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Non-alcoholic fatty liver disease (NAFLD) has become one of the important

causes of cirrhosis and liver cancer, resulting in a huge medical burden

worldwide. Currently, effective non-invasive diagnostic indicators and drugs

for NAFLD are still lacking. With the development of metabolomics technology,

the changes in metabolites during the development of NAFLD have been

gradually revealed. Bile acid (BA) is the main endpoint of cholesterol

metabolism in the body. In addition, it also acts as a signaling factor to

regulate metabolism and inflammation in the body through the farnesyl X

receptor and G protein-coupled BA receptor. Studies have shown that BA

metabolism is associated with the development of NAFLD, but a large number

of animal and clinical studies are still needed. BA homeostasis is maintained

through multiple negative feedback loops and the enterohepatic circulation of

BA. Recently, treatment of NAFLD by interfering with BA synthesis and

metabolism has become a new research direction. Here, we review the

changes in BA metabolism and its regulatory mechanisms during the

development of NAFLD and describe the potential of studies exploring novel

non-invasive diagnostic indicators and therapeutic targets for NAFLD based on

BA metabolism.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease

(Powell et al., 2021), and the disease spectrum ranges from steatosis to non-alcoholic

steatohepatitis (NASH) to liver cirrhosis (LC) or directly to hepatocellular carcinoma

(HCC) (Huang et al., 2021). NAFLD is the fastest growing cause of HCC worldwide, and

NASH will inevitably become the most common cause of HCC in many countries in the

near future (Ioannou, 2021). In addition to the risk of adverse events in the liver such as

LC and HCC, NAFLD significantly increased the occurrence of cardiovascular events and

non-liver adverse events, such as malignancies at other sites and kidney disease (Friedman

et al., 2018; Kasper et al., 2021).
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The gold standard for NAFLD diagnosis is pathological

biopsy, but this examination is invasive. The identification of

reliable, non-invasive and accurate diagnostic indicators is very

urgently needed. Metabolomics provides new ideas for the study

of NAFLD pathophysiological mechanisms, the development of

accurate diagnostic methods, and the identification of

therapeutic targets. Metabolomics mainly detects small

metabolites in the body (molecular weight <2000 Da)
(Bauermeister et al., 2022). Changes in lipid products, amino

acids, bile acids (BAs), glutathione and other related metabolites

occur during the development of NAFLD (Kalhan et al., 2011).

The role of BA metabolism in NAFLD has attracted attention. In

recent years, continuous research on metabolomics in NAFLD

has provided evidence for metabolic alterations during the

development of NAFLD and has the potential to reveal novel

non-invasive biomarkers (Di Mauro et al., 2021) and

intervention therapies (Perakakis et al., 2020).

2 BA metabolism and regulation in
humans and mice

BA is the general name of cholanic acid, an amphipathic

steroid molecule derived from cholesterol catabolism in

hepatocyte cells, and it is divided into conjugated bile acid

(CBA) and free bile acid (FBA). BA synthesis involves two

pathways (Figure 1): the classical pathway activated by

cholesterol 7a-hydroxylase (CYP7A1), which generates

cholalic acid (CA) and chenodeoxycholic acid (CDCA), and

an alternative pathway catalyzed by sterol 27-hydroxylase

FIGURE 1
BA synthesis. The conversion of cholesterol into BA in the liver occurs through two pathways. The classical pathway of BA synthesis is initiated
by CYP7A1, while the alternative pathway is initiated by CYP27A1. CA and CDCA are two main primary BAs synthesized in the human liver that are
secreted into bile, bound to glycine or taurine and finally excreted into the intestine. In the gut, these primary BAs are subjected to bacterial bile salt
hydrolases and dehydroxylases to produce secondary BAs, including DCA, LCA, and UDCA (rarely). In mice, CA is produced by the classical
pathway, and CDCA and UDCA generated by the alternative pathway are converted to α-MCA and β-MCA and then form ω-muricholic acid (ω-MCA),
hyocholic acid (HCA), dehydrocholic acid (DHCA) and murideoxycholic acid (MDCA) through the action of the intestinal flora.
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(CYP27A1), which synthesizes CDCA (Yunxia Yang, 2020). BA

