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Infections by non-segmented negative-strand RNA viruses (NNSV) are widely
thought to entail gradient gene expression from the well-established existence of
a single promoter at the 3’ end of the viral genome and the assumption of constant
transcriptional attenuation between genes. But multiple recent studies show viral
mRNA levels in infections by respiratory syncytial virus (RSV), a major human
pathogen and member of NNSV, that are inconsistent with a simple gradient.
Here we integrate known and newly predicted phenomena into a biophysically
reasonable model of NNSV transcription. Our model succeeds in capturing
published observations of respiratory syncytial virus and vesicular stomatitis virus
(VSV) mRNA levels. We therefore propose a novel understanding of NNSV
transcription based on the possibility of ejective polymerase-polymerase
collisions and, in the case of RSV, biased polymerase diffusion.
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Introduction

Viruses with nonsegmented negative-strand RNA genomes (NNSV) (all viruses of the order
Mononegavirales) contain major pathogens such as Ebola, rabies, measles virus, respiratory
syncytial virus (RSV), and vesicular stomatitis virus (VSV)—the latter is a highly studied bovine
pathogen of the same family, Rhabdoviridae, as rabies virus.

The RNA genomes of NNSV are coated in nucleoprotein and support both whole genome
replication and the transcription of subgenomic mRNAs by viral RNA-dependent RNA
polymerases in the cytosol of infected cells. These genomes have a single promoter located at
the 3’ end that is essential for both processes, presumably by facilitating the transient dissociation
of terminal genomic RNA from nucleoprotein and the entry of viral polymerases, hitherto bound
only to the nucleoprotein of the ribonucleoprotein (RNP) complex, into the RNA genome.

Every NNSV gene contains essential and highly conserved gene start (GS) and less highly
conserved gene end (GE) signal sequences flanking the open reading frame (ORF).
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Transcription is initiated at the GS signal which also serves as a
capping signal on the 5’ end of nascent mRNA (Barik, 1993; Liuzzi
et al., 2005; Noton and Fearns, 2015). The polymerase then enters
elongation mode until it reaches a GE signal, where it either continues
translocating and transcribing (i.e., reads through) or it stops
translocating and the mRNA is polyadenylated and released
(i.e., terminates transcription) (Kuo et al., 1997; Noton and Fearns,
2015). In RSV, the two genes that are most 5’ terminal have
overlapping ORFs: the GE signal of matrix 2 (M2) occurs
downstream of the GS signal of the last gene, the large polymerase
(L) gene. Thus, for full-length L mRNA to be made, a polymerase must
translocate 3’ from the M2 GE signal (Fearns and Collins, 1999),
suggesting that polymerases scan the RSV genome bidirectionally
(i.e., diffuse) for a new GS signal after terminating transcription.
Indeed, multiple studies suggest that scanning polymerase
dynamics, or polymerase diffusion along the genome, may be a
universal feature of NNSV transcription (Fearns and Collins, 1999;
Kolakofsky et al., 2004; Barr et al., 2008; Noton and Fearns, 2015;
Brauburger et al., 2016).

The still widely accepted textbook model of NNSV gene
expression predicts a transcription gradient from 1) polymerase
entry at the 3’ end of the genome; 2) “obligatorily sequential” start-
stop transcription in response to the conserved GS and GE signal
sequences; and 3) transcriptional attenuation via an unknown

mechanism between genes (Whelan et al., 2004; Noton and Fearns,
2015). However, multiple published studies show NNSV gene
expression patterns—especially from RSV, which is one of its most
highly studied members—that are either non-gradient, with one or
more downstream genes appearing more highly expressed than
upstream genes, or inconsistent with a simple gradient from a
constant level of attenuation between genes (Krempl et al., 2002;
Pagan et al., 2012; Aljabr et al., 2016; Levitz et al., 2017; Piedra et al.,
2020a; Donovan-Banfield et al., 2022; Rajan et al., 2022). Regarding the
latter, multiple studies show an abrupt and dramatic decrease in gene
expression over the last two genes of the RSV genome (Krempl et al.,
2002; Aljabr et al., 2016; Levitz et al., 2017; Donovan-Banfield et al.,
2022; Rajan et al., 2022), the sole region of the genome containing
overlapping ORFs—the textbook model of NNSV transcription offers
no way of explaining this. In addition, the textbook model is devoid of
potentially important biophysical phenomena: 1) polymerase (pol)
diffusion along the viral genome; 2) potential interactions among pols
(both diffusing and transcribing); and 3) stochastic transcription
initiation and termination.

