of

EVs, are involved in the regulation of mineralization in the

body (Hasegawa, 2018). Apt-bioinspired MVs can be directed

to osteoblasts in bone tissue under the guidance of the aptamer

and take advantage of the photothermal effect of black

phosphorus to achieve the up-regulation of heat shock

proteins and alkaline phosphatase. Simultaneously, the

degradation product phosphate, as a component of bone,

from BP can also promote the biomineralization process as a

component of bone.

6 Other bio-materials

With the continuous progress of physical and chemical

processing, other innovative smart multi-functional materials

provided with both structural and therapeutical properties have

been also discovered and prepared (Ambrosio et al., 2021). These

biomaterials, such as bio-ceramics, molybdenum disulfide

(MoS2), selenium (Se), natural polymers, etc., have also

received more and more attention in the process of bone

reconstruction after bone tumor surgery due to excellent

osteogenesis-promoting ability, biodegradability, drug-loading

ability, and anti-tumor effect of phototherapy, etc. (Table 2)

(Turnbull et al., 2018; Koons et al., 2020).

FIGURE 5
Black phosphorus in bone tissue engineering. (A) Black phosphorus is completely degraded in the body into harmless H20, CO2, and PO4

3-.
PO4

3- is one of the basic components of the bone matrix, which is beneficial to promote bone repair. (B) Under NIR light, BP locally generates heat
through the photothermal effect, activates heat shock proteins, and then promotes the expression of osteogenic-specific genes, such as RUNX2,
BMP2, and the differentiation of pre-osteoblasts into osteoblasts through activating ERK1/2 signaling pathway and PI3K/AKT signaling pathway.
(C)With their unique structure, black phosphorus nanosheets can carry BMP2, etc., and regulate bone formation in the bonemicroenvironment. For
example, BMP2 promotes the differentiation of pre-osteoblasts into osteoblasts.
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Bio-ceramics can release lots of bioactive ions, such as

calcium ions, copper ions, silicon ions, magnesium ions, etc.,

to play the role of promoting osteogenesis and angiogenesis

(Hoppe et al., 2011; Jones, 2013). In addition, some new

breakthroughs have been made in bio-ceramics as a repair

material for bone defects after osteosarcoma surgery recently

(Chen et al., 2019; Elfeky et al., 2020; Yang et al., 2020). Firstly,

bio-ceramics tend to mimic the extracellular matrix during bone

tissue regeneration by providing mechanical support and an

appropriate environment for mesenchymal stem cell

attachment, proliferation, and differentiation (Shin et al., 2003;

Kim et al., 2017). Besides, the bio-ceramic scaffold,

functionalized with appropriate materials, also has the effect

of photothermal anti-tumor. Meanwhile, bio-ceramic-based

composites have important roles in anticancer drug delivery

systems, including the treatment of osteosarcoma (Liu Y.

et al., 2021; Oliveira et al., 2021). For, example, a 3D-printed

calcium silicate material, after high photothermal

functionalization, has the functions of anti-osteosarcoma,

promoting bone regeneration and drug loading (Truong et al.,

2021). On this basis, He et al. designed a 3D printed polymeric

polycaprolactone fibers coated with porous calcium carbonate

structures (PCL/CaCO3) scaffold and surface-modified it with

2D inorganic Egyptian blue nanosheets (CaPCu) (He et al.,

2021). Here, Egyptian blue (EB, CaCuSi4O10), one of the

oldest synthetic pigments containing silicon, copper, and

calcium, has been revealed in previous studies to promote

osteogenesis. To conclude, compared with other bone repair

materials, the scaffold has greater advantages in terms of stronger

photothermal ability under NIR-II laser irradiation, synergistic

osteogenesis and antitumor ability, and orthotopic

transplantation. Finally, bio-ceramics, as a biomaterial with

both anti-tumor and promotion of bone repair, have also

made some progress in the study of its mechanism. For

instance, several reports have also found that nanoscale

hydroxyapatite can inhibit the proliferation and migration of

osteosarcoma by down-regulating the FAK/PI3K/Akt signaling

pathways in vitro and in vivo (Wang R. et al., 2020). However,

despite the advantages of bio-ceramics in high compressive

modulus and provision of bioactive ions, the excessive

brittleness limits further clinical applications. Therefore, the

synthesis of potentially tough bio-ceramic polymer hybrids

may help to overcome this challenge.

