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Lung endothelial cells comprise the pulmonary vascular bed and account for

the majority of cells in the lungs. Beyond their role in gas exchange, lung ECs

form a specialized microenvironment, or niche, with important roles in health

and disease. In early development, progenitor ECs direct alveolar development

through angiogenesis. Following birth, lung ECs are thought to maintain their

regenerative capacity despite the aging process. As such, harnessing the power

of the EC niche, specifically to promote angiogenesis and alveolar regeneration

has potential clinical applications. Here, we focus on translational research with

applications related to developmental lung diseases including pulmonary

hypoplasia and bronchopulmonary dysplasia. An overview of studies

examining the role of ECs in lung regeneration following acute lung injury is

also provided. These diseases are all characterized by significant morbidity and

mortality with limited existing therapeutics, affecting both young children and

adults.
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1 Introduction

The lung is the most vascularized organ in the human body. Pulmonary endothelial

cells (ECs) are the primary components of the vascular bed and are the interface between

the alveoli and the pulmonary circulation (Huertas et al., 2018). Lung ECs are involved in

essential functions including the delivery of oxygen, and removal of carbon dioxide and

waste. Besides these fundamental functions, pulmonary ECs form a specialized

microenvironment, referred to as the vascular niche (Mammoto and Mammoto,

2019). The role of the vascular niche in the dysregulated response to disease is

increasingly being recognized as important for therapeutics in several respiratory

diseases such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS),

pulmonary embolism, and pulmonary hypertension (Li et al., 2022).
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Within the vascular niche, vascular progenitor ECs interact

reciprocally with the alveolar epithelium through paracrine

signaling to regulate lung development and regeneration

(Hogan et al., 2014). At the embryonic stage of lung

development, mesenchymal cells express high amounts of

vascular endothelial growth factor (VEGF) (White et al.,

2007), which activates VEGF receptor 2 (VEGFR2).

Downstream signaling results in the formation of capillary

networks in conjunction with alveolar budding (Karaman

et al., 2018; Apte et al., 2019). Defective lung vascular

development contributes to diseases such as pulmonary

hypoplasia (PH), and bronchopulmonary dysplasia (BPD), the

most common chronic lung disease in infancy (Stoll et al., 2015).

After birth, alveolar capillary ECs continue to play a key role in

regeneration as demonstrated in animal models of

pneumonectomy-induced compensatory lung growth (CLG)

(Voswinckel et al., 2004; Sakurai et al., 2005). Angiogenesis

driven by the elaborate signaling within the niche remains the

key mechanism in this post-developmental lung regeneration

(Ackermann et al., 2014). Therefore, in addition to infant

diseases, targeting the vascular EC niche to promote

angiogenesis, may have potential clinical applications in the

recovery from ALI and COVID-19 ARDS which depend, in

part, on alveolar regeneration (Medford and Millar, 2006).

Harnessing the power of the vascular EC niche specifically to

promote angiogenesis and, by extension, alveolar growth and

regeneration, may have important clinical implications. In this

review, we focus on clinical applications for PH, BPD, and ALI

(Figure 1). Given limited existing therapeutics for these

conditions and their significant associated morbidity and

mortality, there is an important need for targeted therapeutics.

2 Translational applications

2.1 Pulmonary hypoplasia

PH affects neonates, particularly those born with congenital

diaphragmatic hernia (CDH). CDH occurs due to a

developmental defect in the diaphragm resulting in the

FIGURE 1
Overview of potential therapeutic targets to stimulate endothelial cell-driven angiogenesis in congenital diaphragmatic hernia (CDH),
bronchopulmonary dysplasia (BPD), and acute lung injury (ALI). Figures created with BioRender.com.
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herniation of abdominal organs to the thoracic cavity in utero. In

CDH, hypoplasia is frequently bilateral and is characterized by

decreased branching of the bronchioles and acinar hypoplasia

resulting in significant lung immaturity (Chandrasekharan et al.,

2017). As a result, even after surgical repair, patients frequently

require extensive periods of invasive cardiopulmonary support

contributing to substantial mortality (up to 50%) (Seetharamaiah

et al., 2009). Animal models of CLG following unilateral

pneumonectomy have been used to study pulmonary

hypoplastic diseases, including CDH given similarities in

molecular patterning (Hsia, 2004). Therapeutics that accelerate

lung growth by targeting the EC niche may prove promising in

improving outcomes for infants with PH.