Here we implement a coarse-grained, mechanistic and stochastic
computational model incorporating known and, ultimately, newly
proposed features (ejective pol-pol collisions and 5’ biased pol
diffusion) of the underlying molecular biophysics to gain a deeper
understanding of NNSV transcription and to capture, for the first

FIGURE 1
The model: linear respiratory syncytial virus (RSV) and vesicular stomatitis virus (VSV) genomes support the stochastic initiation and termination of
transcription by a diffusing viral RNA-dependent RNA polymerase (pol). (A) The genetic structure of RSV and VSV genomes. The modeled RSV genome is
15,222 nt long and contains 10 ORFs with 8 gene junctions and a single short region (68 nt) of overlapping ORFs between genes M2 and L (see black asterisk).
Themodeled VSV genome is 11,152 nt long and contains 5 ORFs with 4 gene junctions. The genomes were divided into chunks approximating the size of
a pol footprint (28 nts). Most of each genome is coding sequence (represented as cyan beads). (B) Essential model phenomena and parameters. A single RNA-
dependent RNA polymerase (pol) starts an unbiased random walk at a rate Dscan (= 1 genomic chunk per event) at the most 3’ chunk (depicted as a burnt
orange bead) of the modeled genome. Transcription initiation occurs with a probability Ptransc when a pol diffuses onto a genomic chunk containing a gene
start (GS) signal (depicted as a green bead). If transcription is not initiated, the unbiased random walk (i.e., diffusion) resumes. If transcription is initiated, the
modeled pol state changes and the pol starts translocating 5’ down the genome at a rate ktransc (= x genomic chunks per event). Transcription termination
occurs with a probability Pterm when a transcribing pol translocates onto a genomic chunk containing a gene end (GE) signal (depicted as a red bead). If
termination occurs, the pol state changes back to non-transcribing and resumes diffusion along the genome at a rateDscan; if termination does not occur, the
pol ‘reads through’ the GE signal and continues transcribing into the next ORF. (Cyan beads represent coding sequence).
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time, experimentally observed non-gradient RSV and gradient VSV
gene expression patterns.

Methods

The model

Computational models of RSV and VSV transcription were
written in the Python programming language using the free and
open-source Scientific Python Development Environment (Spyder
version 3.3.2). The model code is freely available on GitHub:

https://github.com/BCM-GCID/Publications/tree/main/Rethinking_
NNSV_Gene_Expression.

In brief, the models simulate one or more viral RNA-dependent
RNA polymerases (pols) entering a linear RSV or VSV genome at the
3’ end and taking a random walk at a rate Dscan (units = “genomic
chunks” per simulated event; Dscan = 1 throughout the results
presented in this MS). A random walk is a simple model of
diffusion where a simulated pol moves either one genomic chunk
5’ or 3’ along the genome. A parameter Dbias is used as a multiplicative
factor (Dscan*Dbias) to 5’ bias (or not) the random walk taken by
modeled pols—i.e., Dbias > 1 biases pol movement 5’; Dbias = 1 results
in an unbiased random walk. Each genome is divided into chunks of a
size thought to reasonably approximate the footprint of a single RSV
or VSV pol (28, 14, or 7 nt). Diffusing non-transcribing pols cannot
“hop” over other pols and a single genomic chunk can only be
occupied by a single pol at any one time.

Gene start (GS) and gene end (GE) signal sequences are modeled
as separate genomic chunks positioned along the modeled genomes
according to their known positions from sequencing data (Figure 1A).
Transcription is initiated with a data-constrained probability (see
Table 1) when a non-transcribing pol (pol_state = 0) diffuses onto
a GS signal; termination of transcription or transcriptional
readthrough occurs with a probability derived from published
sequencing data when a transcribing pol (pol_state = 1) moving 5’
at a rate ktransc (units = “genomic chunks” per simulated event)
translocates onto a GE signal (Figure 1B). Initiations of
transcription and transcriptional readthrough events are counted as
gene expression events for the genes where they occur. For simulations
incorporating multiple pols on a single genome, ejections of a non-