Beyond graphene and BP nanosheets, a new 2D material,

MoS2, is attracting researchers’ attention due to its unique visible

photoluminescence with high absorption (Shi et al., 2020). MoS2
disulfide has been reported to exhibit an indirect-to-direct

semiconducting transition in the exfoliation from bulk to

monolayer, which has led to the widespread use of MoS2 in

electronic devices and catalysts (Voiry et al., 2016). More

importantly, the application of MoS2 in the biomedical field

has been continuously explored due to its large two-dimensional

surface area and high near-infrared strong absorbance (Chou

et al., 2013). For example, by combining MoS2 with hyaluronic

acid, the instability of MoS2 and the low efficiency of the PTT in

tissues are overcome (Shin et al., 2019). Meanwhile, hyaluronic

acid promotes the accumulation of MoS2 in tumor cells through

its mediated endocytosis, which enhances the efficiency of PTT

and PA imaging of tumors (Lemaster and Jokerst, 2017; Fu et al.,

2019). On this basis, Liu J. et al. (2019) designed a nanoplatform

based on MoS2 and functionalized with hyaluronic acid for

tumor MRI and synergistic chemo-photothermal therapy. This

nanoplatform enables co-targeted delivery of gadolinium (Gd)

based contrast agents and gefitinib (Gef). Both in vitro and in vivo

experiments have demonstrated that under near-infrared

radiation, MoS2-HA-DTPA-Gd/Gef can induce tumor cell

apoptosis through the phosphatidylinositol 3 kinase (PI3K)/

protein kinase B (Akt) signaling pathway, which provides new

ideas for tumor diagnosis and treatment. Unfortunately, reports

on the application of MoS2 in bone reconstruction after

osteosarcoma surgery are rare. Besides, MoS2, as a transition

metal dihalide, has a non-negligible low toxicity (Chen et al.,

2018). In general, based on its unique properties, the application

of MoS2 in the treatment and diagnosis of bone tumors deserves

further exploration.

Selenium (Se), as one of the essential trace elements in the

human body and a cofactor for dozens of enzymes in the body, is

an indispensable part of the body’s oxidation, stress, immunity,

TABLE 2 The main features of other bio-materials.

Type of bio-
materials

Strengths Flaws Instance

Bio-ceramics Corrosion resistance; good biocompatibility; bioactive ions,
pressure resistance

Excessive brittleness Calcium silicate CaCO3-
PCL scaffold

MoS2 two-dimensional surface area; high near-infrared strong
absorbance

Potential toxicity MoS2-HA-DTPA-Gd/Gef

Selenium Thermal and chemical stability Acute or chronic poisoning; lack of targeting Se-doped HA scaffolds
Se-CaP

Natural polymers Mimicking extracellular matrix; no toxicity Potential immunogenicity; lower mechanical
properties

Chitosan Curcumin
Alginate
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and other reaction (Prabhu and Lei, 2016). Several previous

reports have revealed the toxic effects of Se in various tumors,

such as colon cancer, prostate cancer, breast cancer, etc. (Pang

and Chin, 2019). Recently, it has also been reported that Se can

improve the multidrug resistance (MDR) of osteosarcoma cells

by inducing apoptosis in osteosarcoma treatment. For instance,

Wang et al. found that selenium-doped nano-hydroxyapatite

(Se-HANs) could exert an antitumor effect through the

synergistic effect of caspase-dependent apoptosis and ROS-

induced apoptosis (Li X. et al., 2020). On this basis, selenium-

doped calcium phosphate (Se-CaP) organisms were engineered

to carry the chemotherapeutic drug doxorubicin to target

doxorubicin-resistant osteosarcoma cell line MG63/DXR in a

xenografted BALB/c nude mice (Hu et al., 2021). In addition to

caspase-dependent apoptosis and ROS-induced apoptosis, Se-

CaP can downregulate the expression of MDR-associated ATP-

binding cassette (ABC) transporters (ABCB1 and ABCC1) to

reverse MDR (Hu et al., 2021). Besides, an article found that

compared with hydroxyapatite, Se-doped hydroxyapatite

scaffolds can synergistically promote the differentiation of

human adipose-derived mesenchymal stem cells (hAD-MSCs)

into bone tissue, thereby enhancing ALP activity and

osteogenesis (Zakhireh et al., 2021). Furthermore, Li et al.