2.1.1 Growth factors
CDH-associated PH is characterized by deficiency of VEGF

within the vascular EC niche in both humans and animal models,

particularly during alveologenesis (Chang et al., 2004; van der

Horst et al., 2011). Exogenous VEGF administration accelerates

lung growth in murine and porcine CLG models through

VEGFR2-dependent signaling in ECs and increased alveolar

units (Dao et al., 2018a; Dao et al., 2018b). In human clinical

trials, VEGF has been evaluated as a therapeutic for cardiac

ischemia, but side effects, particularly hypotension, have limited

its clinical applicability (Crafts et al., 2015). Critically, as patients

with severe CDH are often managed with cardiopulmonary

support, hypotension could be mitigated with the support of

the circuit. Clinical trials examining the role of VEGF as a

therapeutic to accelerate lung growth in PH are warranted.

Pigment epithelium-derived factor (PEDF) has anti-

angiogenic properties. Within the lung, VEGF/PEDF ratios

correlate with tissue neovascularization and angiogenesis

(Chetty et al., 2015). Roxadustat is a prolyl hydroxylase

inhibitor that stabilizes hypoxia inducible factor alpha (HIF-

α). In the murine CLG model, administration of roxadustat

accelerated lung growth, improved lung function, and

increased alveolarization through PEDF downregulation (Ko

et al., 2020). Highlighting the impact of roxadustat throughout

the niche, both ECs and alveolar epithelial cells demonstrated

decreased PEDF expression in vitro (Ko et al., 2021). Roxadustat

has already been approved by the European Commission for the

treatment of chronic kidney disease-associated anemia (Chen

et al., 2019). Future work should focus on large animal models

and other therapeutics with anti-PEDF effects.

2.1.2 Platelet-rich plasma
Platelet-rich plasma (PRP) extract contains abundant

angiopoietin-1 and multiple other angiogenic factors. Given

that in vivo angiogenesis is promoted through multiple

signaling factors, rather than a single growth factor, PRP is

hypothesized to have improved effects on organ regeneration

(Benest et al., 2006). PRP increased phosphorylation of the

angiogenic factor receptor Tie2, accelerated CLG following

murine left pneumonectomy, and increased epithelial cell

budding in vitro (Mammoto et al., 2016). Since PRP can be

generated through simple methods and preserved for extended

periods, these results suggest a potential role in improving

outcomes for neonates with PH and CDH, although more

investigation is needed.

2.1.3 Transcription factors
The Hippo signaling transducer, Yes-associated protein

(YAP) 1, binds to the TEA domain transcription factor and

plays a role in organ growth and regeneration (Ota and Sasaki,

2008). Mammoto et al. demonstrated that YAP1 stimulates

endothelial cell sprouting and alveolar epithelial

morphogenesis in vitro and promotes CLG following

unilateral pneumonectomy in mice through the angiopoietin-

Tie2 pathway in vivo (Mammoto et al., 2019a). Twist1 is a

transcription factor, that contributes to age-mediated declines

in angiogenesis (Li et al., 2014). While Twist1 decreases lung

growth in aged mice following pneumonectomy, in young ECs,

Twist1 overexpression is associated with increased EC

proliferation and migration, along with concomitant increases

in VEGFR2 expression (Hendee et al., 2021). Both YAP1 and

Twist1 also sense mechanical forces, including shear stress and

extracellular matrix (ECM) stiffness which control vascular

formation and function (Mammoto et al., 2009; Wei et al.,

2015; Mammoto et al., 2019b). YAP1 and Twist1 are thus

potential therapeutic targets for CDH-associated PH in young

patients dependent on lung regeneration, althoughmore research

is needed.

2.2 Bronchopulmonary dysplasia

BPD is a chronic lung disease of premature newborns that is

characterized by impaired development of lung parenchyma and

respiratory microvasculature (Jobe, 1999; Coalson, 2003).

Improving management of preterm neonates has resulted in

an altered disease phenotype. The impaired lung development

of ‘new’ BPD is due to multiple perinatal factors, including

infection, inflammation and disorganized repair processes

resulting in a paucity of alveoli and a dysmorphic capillary

network (Husain et al., 1998; Thibeault et al., 2000; Coalson,

2003; Appuhn et al., 2021).