TABLE 1 Gene start (GS) signal sequence-based constraints on RSV transcription
initiation probabilities (Ptransc) from Kuo et al. Most RSV/A genomes contain three
different GS signal sequences. Kuo et al. performed minigenome studies to
quantify the effects on gene expression of all single nt mutations within the GS
signal (Kuo et al., 1997). The G gene GS signal contains a single mutation (relative
to the most common GS signal sequence) at position 10 that reduced gene
expression by ~35%. Kuo et al. reported that the L gene GS signal gave rise to a
magnitude of gene expression equal to that of the most common GS signal. It is
therefore reasonable to model RSV transcription with a single probability of
transcription initiation at all GS signals except for G, where the probability
should be multiplied by 0.65.

RSV gene

NS1,NS2,N,P,M,SH,F,M2 G L

GS signal sequence CCCCGUUAU CCCGUUUAC CCCUGUUUUA

Effect on Ptransc -- 0.65X 1X (no change)

FIGURE 2
Single pol simulations produce flat patterns of gene expression across Ptransc values tested. (A) Simulated RSV transcription. Histograms of mRNA # for
each RSV gene divided by the total mRNA # show uniform gene expression across the 10 genes for all three sets of Ptransc tested (max 0.1, max 0.5, and max
0.9). For each set of Ptransc, the max value equals the probability of transcription at every GS signal except for that of the G gene, which equals 0.65*max. Blue
bars depict results from simulations; black horizontal bars depict average published experimentally observed values (Rajan et al., 2022). Each data point is
the average of three 100,000 event simulations; error bars show the standard deviation. The number in parentheses and red above each histogram is the root-
mean-square deviation (RMSD) of the simulated gene expression pattern from the experimental observations. (B) Simulated VSV transcription. Histograms of
mRNA # for each VSV gene divided by the total mRNA # show uniform gene expression across the 5 genes for all three sets of Ptransc tested (0.1, 0.5, and 0.9).
For each set of Ptransc, the probability of transcription is the same at every GS signal. Lavender bars depict results from simulations; black horizontal bars depict
average published experimentally observed values (Iverson and Rose, 1981). Each data point is the average of three 100,000 event simulations; error bars show
the standard deviation. The number in parentheses and red above each histogram is the root-mean-square deviation (RMSD) of the simulated gene
expression pattern from the experimental observations.
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transcribing pol occur when a transcribing pol passes it. When a pol
reaches the extreme 5’ end of a modeled genome, it either diffuses 3’ or
dissociates from the genome.

The simulations occur one event at a time (i.e., time is modeled
implicitly) whereby the positions and states (non-transcribing or
transcribing) of the one or more modeled pols is stochastically
updated according to the rules outlined above before proceeding to
the next event. After simulating 10 s of thousands of events, each
gene’s mRNA level divided by the total mRNA level is outputted.
These data are plotted to visualize a gene expression pattern.

Results and discussion

Determining the effects of stochastic
transcription using a range of initiation
probabilities

We took a heuristic approach to fitting actual observations of RSV
and VSV gene expression and started by modeling a single pol taking

an unbiased random walk down either genome and stochastically
initiating and terminating transcription (Figures 1A,B).

In this simple case, the parameters to explore are probabilities of
transcription initiation and termination. The termination probabilities
can be derived directly from published sequencing data for RSV, as these
are simply the complement of the published readthrough rates (Rajan
et al., 2022). For VSV, we made use of estimates suggesting a very high
probability of termination (0.99) for the GE signals modeled here (Barr
et al., 1997). In contrast with termination probabilities, probabilities of
transcription initiation are completely unknown. However, the three GS
signals of the RSV genome modeled here have been tested in
minigenomes for their relative strength of gene expression (Kuo
et al., 1997). These relative strengths were used to constrain the ten
transcription initiation probabilities of RSV (Table 1). The five GS
signals of the VSV genomemodeled herewere all assumed to support an
equal probability of transcription initiation.

