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Stem cells with the capacity of self-renewal and differentiation play pivotal roles

in normal tissues and malignant tumors. Whereas stem cells are supposed to be

genetically identical to their non-stem cell counterparts, cell stemness is

deliberately regulated by a dynamic network of molecular mechanisms.

Reversible post-translational protein modifications (PTMs) are rapid and

reversible non-genetic processes that regulate essentially all physiological

and pathological process. Numerous studies have reported the involvement

of post-translational protein modifications in the acquirement and

maintenance of cell stemness. Recent studies underscore the importance of

protein sumoylation, i.e., the covalent attachment of the small ubiquitin-like

modifiers (SUMO), as a critical post-translational protein modification in the

stem cell populations in development and tumorigenesis. In this review, we

summarize the functions of protein sumoylation in different kinds of normal and

cancer stem cells. In addition, we describe the upstream regulators and the

downstreameffectors of protein sumoylation associatedwith cell stemness.We

also introduce the translational studies aiming at sumoylation to target stem

cells for disease treatment. Finally, we propose future directions for sumoylation

studies in stem cells.
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1 Introduction

Post-translational protein modifications (PTMs), the reversible attachment of

chemical groups to proteins, regulate multiple aspects of protein functions and thus

play key roles in essentially all physiological and pathological processes. The stemness of

normal and cancer stem cells, which is presented as the capacity of self-renewal and

differentiation, is strictly under the control of a sophisticated network of PTMs. Recent

studies underscore the importance of protein sumoylation, i.e., the covalent attachment of

the small ubiquitin-like modifiers (SUMO), as a critical PTM in the stem cell populations

in development and tumorigenesis (Bogachek et al., 2014; Bogachek et al., 2016; Du et al.,

2016; Zhang et al., 2020a). In these stem cells, sumoylation functions to regulate several
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pivotal processes including protein stability, signal transduction,

subcellular protein distribution, gene transcription, epigenetic

profiles, and genome integrity.

The sumoylationmachinery is composed of SUMOproteins, the

SUMO-conjugating enzymes and the SUMO-deconjugating

enzymes. SUMO proteins belong to the ubiquitin-related protein

family and are conserved in essentially all eukaryotes (Fu et al., 2014).

The diversity of the SUMO proteins seems to be increased during

evolution. There is only one SUMO gene inDrosophila melanogaster

and Saccharomyces cerevisiae, but at least four SUMO genes have

been identified in vertebrates and flowering plants (Augustine and

Vierstra, 2018). In mammals, SUMO proteins are classified into

SUMO1 and SUMO2/3 categories that are conjugated to the lysine

residuals of substrate proteins (Zhao, 2018). Similar to ubiquitination,

SUMO conjugation to target proteins is executed by SUMO E1,

E2 and E3 enzymes. In a classic scenario, the SUMO E1 enzymes

SAE1/2 (SUMO-activating enzyme subunit 1/2) activate SUMO

proteins and transfer SUMO to the sole E2 enzyme Ubc9, which

in turn with the help of SUMO E3 enzymes PIAS1-4 (the protein

inhibitor of activated STAT 1-4) transfers SUMO onto protein

substrates (Gareau and Lima, 2010). On the other hand, SUMO

proteins can be removed from substrates by a handful of

desumoylation enzymes called sentrin-specific proteases (SENPs)

(Gareau and Lima, 2010; Zhao, 2018).

Due to the indispensable functions of protein sumoylation,

genetic mutations of the core components of the SUMO

machinery rarely occur in mammalian cells (Seeler and Dejean,

2017). Sumoylation plays crucial roles in development.

Associations between misregulated sumoylation and developmental

defects have been demonstrated in plants, fruit flies, planarian,

zebrafish, and frogs (Alkuraya et al., 2006; Nie et al., 2009; Li

et al., 2012; Augustine and Vierstra, 2018; Thiruvalluvan et al.,

2018; Bertke et al., 2019). In humans, it has been reported that

protein sumoylation regulates craniofacial development (Pauws and

Stanier, 2017). The situation of protein sumoylation is complicated in

tumor biology. Upregulated expression of both sumoylation- and

desumoylation-related enzymes has been detected in cancers (Seeler

and Dejean, 2017). Meanwhile, sumoylation occurs on both

oncogenes such as Myc and β-catenin and tumor suppressors such

as p53, PTEN, andBRCA1 (Morris et al., 2009;Wu andChiang, 2009;

Bassi et al., 2013; Karami et al., 2017; Sun et al., 2018). Therefore,

sumoylation plays a critical but complex role in tumors. This review

will focus on the protein sumoylation in stem cells as the pivotal cell

population in normal development and tumorigenesis.

2 Roles of sumoylation in normal and
cancer stem cells

2.1 Embryonic stem cells

Embryonic stem cells (ESCs) are the pluripotent stem cell

population existing in the very early stage of development.

Sumoylation contributes to ESC maintenance through

multiple mechanisms. The stemness of ESCs largely relies on

a handful of transcription factors (Tsankov et al., 2015; Knaupp

et al., 2017), whose activities could be controlled by sumoylation.