The conserved pattern of histological and vascular signaling

abnormalities in new BPD led to the hypothesis that ECs and

aberrant signaling drive disease (Abman, 2001). A common

preclinical model for investigating BPD is the rodent

hyperoxia-induced lung injury model, where newborn animals

are exposed to hyperoxia to impair lung development. The lung

endothelial niche provides an upstream target for reversing the

impaired alveologenesis in BPD. Preserved angiogenesis

facilitates alveolarization and lung growth, translating to

functional improvement (Appuhn et al., 2021; Vohwinkel and
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Tuder, 2021). Preclinical investigations have evaluated several EC

niche mediators, stem cells, and nutrients.

2.2.1 Growth factors
VEGF is central to the vascular hypothesis of BPD and may

have a potential role in treatment (Abman, 2001). In hyperoxia-

challenged mice, administration of anti-angiogenic agents

impaired angiogenesis and alveolarization (Tang et al., 2012;

Wallace et al., 2018), while over-expression of VEGF attenuated

the adverse effects of hyperoxia on alveolarization (Alvira, 2016).

In another study in hyperoxia-exposed Sprague-Dawley rats,

recombinant human VEGF treatment reversed the BPD

phenotype and accelerated EC-mediated vessel growth and

alveolarization (Kunig et al., 2005). In lung development,

growth factors released from the niche coordinate epithelial

cell growth and are critical for mediating the development of

distal airspace structures (Abman, 2001). Furthermore

VEGFR2 signaling promotes differentiation of alveolar type II

epithelial cells (AT2) and stimulates secretion of surfactant,

which are critical in BPD (Cross et al., 2003). There has also

been success targeting antagonists of VEGF. In a recent study,

rats administered anti-soluble fms-like tyrosine kinase-1

monoclonal antibody, which inhibits an endogenous

antagonist to VEGF, improved radial alveolar count, vessel

density, and lung function (Wallace et al., 2018).

Hepatocyte growth factor (HGF) is a downstream mediator

of VEGF with evidence of stimulating angiogenesis and alveolar

epithelial cell proliferation in murine hyperoxia-induced BPD.

HGF specifically stimulates epithelial cell migration and

stimulates fibroblasts to accelerate healing of alveolar epithelial

cells after lung injury (Ito et al., 2014). Insulin growth factor-1

(IGF-1) is another downstream mediator of VEGF. Clinically,

decreased postnatal IGF-1 concentrations were associated with

an increased risk of BPD (Lofqvist et al., 2012). Preclinical

interventional studies in rats provided evidence that restoring

IGF-1 concentration could prevent or treat BPD (Jin et al., 2007).

This led to a phase II randomized controlled trial that found IGF-

1 infusions after preterm birth decreased severe BPD by 53% (Ley

et al., 2019).

2.2.2 Nitric oxide (NO)
NO is gaseous signaling molecule that is a direct downstream

mediator of VEGF (Ziche et al., 1997). VEGF stimulates NO

production via expression of endothelial nitric oxide synthase

(eNOS) (Seedorf et al., 2016). In both ex vivo (Muehlethaler et al.,

2008) and in vivo (Tang et al., 2004) studies, administration of

NO improved lung growth after VEGF inhibition. NO also

improved lung growth in a postnatal hyperoxia model (Lin

et al., 2005). Mechanistically, there is evidence that shear

stress increases eNOS activity and the production of NO

through PI3 kinase/Akt signaling in the niche (Kumar et al.,

2010). Sheer stress may occur in BPD secondary to alveolar

collapse at low lung ventilation volumes (Kalikkot Thekkeveedu

et al., 2017).

2.2.3 HIF
HIFs are potent upstream regulators of VEGF and

angiogenesis (Kunig et al., 2005). In an oxygen poor

environment, HIF degradation is inhibited, increasing HIF

levels increase transcription of genes involved in angiogenesis.