Simulated patterns of RSV and VSV gene expression were
essentially flat for all three sets of transcription probabilities
(Figure 2). Standard deviations of individual mRNA levels were, as
expected, highest for the lowest transcription probabilities tested

FIGURE 3
Multiple pols on a single genome undergoing ejective collisions between transcribing and non-transcribing pols produce gene expression gradients of
increasing steepness with increasing 5’ translocation rate (ktransc) and increasingmaximumpol number (max pol #). (A) TheM2/L overlap inORFs. The final two
genes of the RSV genome, M2 (which encodes both a transcription processivity factor and a regulatory factor that enhances replication) and L (which encodes
the polymerase), share a 68 nt stretch (approximately two genomic chunks of 28 nts each—depicted asmagenta beads) of ORF. This ORF overlap should
be a hotspot for collisions between transcribing pols and non-transcribing pols diffusing in the neighborhood of the M2 GE signal (shown as red bead). The L
gene GS signal is depicted as a green bead. (B) RSV gene expression patterns over a range of ktransc andmax pol #. The parameter ktransc sets the rate at which
transcribing pols move 5’ down the genome (units = genomic chunks per simulated event) and the parameter max pol # sets the maximum number of pols
allowed on the genome at one time. Simulations of RSV transcription were performed at three different values of ktransc x three different values ofmax pol #.
Histograms of mRNA # for each RSV gene divided by the total mRNA # depict results from the simulations (blue bars) and average published experimentally
observed values (black horizontal bars) (Rajan et al., 2022). Each data point is the average of three 100,000 event simulations; error bars show the standard
deviation. The number in parentheses and red above each histogram is the root-mean-square deviation (RMSD) of the simulated gene expression pattern
from the experimental observations.
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(Figure 2). In the case of RSV, a slight bump in gene expression occurs
for the SH gene and becomes most visible at the highest transcription
probabilities tested (Figure 2A). This is because of the lower rate of
transcription initiation at the G gene GS signal (0.65x), which is
directly downstream of the SH gene: the modeled pol occasionally fails
to initiate transcription at the G gene before diffusing to the nearest GS
signal, SH, where it is ~1.5x more likely to initiate transcription. We
also calculated a root-mean-square deviation (RMSD) for each
simulated gene expression pattern to quantify how well the model
fit the observed in vitro gene expression patterns (Figures 2B,D).

Incorporating multiple polymerases into our
model of NNSV transcription

Modeling a single pol diffusing along an RSV or VSV genome and
stochastically starting and stopping transcription with the sequence-

based probabilities used here cannot capture experimentally observed
gene expression patterns. It is also well established that VSV virions
contain 10 s of pols per genome (Thomas et al., 1985), making it very
likely that both VSV replication and transcription involve multiple
pols interacting with a single genome.

Thus, we decided to model multiple pols interacting with and
transcribing single RSV and VSV genomes. This required conceiving
of rules to govern interactions between the pols interacting with a
single genome. We decided to implement one-by-one pol entry at the
3’ end of the genome, a variable maximum number of pols interacting
with the genome at any one time, “soft” collisions between non-
transcribing pols that prevent one pol from “hopping over” another,
and hard collisions between 5’ translocating transcribing pols and
diffusing non-transcribing pols resulting in the latter’s ejection from
the genome.

The latter rule was partly inspired by observing that the steepest
drop in RSV gene expression, a dramatic decrease reported bymultiple

FIGURE 4
Simulations of at most 50 pols and collision-based pol ejections fit benchmark observations of VSV gene expression best at the highest ktransc tested. VSV
gene expression patterns over a range of ktransc and a singlemax pol #. The parameter ktransc sets the rate at which transcribing polsmove 5’ down the genome
(units = genomic chunks per simulated event) and the parameter max pol # sets the maximum number of pols allowed on the genome at one time.
Simulations of VSV transcription were performed at three different values of ktransc. Histograms of mRNA # for each VSV gene divided by the total mRNA
# depict results from the simulations (lavender bars) and average published experimentally observed values (black horizontal bars) (Iverson and Rose, 1981).
Each data point is the average of three 100,000 event simulations; error bars show the standard deviation. The number in parentheses and red above each
histogram is the root-mean-square deviation (RMSD) of the simulated gene expression pattern from the experimental observations.
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independent groups (Krempl et al., 2002; Aljabr et al., 2016; Levitz
et al., 2017; Donovan-Banfield et al., 2022; Rajan et al., 2022), occurs
over what should be a hot-spot for collisions between transcribing and
non-transcribing pols: the overlap in the M2 and L gene ORFs
(Figure 3A). We also took inspiration from work by Tang et al.
(2014) reporting a very high affinity of VSV pols for the VSV
ribonucleoprotein (RNP) complex and suggesting, through
computational modeling, the importance of a class of ejective pol-
pol collisions somewhat different from the class modeled here.
Specifically, here we model two pol states—non-transcribing, which
diffuse bidirectionally; and transcribing, which move only 5’—for pols
that have gained access to the RNA genome through the 3’ promoter;
in contrast, Tang et al. modeled ejective collisions between pols that
have accessed the RNA genome via the 3’ promoter and pols
“scanning” the VSV RNP complex via interactions between pol-
bound P protein and N protein for the 3’ promoter. We make no
attempt to model the “scanning” pols that have yet to access the RNA
genome of (Tang et al., 2014).