For example, SUMO1 modification of the transcription factor

Oct4 at lysine 118 stabilizes Oct4 protein to promote self-renewal

of mouse ESCs (Zhang et al., 2007). The expression of proviruses

and endogenous retroviruses (ERVs) is strictly repressed in ESCs

to avoid insertional mutagenesis (Yang et al., 2015; Miles et al.,

2017). A genome-wide siRNA screening revealed sumoylation

factors SUMO2, Ube2i, Sae1, Uba2 and Senp6 as key

determinants for provirus silencing in ESCs. Moreover,

SUMO2-sumoylation of TRIM28 is necessary for its

recruitment onto the proviral DNA, resulting in the

deposition of the repressive H3K9me3 mark and the

repression of ERVs (Yang et al., 2015), thereby maintaining

the genomic integrity of ESCs.

Whereas several studies indicate the importance of

sumoylation in maintaining stemness of ESCs, a few

investigations suggest that sumoylation may function to keep

ESCs from regaining totipotency. Proteomic analysis of mouse

ESC revealed that SUMO2/3 primarily modified repressive

chromatin complexes and thus prevented chromatin opening,

impeding the conversion of ESC to 2-cell-embryo-like states

(Theurillat et al., 2020). In addition, SUMO2 modification of

the chromatin organizer SATB2 drove ESC differentiation in

response to retinoic acid, which may be due to the rewiring of

transcriptional networks and the chromatin interactome of ESCs

(Antonio Urrutia et al., 2021). Furthermore, SUMO2/

3 modification of the linker histone H1 facilitated its fixation

onto ultra-condensed heterochromatin in ESCs, whereas loss of

sumoylation de-compacted the chromatin and reactivated

totipotency (Sheban et al., 2022).

2.2 Somatic stem cells and progenitor cells

Somatic stem cells as undifferentiated cells exist throughout

animal bodies.With the potential to differentiate into specialized cell

types, somatic stem cells function to maintain tissue homeostasis by

replenishing dying cells and regenerating damaged tissues. The

descendants of stem cells, named as progenitor cells, bear further

reduced differentiation potency and only give rise to a specific type

of cells (Gillich et al., 2020). Sumoylation is crucial for maintenance

of both somatic stem cells and progenitor cells inmultiple species. In

adult Drosophila testis, reduction of sumoylation promoted

differentiation of somatic cyst stem cells and impaired the

proliferation of these cells (Lv et al., 2016). In Xenopus, high

expression of the SUMO-conjugating enzyme Ubc9 is required

for proliferation of retinal progenitors through regulation of cell

cycle exit (Terada and Furukawa, 2010).

The importance of sumoylation is preserved in mammalian

somatic stem cells and progenitor cells. Inducible knockout of
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Ubc9 in adult mice resulted in rapid disappearance of stem cells

in the small intestine, leading to the depletion of the intestinal

proliferative compartment (Demarque et al., 2011). Uterine

stromal stem cells are activated and integrated into the

regeneration area during menstruation, which is correlated

with enhanced protein sumoylation in these CD34+KLF4+

stem cells (Yin et al., 2019). On the other side of the coin,

desumoylation enzymes have critical roles in somatic stem cells.

High expression of SENP2 is required for trophoblast

proliferation and differentiation during placentation (Chiu

et al., 2008; Jiang et al., 2011; Maruyama et al., 2016). In

addition, SENP5 may play a role in the development of

cardiac structures by deconjugation of SUMO1 (Zhang et al.,

2020b). Furthermore, SENP1 promotes the migration and

proliferation of adipose-derived stem cells (Wu et al., 2021).

2.3 Hematopoietic stem and progenitor
cells

Hematopoietic stem and progenitor cells (HSPCs) with the

capacity of self-renewal and differentiation intomature blood cell

lineages are responsible for lifelong maintenance of

hematopoiesis (Mende et al., 2022). Sumoylation regulates

both maintenance and differentiation of HSPCs. HSPCs

display higher SUMO contents than their differentiated

progeny (Sahin et al., 2014). The sumoylation E1 enzyme

SAE1 is essential for HSPC maintenance during fetal

hematopoiesis in zebrafish (Li et al., 2012; Yuan et al., 2015).

SUMO modification of lineage-specific transcriptional factors

modulates myeloid progenitor proliferation and macrophage

differentiation in chicken (Tillmanns et al., 2007). On the

other side, the desumoylation enzyme SENP1 is required for

erythropoiesis in liver in mouse (Yu et al., 2010).

2.4 Induced pluripotent stem cell

Adult somatic cells can be reprogrammed to pluripotent stem

cells by forced expression of key transcription factors, leading to

the generation of induced pluripotent stem cells (iPSC) that are

similar to ESCs in many aspects (Kleiman and Engle, 2021).

Sumoylation occurs on several reprogramming factors and thus

regulates the formation of iPSCs. Sumoylation of KLF4 inhibits

pluripotency induction of mouse fibroblasts into iPSCs

(Tahmasebi et al., 2013). Likewise, reprogramming efficiency

of the orphan nuclear receptor Nr5a2 is attenuated by

sumoylation in induction of mouse iPSCs (Heng et al., 2010).