Prolyl hydroxylases target HIF for degradation in oxygen rich

environments, negatively regulating expression of angiogenesis-

related genes (Semenza, 2014). In a study on endotoxin-treated

premature rats, administration of prolyl hydroxylase inhibitor,

dimethyloxalylglycine or GSK360A, via the intraperitoneal

route for 2 weeks preserved lung alveolar and vascular growth

and lung function with potential applications for BPD (Hirsch

et al., 2020).

2.2.4 Mesenchymal stem cells (MSCs)
MSCs are fibroblast-like shaped cells residing in

mesodermal tissues that have pro-angiogenic, anti-

inflammatory and tissue-regenerative potential (Mobius and

Rudiger, 2016). MSCs are predominantly involved in BPD via

paracrine effects, secreting VEGF to stimulate angiogenesis

within the EC niche (Fung and Thebaud, 2014). Rodent

hyperoxia-induced lung injury models have demonstrated

the preventative effect of both intratracheal and intravenous

administration of Bone Marrow MSCs (BM-MSCs) (Aslam

et al., 2009; van Haaften et al., 2009). While most of the

work has been done in rodent models, results from a phase I

clinical trial using MSCs from umbilical cord blood in infants at

risk for BPD have been promising (Chang et al., 2014).

2.2.5 Nutrients
L-citrulline, vitamin D, and vitamin A are nutrients that act

on ECs to improve BPD in preclinical models (Ma et al., 2017).

Multiple rodent models of hyperoxia-induced BPD have

demonstrated attenuation of pulmonary injury after

administration of L-citrulline (Grisafi et al., 2012; Sopi et al.,

2012). L-citrulline acts via enhancement of VEGF and eNOS

expression and reversal of airway relaxation associated with

hyperoxia (Sopi et al., 2012). Endotoxin-exposed rats were

used to study antenatal administration of vitamin D. After

14 days, lung harvest and analysis provided evidence for

vitamin D as a pro-angiogenic mediator of embryonic ECs,

leading to growth and tube formation (Mandell et al., 2014).

Vitamin A is the only nutrient currently recommended in BPD,

after preclinical evidence in preterm lambs demonstrated its

ability to increase alveolar capillary growth through increased

VEGF expression and induction of alveolar septation (Albertine

et al., 2010).
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2.3 Lung injury

ALI and ARDS are characterized by the onset of bilateral lung

infiltrates with alveolar injury, damage to the alveolar-capillary

membrane, and leakage of protein-rich exudate resulting in

severe hypoxemia and systemic dysfunction (Fan et al., 2018).

Persistent lung inflammation and remodeling following the

initial insult are also linked to diminished pulmonary

functional outcome in long-term studies of animals and

humans (de Souza Xavier Costa et al., 2017; Carfi et al.,

2020). There are currently no effective medications targeting

the underlying pathophysiology of ALI and the long-term

response to injury.

Targeting the lung EC niche may have therapeutic

applications in ALI. Lung ECs have the potential to accelerate

repair of damaged alveoli through autocrine and paracrine

signaling to the surrounding alveolar epithelium and

mesenchyme (Li et al., 2022). Recent evidence further suggests

that the native lung endothelium retains substantial regenerative

capacity and is the source of neovascularization after influenza

injury (Zhao et al., 2020). Therefore there are several important

targets for potential therapeutics.

2.3.1 Angiogenic growth factors
VEGF has been evaluated in animal ALI models but the data

regarding its role as a therapeutic agent have been conflicting

(Medford and Millar, 2006). In the short-term, VEGF may have

pathologic effects by increasing alveolar-capillary membrane

permeability within the EC niche and contributing to exudate

formation (Tomita et al., 2020). For example, SU5416, a potent

and selective VEGFR2 inhibitor, ameliorated epithelial cell injury

and histopathological changes in a murine ALI model following

lipopolysaccharide (LPS) administration (Huang et al., 2019). In

this study, SU5416 further suppressed the immune response

within the niche by decreasing neutrophil cell population and

proinflammatory cytokines. However, VEGF may also act as a

pneumotrophic factor on alveolar epithelial cells and stimulate

endothelial-mediated angiogenesis, facilitating lung recovery and

regeneration in the long-term (Kasahara et al., 2000; Ohwada

et al., 2003). More recent studies have demonstrated a correlation

between changes in lung function with decreased vascularization,

VEGF expression, and VEGFR2 activation in the long-term

following injury (Tsikis et al., 2022). Furthermore, in human

ARDS lung samples, VEGF expression was negatively correlated

with EC apoptosis and was not dependent on changes in the

population of AT2 (Abadie et al., 2005). Overall, these data

highlight the potential role for VEGF administration in the

regenerative and recovery phases of lung injury. Agents such

as roxadustat, that can upregulate endogenous VEGF expression,

or the provision of multiple pro-angiogenic growth factors (e.g.,

PRP) have potential clinical applicability. More exploratory

studies are needed at the preclinical level to further elucidate

the role of angiogenic growth factors in the recovery from ALI.