Because our model was modified to include multiple pols
undergoing ejective collisions between transcribing and non-
transcribing pols, it was necessary to explore another parameter,
ktransc, setting the 5’ translocation speed of a transcribing pol. We
simulated RSV transcription under three different values each of ktransc
and maximum pol number (Figure 3B), and VSV transcription under
three different values of ktransc and a single maximum pol number
(Figure 4). A single maximum pol number was used for VSV
transcription because of published work suggesting approximately
50 VSV pols per VSV genome (Thomas et al., 1985); to our knowledge,
this ratio is not known for RSV.

Simulated RSV gene expression patterns display a 3’ to 5’ gradient of
increasing steepness with increasing maximum pol number and, for
simulations with a maximum of 5 and 10 pols, with increasing ktransc
(Figure 3B). The transcription gradient in ourmodel is a consequence of
a gradient in pol concentration emerging from ejective pol-pol collisions
and obligatory pol reentry at the 3’ end of the genome. In the case of
simulations of atmost 50 pols, the gene expression gradient is steepest at
the middle value of ktransc because the higher value supports such a high
frequency of ejective pol collisions that the actual number of modeled
pols occupying a genome at steady-state tends to ~10, while the middle
value leads to one of ~20 pols, which leads to a sharper pol

concentration gradient along the genome and a steeper gene
expression gradient. It is clear from both the calculated RMSD
values and visually inspecting the fits that simulations incorporating
a high maximum number of RSV pols per genome produce a gene
expression pattern that is too steeply gradient; in contrast, simulations
of at most 5 RSV pols per genome yield much better fits of the published
data across the 20-fold range of ktransc values tested (Figure 3B).

We simulated VSV gene expression across the same 20-fold range
of ktransc values and only one value of maximum pol number
(Figure 4). At the highest value of ktransc tested, the model captures
benchmark observations of VSV transcription fairly well. It is
interesting that the middle value of ktransc results in the worst fit of
the data; this results from the phenomenon described above for RSV
transcription under the same maximum pol number: the highest value
of ktransc tested leads to such a high frequency of pol collisions that the
actual number of pols occupying the genome at steady-state is much
lower than the maximum possible; because the lower value of ktransc
leads to less frequent collisions and a concomitant increase in the
number of pols occupying the genome, a steeper gene expression
gradient results (Figure 4).

Further exploring the effects of collision-
based pol ejections on RSV transcription

Thus, our simple model incorporating multiple pols undergoing
random diffusion along the genome when not transcribing and
ejective collisions when a transcribing and non-transcribing pol
meet captures benchmark observations of VSV gene expression
(Iverson and Rose, 1981) well while poorly fitting our published
observations of RSV gene expression (Rajan et al., 2022).
Furthermore, the model most poorly fits data coming from the last
two genes of the RSV genome, where multiple groups report a
dramatic decrease in gene expression. This is the sole region of the
modeled genomes where two ORFs overlap; and this overlap helped
inspire the addition of ejective pol collisions into our model. We
decided to further investigate the effect of the modeled pol collisions
on gene expression over the M2-L region of RSV by analyzing the
relationships between 1) the number of pol ejections per run of our
simulation and values of the maximum pol number and ktransc; and 2)

FIGURE 5
The number of pol ejections occurring over one run of the model and the ratio of RSV LmRNA to M2mRNA levels (L:M2) produced are inversely related.
(A) The number of pol ejections vs.max pol # for three different values of ktransc. Each data point is the average of three 100,000 event simulations. (B) The ratio
of L mRNA to M2 mRNA levels (L:M2) vs. max pol # for three different values of ktransc. Each data point is the average of three 100,000 event simulations.
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ratios of L and M2 mRNA levels and values of the maximum pol
number and ktransc (Figure 5).