Furthermore, comprehensive RNA interference screens reveal

sumoylation as a major block of iPSC formation (Cheloufi et al.,

2015; Borkent et al., 2016).

2.5 Cancer stem cells

Cancer stem cells (CSCs) are a small proportion of tumor

cells that can self-renew and differentiate into other types of

tumor cells. CSCs are believed to be the tumor initiating cells with

strong resistance against therapies, thereby contributing to tumor

initiation, progression, and relapse (Saygin et al., 2019). In

addition, CSCs are acting as a key contributor to bypassing

immunotherapy with immune checkpoint inhibitors

(Rouzbahani et al., 2022). Altered global sumoylation has been

observed in CSCs, but the functions of sumoylation in

tumorigenesis may depend on the specific tumor types.

Hypersumoylation has been reported to be a feature of glioma

stem cells that is crucial for maintaining their tumorigenic

capacity (Zhang et al., 2020a). In addition, sumoylation may

drive the proneural to mesenchymal transition, a malignant

phenotypic shift, in glioma stem cells (Chen et al., 2022).

Moreover, a panel of inhibitors against SUMO E1 and

E3 enzymes resulted in functional loss of CSCs in breast and

colon cancers, indicating the requirement of sumoylation in CSC

maintenance (Bogachek et al., 2016). While these studies indicate

a tumor-supportive role of sumoylation in CSCs, some

investigations demonstrate the tumor-repressive functions of

sumoylation. In mice harboring a conditional ablation of Apc

gene in intestinal stem cells or CSCs of intestinal cancer, deletion

of a single allele of the sole SUMO E2 enzyme Ubc9 significantly

increased the number of Lgr5 positive CSCs, which was

accompanied by reduced global sumoylation levels in the

polyps (Lopez et al., 2020). Of note, specific signaling

pathways may be finely tuned by sumoylation to exert tumor-

supportive or tumor-suppressive functions in CSCs. For

example, the PML moiety of PML/RARA is sumoylated at the

K160 site, which is required for efficient immortalization of

primary hematopoietic progenitor cells and leukemic

transformation (Zhu et al., 2005). On the other side, upon all-

trans retinoic acid treatment, the orphan nuclear receptor

TR2 associated with PML nuclear bodies becomes sumoylated

and acts as a repressor for Oct4, a process in which sumoylation

functions to suppress stemness (Gupta et al., 2008). Alternatively,

sumoylation of different key proteins involved in a specific

pathway may generate different outcomes and either support

or suppress the stem cell phenotypes. The Wnt/β-catenin
signaling pathway that is frequently dysregulated in CSCs

provides a good example (Fan et al., 2022). Whereas

numerous proteins within the Wnt/β-catenin pathway can be

modified by sumoylation, sumoylation may positively or

negatively regulate CSC self-renewal and the consequent

occurrence, development, recurrence, and metastasis in

different cancers (Fan et al., 2022).

The roles of protein sumoylation in different kinds of stem

cells have been summarized in Figure 1.

Frontiers in Molecular Biosciences frontiersin.org03

Zhu et al. 10.3389/fmolb.2022.1095142

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1095142


3 Sumoylation regulators in stem cells

3.1 The SUMO modifiers

The abundance of free SUMO proteins is a limiting factor

that constrains the speed and frequency of global sumoylation.

Consistently, expression of SUMO modifiers regulates protein

sumoylation and hence the phenotypes of stem cells. In primary

human adipose-derived stem cells, the age-dependent genome-

wide alterations in chromatin accessibility are concurrent with

altered SUMO protein expression under stress conditions (Shan

et al., 2018). Meanwhile, forced overexpression of

SUMO1 severely impairs viability of ESCs, which is likely

ascribed to an excess accumulation of SUMO1-conjugated

substrates (Lee et al., 2019). On the contrary,

SUMO1 haploinsufficiency due to a chromosomal

translocation in a human patient leads to cleft lip and palate,

highlighting the requirement of SUMO1 modifiers and

sumoylation of critical genes in palatogenesis, a process

involved several types of cells including stem cells (Alkuraya

et al., 2006). Therefore, stem cells may need an appropriate

amount of free SUMO modifiers, and either excessive or

insufficient SUMO expression would impact cell stemness.

3.2 The sumoylation enzymes

Conjugation of SUMO modifiers to substrate proteins are

processed by a set of enzymatic machinery composed of E1,

E2 and E3 enzymes (Gareau and Lima, 2010; Zhao, 2018). In line

with the essential role of sumoylation in stem cells, components

of the sumoylation machinery regulate multiple phenotypes of

stem cells. Colorectal CSCs have higher SUMO E1 enzyme

expression relative to non-CSCs, and genetic disruption or

overexpression demonstrate a positive correlation between

SUMO E1 levels and cancer cell stemness (Du et al., 2016). In

addition, upregulation of the SUMO E2 enzyme Ubc9 is required

for reprogramming of mouse embryonic fibroblasts into iPSCs

(Tahmasebi et al., 2014). Ubc9 is also essential for ESC survival

(Tahmasebi et al., 2014). When ESCs transit into pluripotent 2-

cell-like cells, the SUMO E3 enzyme PIAS4 is down-regulated,

which is sufficient to activate the transcriptional program for

embryo development (Yan et al., 2019). These observations

indicate that the sumoylation enzymes may promote cell

stemness.