synthesized by these two pathways is called primary BA. Primary

BA is combined with taurine and glycine to form CBA, which is

secreted into the bile and further excreted into the intestine to

help emulsify dietary lipids. Under the action of intestinal

microbiota, primary BAs form secondary BAs, including

deoxycholic acid (DCA) from CA and lithocholic acid (LCA)

and ursodeoxycholic acid (UDCA) from CDCA (A. Xie et al.,

2021a). The synthesis of BA is dominated by the classical

pathway, forming primary BA (12α-OH BA) that is

hydroxylated at the carbon 12 position, while the alternative

pathway synthesizes non-12α-OH BA.

The synthesis of BA in humans and mice is very similar, but

the composition of BA and the size of the pool vary substantially.

As in humans, CA is formed in mice through the

classical pathway. In addition to CDCA, UDCA is also

synthesized through alternative pathways in mice and

further hydroxylated at the 6β position to form α-muricholic

acid (α-MCA) and β-muricholic acid (β-MCA) (Takahashi et al.,

2016; Jianing Li, 2019). Unlike in humans, UDCA is a primary

BA in mice, and the primary BA mainly binds to taurine. In

addition, changes in the gut microbiome and BA metabolism

affect the diversity of secondary BAs(Akira Honda, 2020).

BA homeostasis is maintained through multiple negative

feedback loops and the enterohepatic circulation of BA

(Figure 2). Most of the BA in the intestine returns to the liver

by transport in the small intestine through enterohepatic

circulation (Trauner et al., 2017), and a small part

(approximately 5%) is excreted through feces or reaches the

systemic circulation to participate in BA signaling outside the

intestinal-liver system and regulate metabolism, inflammation

and the intestinal flora (Shapiro et al., 2018). Hepatic synthesis of

BA is a negative feedback mechanism regulated by farnesyl X

receptor (FXR) (Choudhuri and Klaassen, 2022). Activation of

FXR by BA induces small heterodimer partner (SHP) to inhibit

the transcription of CYP7A1 and CYP8B1 genes, reducing BA

synthesis (Ding et al., 2015). CBA is secreted into bile by the bile

salt export pump (BSEP) and then excreted into the intestine. BA

enters the portal vein circulation in the gut through the apical

sodium-dependent bile acid transporter (ASBT) and is then

absorbed mainly by liver cells via (Na+)-taurocholate

cotransporting polypeptide (NTCP) (Chiang and Ferrell,

2020). FXR activation increases BA excretion by upregulating

the expression of the tubular transporter proteins BSEP and

ASBT and by inhibiting NTCP through SHP (Denson et al., 2001;

Ding et al., 2015). In enterocytes, FGF15/19 is an endocrine

hormone secreted from the terminal ileum and its levels are

regulated by both FXR and BA. FGF15/19 binds to FGF receptor

4 (FGFR4) in the liver to inhibit CYP7A1 transcription and

subsequently inhibit BA synthesis (Katafuchi and Makishima,

2022). In the gut, BA interacts with the intestinal microbiota

(Chen et al., 2019). The composition of the gut microbiota

determines the uncoupling, dehydroxylation, and oxidation of

secondary BAs and regulates BA metabolism and synthesis in an

FIGURE 2
Pathway regulating BA metabolism. Hepatic synthesis of BA is a negative feedback mechanism regulated by farnesyl X receptor (FXR). BA is
secreted into bile by BSEP and then excreted into the intestine. BA enters the portal vein circulation in the gut through ASBT and is then absorbed
mainly by the liver cells viaNTCP. BA activates FXR to induce small heterodimer partner (SHP) activity and inhibit the transcription of the CYP7A1 and
CYP8B1 genes. Meanwhile, FXR activation increases BA excretion by upregulating the expression of BSEP and ASBT. FXR activation also inhibits
NTCP via SHP. FGF15/19 binds to FGF receptor 4 (FGFR4) in the liver to inhibit CYP7A1 transcription and thus inhibit BA synthesis. BA interacts with the
intestinal flora.
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FXR-dependent manner (Sayin et al., 2013). BA regulates the