The average number of pol ejections generally increases with
increasing max pol # and increasing ktransc (Figure 5A). However,
at the higher values of ktransc (1 and 5 genomic chunks per event), the
average number of pol ejections starts to plateau beyond a max pol # of
10. This again shows that the steady-state number of pols bound to a
genome in the model depends on ktransc and that this number is close
to 10 at the highest value of ktransc tested (assuming a pol footprint of
28 nt). In addition, curves for the higher values of ktransc start to
converge, suggesting that the model is reaching its maximum pol
ejection frequency.

Consistent with the expected effect of the modeled pol collisions,
ratios of L:M2 generally decrease with increasing max pol # and

increasing ktransc (Figure 5B). However, L:M2 plateaus sharply for the
higher values of ktransc tested beyond a max pol # of 10. In addition,
curves for higher values of ktransc start to converge, suggesting that the
model is reaching its minimum L:M2 which remains much higher
than the average experimentally observed value of ~0.09 (Rajan et al.,
2022). This suggested that the RSV model was missing something of
fundamental importance.

Modifying the model to include 5’ biased
diffusion of non-transcribing pols

We therefore decided to test the effects of including biased pol
diffusion in our model, specifically a 5’ bias, which might help explain

FIGURE 6
Including a 5’ pol diffusion bias (Dbias) can reproduce the experimentally observed drop in gene expression between RSV genes M2 and L. (A) Dbias is
expected to have its largest effect on ratios of L mRNA to M2mRNA levels (L:M2). M2 and L ORFs are depicted as cyan beads (bead size reflects a pol footprint
size of 28 nt); the M2/L overlap is depicted as twomagenta beads; the L GS signal is depicted as a green bead; the M2 GE signal is depicted as a red bead. (B) A
scan of parameter values shows that moderate Dbias with reduced pol footprint size can reproduce the experimentally observed value of L:M2 (Rajan
et al., 2022). Left panel: histograms show simulated (blue bar) and experimentally observed (horizontal black bar) L:M2 values for two different values of ktransc x
three different values of Dbias (max pol # = 5). The two lower values of Dbias tested (highlighted in pale yellow) result in a slightly greater drop in L:M2 than
Dbias = 3; these values were used in subsequent simulations. Middle panel: histograms show simulated (blue bar) and experimentally observed (horizontal
black bar) L:M2 values for two different values of ktransc x two different values of Dbias under conditions of increased Ptransc (= max of 0.9). As predicted, an
increased Ptransc resulted in a further decreased L:M2. Simulations with Dbias = 2 (results highlighted in pale yellow) were chosen for subsequent simulations.
Right panel: histograms show simulated (blue bar) and experimentally observed (horizontal black bar) L:M2 values for two different values of ktransc x two
different pol footprint sizes (14 and 7 nt) andDbias = 2. A decreased pol footprint size increases the effective distance between theM2 GE and L GS signals, and
results in simulated levels of L:M2 that closely match experimental observations. Each data point is the average of three 100,000 event simulations. (C)Global
fits of the RSV gene expression data improve with the introduction ofDbias and reduced pol footprint size. Simulations of RSV transcription were performed at
two different values of ktransc x two different values of pol footprint andDbias= 2. Histograms of mRNA# for each RSV gene divided by the total mRNA# depict
results from the simulations (blue bars) and average published experimentally observed values (black horizontal bars) (Rajan et al., 2022). Each data point is the
average of three 100,000 event simulations; error bars show the standard deviation. The number in parentheses and red above each histogram is the root-
mean-square deviation (RMSD) of the simulated gene expression pattern from the experimental observations.
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why gene expression is possible but falls off steeply when a pol must
diffuse 3’ to reach the nearest GS signal after terminating transcription
(as occurs in RSV from the M2-L overlap) (Figure 6A). The biased
diffusion of proteins has been shown before (Ricchetti et al., 1988;
Kwok et al., 2006; Powers et al., 2009), making this change to the
model biophysically reasonable.