3.3 The desumoylation enzymes

SUMO modifiers could be removed from substrate proteins

by a handful of desumoylation enzymes called SENPs (Gareau

and Lima, 2010; Zhao, 2018). SENP2 is highly expressed in

trophoblast cells and regulates trophoblast proliferation and

differentiation (Chiu et al., 2008). In addition, postnatal loss

of SENP6 in osteochondroprogenitor cells in the bone marrow

causes premature aging, resulting in impaired skeletal

development in mice (Li et al., 2018). However, these studies

ascribe the functions of SENPs to some pivotal molecular targets

such as the p53 protein, suggesting that the outcome of

desumoylation may largely depend on the modified substrates.

Therefore, the role of global desumoylation in themaintenance of

cell stemness remains unclear.

3.4 Other regulatory proteins

In addition to the abovementioned classic components of the

sumoylation machinery, multiple regulatory proteins have been

reported to mediate sumoylation. Recent studies have discovered

some atypical SUMO E3 ligases in stem cells. CBX4, a member of

the Polycomb Repressive Complex 1 (PRC1) that

transcriptionally represses downstream genes during

development, has E3 SUMO ligase activity (Wu et al., 2022).

CBX4 promotes sumoylation and accumulation of BMI1 (Ismail

et al., 2012), a transcriptional repressor with essential roles in the

self-renewal of many normal and cancer stem cells (Sangiorgi

and Capecchi, 2008; Chen et al., 2017). Likewise, a ubiquitin

E3 ligase UHRF2 also acts as a SUMO E3 ligase (Oh and Chung,

2013). UHRF2 expression promotes organoid formation from

primary intestinal adenomas, suggesting an oncogenic role of

UHRF2 in CSCs. UHRF2 may sumoylate the Wnt pathway

effector Tcf4 to maintain hyperactive Wnt signaling in CSCs

FIGURE 1
Pivotal roles of protein sumoylation in different kinds of stem
cells. Sumoylation keeps embryonic stem cells in a stable state by
preventing either differentiation or totipotency. In somatic stem
cells, sumoylation promotes cell proliferation but prevents
differentiation. In hematopoietic stem and progenitor cells,
sumoylation activates both cell proliferation and differentiation.
Sumoylation generally inhibits the formation of induced
pluripotent stem cells. However, conflicting reports described
both the activation and suppression of self-renewal of cancer stem
cells by sumoylation of different substrates.

Frontiers in Molecular Biosciences frontiersin.org04

Zhu et al. 10.3389/fmolb.2022.1095142

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1095142


(Li et al., 2020). Similarly, the Tripartite Motif-Containing

Protein 28 (TRIM28) with the SUMO E3 ligase activity binds

to the lncRNA PVT-1 and sumoylates the phosphatidylinositol

3-kinase catalytic subunit type 3 (Vps34), which enhances the

ubiquitination and degradation of the tumor suppressor complex

2 (TSC2), thus contributing to stem cell phenotypes such as

invasion in osteosarcoma (Tsang et al., 2022). In addition to

atypical enzymes, regulatory proteins may indirectly participate

in sumoylation process in stem cells. The peptidyl-prolyl cis-

trans isomerase Pin1 promotes global sumoylation and

maintenance of glioma stem cell (Zhang et al., 2020a). The

isomerase activity of Pin1 is required for sumoylation,

suggesting that Pin1 may alter protein configuration to

facilitate the interaction between sumoylation enzymes and

substrates (Zhang et al., 2020a). Increased expression of the

tumor suppressor protein ARF delays age-associated stem cell

exhaustion, suggesting a role of ARF in maintaining normal stem

cells (Carrasco-Garcia et al., 2017). Despite the lack of enzymatic

activity, ARF has been found to enhance PIAS1 sumoylation and

suppress PIAS1 activity (Alagu et al., 2018), which may be

ascribed to the association between ARF and the SUMO

E2 enzyme Ubc9 (Wang et al., 2015). Along with the

increasing interest in sumoylation and stem cells, future

studies would certainly reveal more unconventional regulators

of sumoylation with essential roles in normal and cancer stem

cells.