2.3.2 Transcription factors
Transcription factors implicated in developmental

angiogenesis may be involved in reversing cellular senescence

and promoting lung regeneration after severe lung injury. In one

study, Zhao et al. demonstrated that chicken ovalbumin

upstream promoter-transcription factor 2 (COUP-TF2) drives

EC proliferation andmigration in part by enhancing the VEGFA/

VEGFR2 pathway (Zhao et al., 2020). Proinflammatory cytokines

interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) that
are strongly expressed in the vascular niche in response to injury

suppressed COUP-TF2 expression, while COUP-TF2 ablation

exacerbated influenza lung injury (Zhao et al., 2020). These

results suggest that stabilization of COUP-TF2 may represent

a therapeutic strategy to enhance recovery from ALI, however

more work is needed to further elucidate this role.

2.3.3 Specialized cells
Recent single-cell studies have revealed two distinct

populations of capillary ECs; aerocyte cells (aCap), marked by

the expression of carbonic anhydrase 4 (Car4), and general cells

(gCap) (Gillich et al., 2020; Vila Ellis et al., 2020). Aerocytes are

large cells, similar to alveolar type I epithelial cells (AT1),

specialized for gas exchange and leukocyte trafficking. AT1-

derived Vegfa expression of VEGF 188 drives the specification

of aCap ECs during alveolar development (Fidalgo et al., 2022).

The interface created between aCap and AT1 cells within the

niche may be important in ALI (Gillich et al., 2020). In one study,

Car4+ ECs were highly concentrated in the most damaged alveoli

following influenza-induced ALI and pseudo-time analysis of

single EC transcriptomes suggested that these cells are highly

proliferative following injury (Niethamer et al., 2020). Ligand-

receptor analysis confirmed crosstalk between Car4+ ECs and

other components of the vascular niche, such as AT1 cells and

with collagens, integrins, and metalloproteases in the ECM

(Niethamer et al., 2020). In adulthood, gCap cells maintain

the alveolar endothelium and may function as progenitor cells

as during lung regeneration (Gillich et al., 2020).

Harvesting these specialized ECs and further characterizing

their interactions within the niche can have therapeutic

applications. Future investigations should focus on translating

these findings to a human therapeutic. Limitations such as

unintended effects from vascular EC proliferation should also

be explored.

3 Discussion

Throughout lung development, angiogenesis occurs in

parallel with alveolarization, and ECs play an important role

in orchestrating growth by signaling to the surrounding non-

vascular parenchyma. Recent work further suggests that the EC

niche contributes to lung regeneration in adulthood after injury.

Despite this growing body of evidence, the extent of lung EC
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heterogeneity and their function in regeneration remains

incompletely understood.

Harvesting the power of the EC niche to stimulate

angiogenesis may have important clinical applications

(Figure 1). Recent studies suggest that growth factors,

including VEGF and related signaling mediators, may have

important therapeutic applications in CDH, BPD, and ALI. At

the gene level, transcription factors have been implicated in

reversing EC senescence. Finally, specialized cells such as

MSCs, and aCap/gCap cells have been discovered as pro-

angiogenic mediators in BPD and ALI animal models,

respectively.

In this review, we elected to limit detailed description of the

underlying molecular mechanisms and have instead focused on

the translational applicability for the various therapeutic targets.

Future efforts should be directed on bridging these findings to

novel therapeutics that promote angiogenesis and lung

regeneration. For example, mRNA technology can be utilized

for targeted gene expression and has important potential in the

lung where directed delivery through inhalation or nebulization

can be achieved (Bhat et al., 2021). Such research would have

clinical applications for lung diseases described in this review,

which are characterized by significant mortality and limited

therapeutics.
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