A 5’ pol diffusion bias was modeled by including a new parameter
in the model, DBias, with a value used as a multiplicative factor for 5’
diffusion only (Figure 6A). Thus, a DBias value of 2 would result in a
pol moving two steps (genomic chunks) with every 5’movement while
moving only one step (assuming Dscan = 1) with every 3’ movement;
the probabilities of moving in either direction remain equal. This

change could also bemodeled bymodifying the probabilities of 5’ vs. 3’
pol translocation and keeping each step size the same.

In order to test the effects of 5’ biased pol diffusion on gene
expression in our model, we chose two of the parameter sets yielding
fits with lower RMSDs from our first set of RSV transcription
simulations involving multiple pols (Figure 3B), ran these with
three different values of DBias, and looked for a drop in the
predicted value of L:M2 mRNA levels (Figure 6B). The two lower
values of DBias tested produced a greater drop in L:M2 than the highest
value tested (Figure 6B). This is because under a maximum
transcription initiation probability of 0.5, a high 5’ DBias leads to
frequent “missing” of the M2 GS signal before transcription initiation

FIGURE 7
The model captures published observations of RSV and VSV transcription with adjustments to the underlying transcription probabilities (Ptransc). (A) High
quality fits of experimentally observed RSV gene expression patterns. Ptransc were manually adjusted to achieve optimized fits at max pol # = 5, ktransc = 5,
Dbias= 2, and pol footprint of 14 and 7 nt. Histograms ofmRNA# for each RSV gene divided by the total mRNA# depict results from the simulations (blue bars)
and average published experimentally observed values (black horizontal bars) (Rajan et al., 2022). Each data point is the average of three 100,000 event
simulations; error bars show the standard deviation. The number in parentheses and red above each histogram is the root-mean-square deviation (RMSD) of
the simulated gene expression pattern from the experimental observations. (B) A high quality fit of the benchmark experimentally observed VSV gene
expression pattern. Ptranscwere manually adjusted to achieve an optimized fit atmax pol # = 50, ktransc = 5,Dbias = 1 (i.e., NO 5’ bias), and pol footprint = 28 nt.
The histogram of mRNA # for each VSV gene divided by the total mRNA # depicts results from the simulations (lavender bars) and average published
experimentally observed values (black horizontal bars) (Iverson and Rose, 1981). Each data point is the average of three 100,000 event simulations; error bars
show the standard deviation. The number in parentheses and red above the histogram is the root-mean-square deviation (RMSD) of the simulated gene
expression pattern from the experimental observations.

TABLE 2 Major parameter values for high quality fits of different data sets by our model. Our model produces high quality fits of two different RSV data sets
(Donovan-Banfield et al., 2022; Rajan et al., 2022) and benchmark observations of VSV gene expression (Iverson and Rose, 1981). Each list of transcription initiation
probabilities (Ptransc) contains the values used for every RSV or VSV GS signal following their 3’ to 5’ order along the genome.

Data set Maxpol # Pol footprint size(nt) Ktransc Dbias Ptransc RMSD

RSV piedra et al. 5 7 5 2 0.25,0.9,0.4,0.8,0.45,0.3,0.99,0.2,0.3,0.1 0.007

RSV piedra et al. 5 14 5 2 0.25,0.9,0.4,0.9,0.4,0.3,0.99,0.3,0.3,0.1 0.007

RSV Banfield et al. 15 7 5 2 0.9,0.4,0.5,0.8,0.9,0.4,0.5,0.7,0.9,0.9 0.013

VSV Iverson & Rose; 50 28 5 1 0.1,0.6,0.55,0.45,0.37 0.013
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at the L GS signal. We therefore decided to increase the maximum
transcription initiation probability to 0.9 and reran simulations at the
lower values of 5’ DBias tested. As expected, this resulted in a further
drop in predicted L:M2 mRNA levels. However, simulated L:M2 levels
remained much higher than our experimentally observed value
(Figure 6B). Finally, we decided to decrease the pol footprint size
by factors of 2 and 4, separately, knowing that this would increase the
effective distance between the M2 GE signal and the L GS signal, and
predicting a drop in L:M2 levels. The smallest pol footprint size tested,
seven nts, is equal to the number of nucleotides bound by a single
subunit of RSV nucleoprotein (N protein) and only three nts less than
the size of the highly conserved RSV GS signal. Decreasing the pol
footprint size yielded predicted L:M2 values that are very close to the
experimentally observed value (Figure 6B); and global fits of the RSV
gene expression data quantitatively improved for the higher value of
ktransc tested and remained roughly the same for the lower value
(Figure 6C).