4 Molecular processes under the
control of sumoylation in stem cells

4.1 Protein stability

As the ubiquitin-like proteins, SUMO modifiers share many

structural similarities with ubiquitin. It is not surprising to see the

crossover of these two kinds of PTMs in regulating protein

stability. Poly-sumoylation often serves as a signal for the

recruitment of SUMO-targeted ubiquitin ligases (STUbLs),

resulting in the subsequent poly-ubiquitination on a

neighboring lysine residue on the substrate protein, which

finally leads to proteasomal degradation (Sriramachandran

et al., 2019; Keiten-Schmitz et al., 2020). Sumoylation-mediated

degradation of suppressive regulators would activate some critical

pathways required for the maintenance of cell stemness. In

leukemic stem cells, sumoylation of the beta-catenin antagonist

CBY1 reduces its stability through the ubiquitin-proteasome

system, which contributes to the activation of beta-catenin

signaling and the resistance against tyrosine kinase inhibitors

(Mancini et al., 2015). Of note, sumoylation may also function

to stabilize substrate proteins. SUMOmodifiers may compete with

ubiquitin for the same lysine residues and thus inhibit

ubiquitination (Desterro et al., 1998). In addition, sumoylated

proteins may have strong affinity to ubiquitination inhibitors that

prevent the addition of poly-ubiquitin chain (Sha et al., 2019).

Several studies have reported the SUMO-mediated stabilization of

master transcription factors that are crucial for the maintenance of

cell stemness. The transcription factor Oct4 is a key regulator in

ESC, CSC, and iPSC. Sumoylation of Oct4 at lysine 118 increases

the protein stability, DNA binding affinity, and transcriptional

activity of Oct4 (Wei et al., 2007; Zhang et al., 2007). Interestingly,

reproductive toxic cobalt and nickel metals induce

Oct4 sumoylation and stabilize Oct4 protein in a

concentration-dependent manner, indicating a dynamic control

of Oct4 by sumoylation (Yao et al., 2014). Sumoylation also

promotes the stability of SALL4, which interacts with Oct4 in

promoting cell stemness (Yang et al., 2012).

4.2 Protein interaction

Like other PTMs, sumoylation could facilitate the non-

covalent interaction between proteins. Such interaction is

often mediated by binding of SUMO interaction motifs

(SIMs) to SUMO modifiers. A typical SIM is composed of a

core of hydrophobic residues flanked by negatively charged

amino acids (Liang et al., 2021). Interaction between two

proteins can be enhanced by the binding of multiple SIMs to

SUMO modifiers (Liang et al., 2021). However, it is not sure

whether SIM is indispensable for the SUMO-mediated protein

interactions. Sumoylation-mediated protein interactions play

important roles in maintaining cell stemness. Recent studies

have demonstrated the crucial roles of PML proteins in

different kinds of stem cells (Zhou and Bao, 2014).

Sumoylation of PML protein facilitates its interaction with the

stem cell transcription factor c-Myc, which promotes the

maintenance of glioma stem cells (Zhou et al., 2015; Zhang

et al., 2020a). As sumoylation of PML proteins is prerequisite

for the formation of PML nuclear bodies that function as hot-

spots for the docking of several SIM-bearing proteins (Zhou and

Bao, 2014), sumoylation may enhance the interaction between

PML and different downstream effectors in different stem cells.

In addition, sumoylation of OTUB2, a deubiquitinase

participating in the maintenance of several CSCs, enables its

interaction with transcriptional regulators YAP/TAZ to activate

YAP/TAZ signaling and promote cancer cell stemness (Zhang

et al., 2019). Interestingly, some studies show that sumoylation

may perturb protein interactions. For example, it has been

reported that sumoylation of either Oct4 or Sox2 impairs the

interaction between the two proteins, although the impact on cell

stemness remains unclear (Wu et al., 2012).

4.3 Protein localization

Sumoylation has the capacity to affect the subcellular

localization of proteins and therefore regulate protein
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functions. The unsumoylated testicular receptor 2 (TR2) is

localized to the PML nuclear bodies and functions as a

transcriptional activator of Oct4 (Gupta et al., 2008).

Sumoylation of TR2 releases it from the nuclear bodies and

switches it into a repressor. In this scenario, sumoylation of

TR2 enables the fine-tuning of Oct4 expression and regulates

stem cell proliferation (Park et al., 2007). The Notch pathway

plays key roles in regulating stem cells during development and

tumorigenesis (Majumder et al., 2021). The Notch intracellular

domain (NICD1) generated from cleavage of the Notch receptor

is required for the transcriptional activation of Notch target

genes. NICD1 is sumoylated in a stress-inducible manner, which

enhances its nuclear localization and facilitates the recruitment of

histone deacetylase 4 (HDAC4), thereby suppressing Notch

target gene transcription (Antila et al., 2018). Given that

sumoylation alters the interaction between proteins,

localization of sumoylated proteins may to some extent

depend on their interacting partners.

4.4 Epigenetic regulation

Epigenetic status to a large degree determines the state of

stem cells. However, it was not until recently that people realized

the importance of sumoylation in epigenetic regulations.

Sumoylation is linked to specified cell fates. Suppressing

sumoylation in ESCs promotes their conversion into 2C-like

cells (2-cell-stage embryo). In this case, SUMO functions on

heterochromatin to maintain proper H3K9me3 levels genome-

wide and thus silences differentiation (Cossec et al., 2018).