found that the porous Se@SiO2 nanocomposite avoided the

apoptosis of H2O2 on BMSCs through the BMP/SMAD

pathway and promoted the osteogenic differentiation of

BMSCs (Li C. et al., 2019). Overall, Se-doped bio-scaffolds

may offer new clinical benefits for bone tissue engineering

(Zeng et al., 2013). However, although Se deficiency may be

associated with some biological disturbances, Se can also cause

acute or chronic poisoning, often manifesting as brittle and

falling nails, gastrointestinal disturbances, rashes, fatigue,

irritability, and neurological abnormalities (Cao et al., 2012;

Cardoso et al., 2021). Therefore, the design of Se-doped

scaffolds for sustained release of Se to obtain a safe

concentration in the body may be the focus of future research.

Natural polymers, such as chitosan, curcumin, alginate, etc.,

have received a lot of attention in bone tissue engineering due to

their advantages of mimicking ECM, providing cell adhesion

sites, and low cost. Recently, unlike previous studies, an article

has revealed that extracellular matrix elasticity, rather than

matrix adherence, modulates tumor cell growth through

integrin-mediated focal adhesion (FA) signaling (Chaudhuri

et al., 2014; Jiang et al., 2019). In contrast, normal cells, such

as osteoblasts, are primarily affected by ECM adhesion ligands

through integrin-mediated regulation of the adherens junction

(AJ) signaling pathway (Steinbacher and Ebnet, 2018). This

provides new insights into bone tissue engineering. Based on

this, Tan et al. designed an injectable curcumin microsphere/

IR820 hybrid bifunctional hydrogel, which can not only play the

role of photothermal anti-tumor but also promote bone

remodeling through the sustained release of curcumin (Tan

et al., 2021). Meanwhile, the heat generated by PTT in vivo

accelerates the release of curcumin and induces apoptosis of

osteosarcoma cells. In addition, studies have confirmed that 3D-

printed hydroxyapatite scaffolds added with chitosan can further

promote the development of new bone tissue in vitro and vivo,

which is beneficial to osseointegration (Zafeiris et al., 2021). The

degradability of the scaffolds will benefit patients in terms of

improved quality of life while avoiding some complications.

However, although natural polymers are more and more

widely used as multifunctional materials in bone defects after

osteosarcoma surgery, their existing problems, such as potential

immunogenicity and lower mechanical properties, should also be

paid attention to several studies have made progress on the lack

of rigidity by 3D-printing hybrid scaffolds made by combining

natural polymers with bio-ceramics. But this is not enough, more

modified natural polymers are needed for better clinical

application.

Recently, ferroptosis as a form of regulated cell death has also

attracted great interest in tumor research (Dixon et al., 2012;

Zhang et al., 2022). The earliest studies found that ferroptosis

is mainly caused by an iron-dependent accumulation of lipid

peroxidation, inactivation/depletion of anti-lipid peroxidation

molecules, and increased mitochondrial membrane density. On

this basis, several studies have made some progress in the non-

surgical treatment of tumors by inducing ferroptosis of tumor cells

through biomaterials (Yang et al., 2021d; Han et al., 2022). For

example, Fu et al. (2021) designed a mesoporous silica

nanoplatform integrating doxorubicin and ferrate by assembling

a solid-liquid phase change material of n-heneicosane, thus

realizing the co-release of doxorubicin and ferrate under

ultrasound (US). Surprisingly, exogenous iron derived from the

metabolism of this nanodrug can induce ferroptosis in tumor cells

and exert a synergistic anti-tumor effect. Furthermore, an article

found that singlet oxygen generated by photodynamic therapy of

nanomaterials can promote the ferroptosis of tumor cells (Li

J. et al., 2021). In conclusion, combining photothermal therapy,

photodynamic therapy, and ferroptosis with nanomaterials

provides a new perspective for dealing with the issue of tumor

tissue recurrence after osteosarcoma surgery and the

chemoresistance of osteosarcoma. However, the current

problem is that studies on ferroptosis in osteosarcoma are rare.