intestinal microbial composition by activating innate immunity-

related genes in the intestine (Wahlström et al., 2016).

3 The metabolic regulatory effect
of BA

Conversion to BA in the liver is one of the most important

methods to eliminate cholesterol in the body. Dysregulation of BA

synthesis andmetabolism is associated with obesity, T2DM,NAFLD

and other metabolic diseases (Guan et al., 2022). BA is not only

involved in the digestion and absorption of lipids and lipid-soluble

nutrients in the intestine but also regulates lipid and glucose

metabolism through FXR and TGR5 and inflammatory reactions

in the liver and other tissues (Molinaro et al., 2018). FXR is involved

in regulating lipid metabolism, particularly the transport, synthesis,

and utilization of TGs. BA affects FXR-mediated signaling in the gut

and liver, and higher concentrations of BA regulate lipid

homeostasis by activating FXR (Katafuchi and Makishima, 2022).

In addition to regulating BA metabolism, FGF15/19 also regulate

glycogen synthesis and cholesterol catabolism (Kim et al., 2020). The

gut microbiota has been shown to affect glucose and lipid

metabolism by regulating the BA signaling pathway (Wang et al.,

2022). Alternative pathways are increasingly being shown to play

key roles in regulating lipids, cholesterol, carbohydrates, and energy

homeostasis. Activation of alternative synthetic pathways improves

metabolism (Jia et al., 2021).

4 The role of BAmetabolism in NAFLD

4.1 Changes in BA levels in individuals with
NAFLD/NASH

The occurrence of NAFLD is clearly associated with BA

metabolism, but the specific changes have not been conclusively

determined. Most studies suggest that BA levels are elevated in the

blood and liver of NAFLD patients. Some studies also showed that

NAFLD patients did not exhibit a difference in total bile acid (TBA)

levels comparedwith healthy people, but the BA composition changed

substantially (Caussy et al., 2019). BA metabolism is associated with

insulin resistance (Haeusler et al., 2013), but dysregulated BA

metabolism in individuals with NAFLD is independent of obesity

and the T2DM status, with dysregulation being more prominent in

non-obese NAFLD patients (Jung et al., 2021). NASH patients have

significantly increased TBA and concentrations of both primary BAs

and secondary BAs (Ferslew et al., 2015; Jiao et al., 2018; Kalhan et al.,

2011). BA levels are substantially changed in the hepatic-intestinal

circulation in NASH patients, the effects of which can be corrected

with diet (Gillard et al., 2022).

The role of alternative pathway activation in regulating

metabolism is constantly being recognized, and the increased

ratio of 12-OH-BA/non-12-OH-BA promotes metabolic disease

(Sang et al., 2021). Studies (G. Xie et al., 2021b) have shown that

liver fibrosis in NASH patients is associated with significantly

elevated liver levels of 12α-OH BAs, such as taurine deoxycholate

(TDCA) and glucose deoxycholate (GDCA). 12α-OH BA

significantly promotes liver fibrosis through TGR5-mediated

p38MAPK and ERK1/2 signaling. Additionally, plasma levels of

the 7-keto-BAs are dose-dependently altered and associated with

NASH and balloon-like changes, and the 7-keto-DCA levels were

also shown to be associated with advanced stages of liver fibrosis

(Nimer et al., 2021).