Further studies demonstrate that SUMO2/3 modification of

the linker histone H1 facilitates its fixation onto ultra-

condensed heterochromatin in ESCs, whereas disruption of

sumoylation de-compacts the chromatin and evicts H1 to

reactivate totipotency (Sheban et al., 2022). Moreover, SENP3-

mediated desumoylation of RbBP5 protein, a regulatory

component of the histone-modifying SET1/MLL complexes,

facilitates H3K4 methylation and activates downstream gene

transcription to dictate osteogenic differentiation of human

stem cells (Nayak et al., 2014). Future studies may reveal

more functions of sumoylation on epigenetic features

including chromatin accessibility, DNA and histone

modifications, and even RNA processing.

4.5 Transcriptional activation

Cell stemness is largely under the control of certain

transcription factors that are frequently sumoylated. SUMO

modifications may increase transcriptional activities of

transcription factors. For example, sumoylation of the

Yamanaka factor Oct4 augments its activity and promotes G1/

S progression of murine ESCs (Wei et al., 2007; Campbell and

Rudnicki, 2013). Likewise, sumoylation of ERalpha elevates its

downstream gene transcription and activates proliferative

signaling in murine uterine stem cells (Yin et al., 2019). On

the other hand, sumoylation may negatively regulate the

activities of transcription factors. GATA-1 is required for

erythropoiesis, but sumoylation reduces its binding to the

promoters of target genes (Yu et al., 2010). Similarly,

sumoylation of Eya1, a conserved regulator of organ-specific

stem cells, inhibits the downstream transcription (Sun et al.,

2015). Moreover, SUMO modification negatively regulates the

transcriptional activity of DPPA2, a critical transcription factor

in mouse ESCs and embryo development (Yan et al., 2019).

Besides transcription factors, sumoylation of transcriptional co-

factors may also affect gene transcription. For instance,

sumoylation of Nab protein, the coregulator of the

transcription factor Krox20 that regulates hindbrain

development, represses transcriptional activity of Krox20

(Garcia-Gutierrez et al., 2011).

4.6 Genome integrity

Faithful preservation of genome integrity is critical for the

maintenance of self-renewal stem cells. Endogenous retroviruses

(ERVs) and exogenous proviruses pose substantial threats to

genome stability of ESCs (Xiang and Liang, 2021). Systematic

FIGURE 2
Diagram to demonstrate the molecular processes under the
control of sumoylation in stem cells. Sumoylation regulates the
stability, interaction, and localization of proteins. Meanwhile,
sumoylation at chromatin may function as epigenetic signals.
Sumoylation of transcription factors may affect the formation of
the transcriptional machinery on the chromatin and regulate
transcription of target genes. Furthermore, sumoylation of
chromatin components may be important for the integrity of the
genome.
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siRNA screen revealed that sumoylation factors are among the

key determinants for the establishment of provirus silencing in

ESCs (Yang et al., 2015). Moreover, sumoylation facilitates the

interaction between the lysine methyltransferase SETDB1 and

the co-repressor KAP1 that function together to deposit

H3K9me3 and suppress retrotransposition of ERVs

(Thompson et al., 2015). Proper repair of DNA damages is

another key process required for genome integrity. In

differentiating mouse ESCs, sumoylation of thymine DNA

glycosylase suppresses DNA strand-break accumulation and is

essential for neural lineage commitment (Steinacher et al., 2019).

Taken together, these findings highlight the importance of

sumoylation in maintaining genome stability and genetic

fidelity of stem cells.

Molecular processes under the control of sumoylation in

stem cells have been summarized in Figure 2.

5 Sumoylation-related therapies
targeting stem cells for disease
treatment

In line with the close relationship between sumoylation and

cell stemness, several studies have pointed out that manipulating

sumoylation in normal and cancer stem cells may benefit disease

treatment. When engrafted into brains, neural stem cells (NSC)

not only differentiate to cellular replacements of mature neural

cell types but also modulate inflammation and angiogenesis

(Baker et al., 2019). Thus NSCs are promising therapeutic

tools for the treatment of central nervous system (CNS)

diseases including epilepsy, stroke, and neural degenerative

diseases (Baker et al., 2019). When global sumoylation in

NSCs is elevated by overexpressing the SUMO E2-conjugase

Ubc9, NSCs are endowed with stronger resistance against

deprivation of oxygen/glucose, resulting in increased survival

and neuronal differentiation in ischemic lesions in mouse brains

(Bernstock et al., 2019). Therefore, sumoylation may be a critical

target to optimize the effectiveness of exogenous NSC medicines

in ischemic stroke and probably other CNS diseases.

Most sumoylation-related therapeutic studies are focusing on

CSCs. Fukuda et al. (2009) found that ginkgolic acid and its

structural analog anacardic acid inhibited protein sumoylation

in vitro and in vivo by blocking the formation of the E1-SUMO

intermediate. After then, ginkgolic acid and anacardic acid had

been shown to reduce cell invasiveness and impair CSCs in basal

breast cancer and colorectal cancer through disturbing the

SUMO-conjugated form of the Transcription Factor AP-2-

Alpha (TFAP2A) (Bogachek et al., 2016; Kharkar, 2017). In

glioma stem cells, melatonin attenuates SUMO1 sumoylation

and disturbs interaction between nestin (NES) and c-Myc,

resulting in reduction of c-Myc levels and inhibition of

stemness (Lee et al., 2018). In hepatocellular carcinoma,

dexamethasone reduces sumoylation and accumulation of

HIF1alpha, Oct4 and other proteins, thereby disrupting CSCs

to improve chemotherapy (Jiang et al., 2020). Moreover, a natural

product compound McM25044 extracted from actinomycete has

the capacity to selectively inhibit CSCs by direct targeting the

SAE1/2 complex to impede the sumoylation cascade.