Optimizing model fits

With the addition of DBias to our model of RSV transcription, it
seemed that both RSV and VSV versions of the model were poised to
capture experimentally observed patterns of gene expression. We
therefore set about finding RSV and VSV transcription initiation
probabilities that would produce optimal fits of the experimental
data (Figure 7A, B). Using a set of transcription probabilities
spanning a 10-fold range of values for a maximum pol number of
5, our RSV model yielded high quality fits of our experimental data
(Figure 7A; Table 2). Our VSV model yielded a high quality fit of the
experimental data with a set of transcription probabilities spanning a
6-fold range and a maximum pol number of 50 (Figure 7B; Table 2).

We also decided to fit the recently reported RSV long-read
sequencing data of Donovan-Banfield et al., 2022. An increased
max pol # and an approximately 2-fold range of Ptransc were
needed to capture their data (Table 2). These changes reflect the
more gradient nature of the observed gene expression pattern, while
our experimental observations showed much higher levels of G gene
mRNA (Rajan et al., 2022).

A 5’ diffusion bias was needed to capture both RSV data sets
because of a common dramatic decrease in expression between genes
M2 and L. In contrast, a 5’ diffusion bias was not needed to capture the
benchmark observations of VSV gene expression used here; however,
including one has minimal effect on the model’s output (data not
shown). Thus, we simply cannot make a model-supported prediction
about whether non-transcribing VSV pols diffuse with a 5’ bias.
Continuing with VSV, the high quality fit we report involves a 6-
fold range of Ptransc, but a quality fit can also be obtained with a 5-fold
range of Ptransc and less variation (= 0.1, 0.5, 0.5, 0.5, 0.5; RMSD =
0.009).

We believe the changes to transcription probabilities needed to
produce high quality fits of the experimental data are reasonable. For
instance, we have obtained preliminary data using RSV minigenomes
encoding luciferase reporter genes showing that a single RSVGS signal
sequence can support a 1.5-fold range of gene expression according to
its alignment with bound nucleoprotein or N-phase (Piedra et al.,
2020b). We do not know whether the reported N-phase-mediated
changes to gene expression are exactly proportional to the changes in
microscopic probabilities of transcription initiation modeled here

because the former come from luciferase activity measurements
and therefore reflect the addition of translation. Moreover,
sequence changes outside of the highly conserved 10 nt stretch of
the RSV GS signal can lead to gene expression changes (Kuo et al.,
1997), and the VSV GS signal is less conserved than RSV’s. However,
we are not aware of minigenome studies exploring the effects of VSV
GS signal sequence or N-phase on gene expression. Finally, it is also
possible that the shape of the observed RSV and VSV gene expression
patterns depends partly on differences in the underlying mRNA
stabilities, which we make no attempt to model here; but we have
shown previously that any such differences are unlikely to significantly
affect experimentally observed RSV gene expression patterns (Piedra
et al., 2020a). It is also worth mentioning that we make no attempt to
model the potential effects of 1) variable nascent mRNA capping
efficiency and 2) mRNA polyadenylation. Both could be modeled as a
variable pause time at the start and end of transcription, respectively.
However, we do not believe their inclusion would change the major
results presented here.

Conclusion and limitations

Ourmodel can capture observed RSV andVSV transcription patterns
with biophysically reasonable parameters and parameter values. Our
model makes the following major predictions in need of wet lab
experimental testing: 1) ejective collisions occur between transcribing
and non-transcribing NNSV pols; 2) non-transcribing RSV pols (and
perhaps VSV pols) undergo 5’ biased diffusion along the viral genome;
and 3) an increase in the number of pols bound to and diffusing along an
NNSV genome at any one time will lead to more frequent pol-pol
collisions and a sharper transcription gradient. Sophisticated single
molecule TIRF-based assays are needed to directly test predictions 1-2,
while 3 can be tested using established minigenome or recombinant
genome assays along with high throughput sequencing.
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