Therefore, new explorations based on nano-biomaterials are

highly required to deal with the challenges of killing residual

tumor cells and bone remodeling after osteosarcoma surgery.

7 Prospects and clinical translation

With excellent anti-tumor and bone-promoting effects, the

above biomaterials have become a hot spot in the current

spotlight, and have also been preliminaries explored in clinical

translational research. Then, we briefly describe the prospects

and clinical translation of magnesium, silver and black

phosphorus.
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7.1 Magnesium

Mg has been regarded as a promising bioactive material for

bone regeneration due to its sufficient mechanical properties,

biodegradability and osteogenic activity. But in fact, the

application of pure Mg implants still faces some challenges,

such as rapid degradation, excessive hydrogen formation, and

the difficulty of fabricating magnesium-based multi-pore

scaffolds.

Encouragingly, the use of orthopedic devices or implants, for

instance screws based on magnesium or its alloys in fracture

repair has been reported in China and Germany in recent years,

with promising osteogenic results compared to titanium

(Windhagen et al., 2013; Zhao et al., 2016; Zhao et al., 2017).

Besides, as mentioned earlier, magnesium particles are integrated

into biodegradable polymer substrates such as PLGA to create

composite scaffolds (PLGA/Mg) to circumvent these defects

(Long et al., 2021). On the other hand, the surface

modification of Mg alloy, enhancing the corrosion resistance

and mechanical strength of Mg metal and avoiding a large

amount of local hydrogen accumulation, can also pave the

way for the clinical translation of Mg implants (Gao et al., 2021).

Less noticed but as important, magnetic hyperthermia

(MHT) was found to be able to ablate the tumor using an

alternating magnetic field (AMF) to heat a magnetothermal

agent (magnetic nanoparticles including magnesium particles)

applied to the tumor (Yang N. et al., 2021). The potential

interaction between human biological magnetic field and this

MHTmay bring different prospects for clinical application of Mg

materials.

Mg-induced osteogenesis is mediated by local neuronal

production of calcitonin gene-related peptide 1 (CGRP1) and

has been demonstrated in fractured mice suggesting that

magnesium may be involved in the neural regulation of bone

defects and thus in the regulation of bone homeostasis (Zhang Y.

et al., 2016). This means that other roles of magnesium in the

process of bone reconstruction after bone tumor surgery, such as

pain regulation and angiogenesis, are also worth further

investigation.

7.2 Silver

As described above, silver has been used in our clinical

practice for hundreds of years, from antibacterial and

regenerative to today’s anti-tumor. At present, the academic

research mainly focuses on nanoscale silver particles, such as

AgNP and AgAP, due to their excellent tumor targeting, killing

effects and potential osteogenesis.

Consequently, current clinical studies aim to improve cancer

treatment by modifying Ag NPs to track and specifically bind

tumor cells in vivo, thereby improving cancer treatment with

minimal risk to normal cells. Beyond that, the exploration of

different nanoparticle shapes for optimal drug delivery is the

focus of current clinical research (Malik and Mukherjee, 2018).

But regrettably, this part of clinical research is lacking in

osteosarcoma. Therefore, the potential widespread application

of silver nanoparticles in preclinical and clinical stages of

osteosarcoma should not stop exploration, although the

current research and development is still in its infancy and

face many difficulties.

7.3 Black phosphorus

Black phosphorus not only can be completely degraded into

non-toxic phosphate, but also can fully kill tumors through

phototherapy, making it a favorite in the field of biomaterials,

especially in the field of bone tumors.