McM25044 treatment of patient-derived breast, colorectal and

leukemic CSCs reduces global sumoylation and impairs cell

stemness in vitro and in vivo. Meanwhile, McM25044 shows

negligible effects on normal stem cells (Benoit et al., 2021). These

discoveries underscore the potential of inhibiting sumoylation to

combat CSCs.

Interestingly, on some proteins sumoylation could act both as

a glue to facilitate binding of downstream signaling molecules and

as a trigger to initiate subsequent polyubiquitination and

proteasomal degradation. If so, either stimulating or inhibiting

sumoylation may have anti-tumor effects but via different

pathways. This is well exemplified in PML proteins in leukemia

and glioblastoma. Sumoylation of PML/RARA is required for

immortalization of primary hematopoietic progenitor cells and

leukemic transformation (Zhu et al., 2005), suggesting that

inhibiting sumoylation may prevent leukemia. However, arsenic

trioxide treatment promotes sumoylation of PML/RARA

oncoprotein and the consequent ubiquitin-mediated

proteasomal degradation, thereby acting as a cure for

promyelocytic leukemia (Jeanne et al., 2010). Likewise, arsenic

trioxide causes degradation of PML protein, leading to the

destabilization of the PML-interacting c-Myc protein and the

inhibition of glioma stem cells (Zhou et al., 2015). On the other

side, juglone treatment inhibits Pin1-mediated sumoylation of

PML protein and impedes the binding of c-Myc to PML, which

severely impacts stemness of cancer but not normal stem cells

(Zhang et al., 2020a). These facts further highlight protein

sumoylation as a pivotal target for disrupting CSCs to treat cancers.

6 Conclusion and perspectives

Sumoylation often acts as molecular switch triggering the

functional shift of signaling networks in stem cells. Sumoylation

of key factors often determines the fate of normal stem cells.

Many facts have shown the ability of sumoylation to prevent

differentiation of stem cells. However, sumoylation may also

initiate differentiation of pluripotent cells. The chromatin

organizer SATB2 is sumoylated upon retinoic acid treatment,

which promotes SATB2 binding at differentiation genes, leading

to the rewiring of transcriptional networks of ESCs and the

transition of pluripotency to differentiation (Antonio Urrutia

et al., 2021). Sumoylation may govern the direction of

differentiation. SUMO modification of the transcription co-

factor myocardin (MYOCD) in pluripotent fibroblasts strongly

activates the expression of cardiogenic genes, leading to a switch

from smooth muscle to cardiac muscle differentiation (Wang

et al., 2007). In CSCs, key regulators may function either as an
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oncogene or tumor repressor depending on the sumoylation

status. The orphan receptor TR2 activates Oct4 to enhance

embryonal carcinoma cell proliferation when unsumoylated.

Yet sumoylation of TR2 alters its nuclear localization and

interacting co-regulator, switching TR2 from an activator to a

repressor (Park et al., 2007). Likewise, the PML protein has been

recognized as a tumor suppressor for a long time (Wang et al.,

2017). But recent studies have revealed the oncogenic roles of the

sumoylated PML in CSCs (Jeanne et al., 2010; Zhou et al., 2015).

The difference between SUMO1 and SUMO2/3 categories

may have a role in the switch on/off process. The amount and

distribution of SUMO1- and SUMO2/3-modified proteins vary

during mouse brain development. SUMO2/3-modified proteins

accumulate in neural progenitor cells, whereas higher SUMO1-

sumoylation is detected in mature neurons (Hasegawa et al.,

2014). In line with these discoveries, SUMO1 but not

SUMO2 overexpression is not tolerated in murine ESCs,

suggesting a negative role of SUMO1-sumoylation in

embryonic cells (Lee et al., 2019). However, SUMO1- rather

than SUMO2/3-sumoylation seems to promote the maintenance

of CSCs. Melatonin suppresses glioma initiating cells by reducing

SUMO1 but not SUMO2/3 modifications (Lee et al., 2018).

Likewise, higher SUMO1-sumoylation is observed in glioma

stem cells, whereas similar SUMO2/3-sumoylation levels are

detected in stem and non-stem tumor cells in glioblastoma

(Zhang et al., 2020a). Interestingly, the desumoylation

enzymes may also participate in mediating the signaling from

SUMO1 and SUMO2/3 modifiers. For example, SENP1 with a

strong desumoylation activity towards SUMO1 rather than

SUMO2/3 has an essential role in mouse embryonic

development (Sharma et al., 2013). Taken together, these

studies strongly support the distinct roles of SUMO1 and

SUMO2/3 modifiers in cell stemness. Aside from the different

categories of SUMO conjugates, the length of the conjugates

(poly versus mono sumoylation) and the numbers of

modifications (single versus multiple sumoylation) may have

regulatory roles in the functional SUMO switch.