The broad prospect of clinical translational application of BP

has attracted the attention of researchers mainly because of its

unique pre-osteogenic ability in the field of bone repair. For

example, chitosan thermal response hydrogel therapy can be

used to treat bone defects caused by arthritis rheumatoid arthritis

(RA) by adding BP nanosheets to platelet-rich plasma (PRP)

(Pan et al., 2020). Yet, in the case of osteosarcoma, the clinical

translation of black phosphorus-based biomaterials is still in the

infant segment, despite ongoing exploration of the immune and

metabolic microenvironment during bone defect reconstruction.

Fortunately, black phosphorus, with its high electrical

conductivity, seems to be a breakthrough point for clinical

translational research by participating in nerve fiber repair to

promote bone regeneration (Grassel, 2014; Qian et al., 2019). In

conclusion, the clinical application prospect of BP can be

predicted, based on its three major properties of promoting in

situ mineralization through degradation product phosphate,

inducing nerve regeneration and regulating bone repair, and

photothermal treatment killing tumor although the mainstream

research of black phosphorus in osteosarcoma is still

concentrated in the experimental stage.

8 Summary and discussion

This article introduces biomaterials of recent years, such as

black phosphorus, magnesium, zinc, copper, silver, etc., with

their good biocompatibility, biodegradation antibacterial, and

anti-tumor effects, they have received high attention and

consideration from researchers. Many studies have been

successful in cell or animal experiments. However, in looking

for an ideal material that can not only fill in but also kill the

residual tumor cells, reducing the probability of recurrence and

metastasis, and hence promoting bone repair, there is still a long

way to go in the clinical treatment of osteosarcoma.

Overall, magnesium-zinc alloys and copper are relatively

under-studied, while silver and black phosphorus are relatively
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studied and are on the rise due to their various functions and safe

use. Additionally, MoS2 and bio-ceramics, etc. have also attracted

a lot of interest in bone tissue engineering. Above all, for the

study of silver, the advantage is that it has anti-tumor and

antibacterial effects, but there are few studies on long-term

toxic and side effects, and it is worth continuing to explore.

At the same time, currently, the targeted therapy of AgNPs and

AgAPs is mainly targeting the acidic environment of tumors

through the effect of EPR, so more accurate targeted therapy for

tumors is urgently needed. For black phosphorus, the biologically

active phosphorus-based drug therapy has just started, and the

specific molecular mechanism may be a direction worth

exploring. However, although a controlled degradation mode

can be obtained by irradiation with near infrared light, how to

improve the targeting of black phosphorus nanomaterials is also

a clinical problem. But targeted therapy based on specific

molecules on the surface of the osteosarcoma may help

improve targeting although osteosarcoma is a highly

heterogeneous tumor. Secondly, for zinc, magnesium, and

copper, the rapid development of nanotechnology has made

them another breakthrough after being used as the substrate

for 3D printing scaffolds. Among them, potential toxicity and

rapid degradation of zinc limit its application in bone

reconstruction after osteosarcoma surgery. However,

combining zinc coating with 3D-printed scaffolds, such as

PLGA, BG may produce unexpected applications. Due to

excellent osteogenic activity and surface modification, Mg has

made great strides in clinical conversion applications, despite its

rapid degradation rate and excessive local hydrogen production.

In the meantime, the research on the MHT and neural regulation

of magnesium has opened up a new direction for the study of

magnesium. Then, MoS2, a discovery of two-dimensional

materials after black phosphorus nanosheets, possesses

excellent anti-tumor effects and photoacoustic imaging

capabilities. However, research in osteosarcoma is rare, and its

application in osteosarcoma deserves further exploration. Finally,

the research of modified polymer compounds and selenium in

bone tissue engineering has also attained a new turning point.

In general, we consider the latest application of biomaterials

in bone reconstruction after osteosarcoma surgery as a remedy

for large bone defects after osteosarcoma surgery as well as

recurrence and metastasis caused by residual tumor tissue. At

the same time, advances in nanomaterials have enabled the better

use of phototherapy, tumor imaging, and targeted drug delivery.

It is expected that this will inspire future research to bring

further developments in the treatment of patients with

osteosarcoma.
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