The in-depth study of sumoylation-regulated stemness

requires a comprehensive understanding of the unique

sumoylated proteins in stem cells. This remains a challenge

because of the low abundance of endogenous sumoylated

proteins, urging the development of sensitive identification

strategies. Mass spectrometry has been popular so far for

proteomic study of global sumoylation. Meanwhile, different

methods have been utilized to enrich sumoylated protein for

mass spectrometry analysis. SUMO conjugates could be purified

with anti-SUMO antibodies or SUMO affinity trap with multiple

SIMs (Lopitz-Otsoa et al., 2019; Li et al., 2021; Pronot et al.,

2021). Ectopic epitope-tagged SUMO proteins are often

expressed to further facilitate enrichment of sumoylated

proteins (Barroso-Gomila et al., 2021). For identification of

sumoylation sites on the sumoylated proteins, an artificial

tryptic site may be introduced into the ectopic SUMO protein

to shorten the SUMO chains. This is often achieved by

substitution of a specific residue with an arginine in the

SUMO protein, which will generate a signature peptide with a

di-glycine remnant attached to the lysine residue on substrate

proteins after tryptic digestion. The strategy has been used to

analyze sumoylation in human iPSCs, resulting in identification

of 976 sumoylation sites on 427 substrates (Mojsa et al., 2021).

However, ectopic overexpression of SUMO proteins would

elevate global sumoylation levels. Moreover, point mutation of

SUMO protein may prevent the formation of poly-SUMO chain.

Therefore, the identified sumoylated proteins must be carefully

validated for their involvement in maintenance of stemness.

The past decade has seen a growing interest in the role of

sumoylation in regulating cell stemness. Future studies will surely

provide a better understanding of the upstream regulatory

mechanisms and the downstream effector pathways of

sumoylation, which would not only broaden our

understanding of the essential roles of sumoylation in normal

development and tumorigenic progression, but also open the way

to novel molecular interventions and development of new

therapeutics.
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Glossary

The following abbreviations are used in
this document:

PTMs post-translational protein modifications

SUMO small ubiquitin-like modifiers

SAE1/2 SUMO-activating enzyme subunit 1/2

PIAS1-4 protein inhibitor of activated STAT 1-4

SENPs sentrin-specific proteases

ESCs embryonic stem cells

ERVs endogenous retroviruses

TRIM28 Tripartite Motif-Containing Protein 28

Ubc9 Ubiquitin-Conjugating Enzyme E2I

HSPCs Hematopoietic stem and progenitor cells

iPSC induced pluripotent stem cells

KLF4 Kruppel Like Factor 4

Nr5a2 Nuclear Receptor Subfamily 5 Group A Member 2

Lgr5 Leucine-Rich Repeat-Containing G-Protein Coupled

Receptor 5

PML Promyelocytic Leukemia Protein

RARA retinoic acid receptor alpha

TR2 Testicular Receptor 2

CBX4 Chromobox 4

PRC1 Polycomb Repressive Complex 1

BMI1 a polycomb group (PcG) protein

UHRF2 Ubiquitin-Like With PHD And Ring Finger Domains 2

Tcf4 Transcription Factor 4

PVT-1 Plasmacytoma Variant Translocation-1

Vps34 phosphatidylinositol 3-kinase catalytic subunit type 3

TSC2 tumor suppressor complex 2

Pin1 Peptidyl-Prolyl Cis-Trans Isomerase NIMA-Interacting 1

ARF Alternative Reading Frame

STUbLs SUMO-targeted ubiquitin ligases

CBY1 Chibby Family Member 1

SALL4 Spalt Like Transcription Factor 4

SIMs SUMO interaction motifs

OTUB2 OTU Domain-Containing Ubiquitin Aldehyde-Binding

Protein 2

YAP Yes1 Associated Transcriptional Regulator

TAZ Tafazzin, Phospholipid-Lysophospholipid Transacylase

NICD1 Notch intracellular domain

HDAC4 histone deacetylase 4

RbBP5 Retinoblastoma-Binding Protein 5

SET1 SET Domain Containing 1A, Histone Lysine

Methyltransferase

MLL Lysine Methyltransferase 2A

Eya1 Eyes Absent Homolog 1

DPPA2 Developmental Pluripotency Associated 2

Krox20 Early Growth Response 2

SETDB1 SET Domain Bifurcated Histone Lysine

Methyltransferase 1

KAP1 KRAB [Kruppel-Associated Box Domain]-Associated

Protein 1, also known as tripartite motif-containing protein 28,

TRIM28

NSC neural stem cells

CNS central nervous system

SATB2 Special AT-Rich Sequence-Binding Protein 2

GATA-1 GATA-Binding Protein 1 (Globin Transcription

Factor 1)

Nab NGFI-A Binding Protein (EGR1 Binding Protein)

MYOCD myocardin

NES nestin

TFAP2A Transcription Factor AP-2-Alpha
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