Abnormal BA metabolism during the development of NAFLD

is regulated by complex pathways. Changes in BA metabolizing

enzymes and transporter expression that occur with the progression

of NASH-related liver fibrosis in mouse NAFLD models have been

shown to cause increased TBA concentrations in plasma (Suga et al.,

2019). Hepatic expression of the BA transporter is downregulated

due to inflammation, which slows BA enterohepatic circulation and

leads to increased BA levels in the serum and liver of patients with

NASH (Tanaka et al., 2012; Phillip B Hylemon, 2021). Levels of the

FXR antagonist DCA are increased in individuals with NAFLD,

while levels of the agonist CDCA are decreased, FXR is inhibited,

and BA signaling is inhibited (Jiao et al., 2018). Instead, inhibition of

BA reabsorption increases fecal BA excretion and the mRNA

expression of genes related to BA synthesis in the liver,

increasing de novo BA synthesis from cholesterol and

ameliorating NAFLD induced by a high-fat diet (Rao et al., 2016).

4.2 Roles of the intestinal flora in the
development of NAFLD and BA
metabolism

NAFLD patients have abnormalities in the intestinal flora

and the expression of genes related to BA metabolism. NAFLD

patients exhibit a lower bacterial diversity, and the abundance of

Bacteroides was mainly decreased in NAFLD patients (Jiao et al.,

2021). Even the maternal dietary structure affects BAmetabolism

in offspring. When perinatal mice were fed a high-salt diet, their

offspring showed greater changes in fecal microbial β-diversity,
which further promoted a BA imbalance, increased intestinal

barrier permeability and reduced hepatic FXR expression, thus

promoting NAFLD (Guo et al., 2021). Abnormal interactions of

the microbiome, BA and FXR were involved in the occurrence of

NAFLD.

4.3 The role of BA metabolism in NAFLD-
LC/HCC

Studies examining BA metabolism in NASH-LC/HCC are

currently relatively limited. The results from mouse and in vitro

studies have shown that TDCA and GDCA effectively activate
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hepatic stellate cells and promote LC (G. Xie et al., 2021b). A

clinical study showed that serum levels of the primary CBAs G(T)

CA and G(T)CDCA were significantly increased in NASH-LC

patients compared with NASH patients without LC, which was

independent of the occurrence of HCC (Sydor et al., 2020).

The metabolic disorders induced by HCC are mainly related

to primary BA biosynthesis. Abnormal accumulation of BA

distorts macrophage polarization and generates an

immunosuppressive tumor microenvironment (Sun et al.,

2022). Few studies have assessed the role of BA in HCC after

NAFLD. A potential transition in the alternative BA synthesis

pathway mediated by increased CYP7B1 mRNA and protein

expression was observed in subjects with NASH(Lake et al.,

2013), which is presumed to be a self-protective mechanism

in the liver, but its products may play a role in NASH-HCC(Jia

et al., 2021). Cholesterol transport to mitochondria by

steroidogenic acute regulatory protein 1 (STARD1) is an

essential component of an alternative pathway for BA

production. STARD1 stimulates BA production through the

mitochondrial alternative pathway, and its products also play

a key role in NASH-HCC(Conde De La Rosa et al., 2021). UDCA

and obeticholic acid ameliorate HCC(Luo et al., 2022), providing

new ideas for the treatment of HCC.

5 Analysis of NAFLD treatments
related to BA metabolism

The treatment of NAFLD is still mainly based on lifestyle

adjustments, and an effective drug is not available. Drugs that

regulate BA metabolism have been used in the clinic to

ameliorate hyperlipidemia (Lee et al., 2022). Recently,

approaches interfering with BA synthesis and metabolism

have become a new research direction for the treatment of

NAFLD (Trauner and Fuchs, 2021) (Table 1). Inhibition of

ileal BA uptake promotes BA synthesis, reduce hepatic

triglyceride (TG) and cholesterol contents, and prevents

NAFLD in mice fed a high-fat diet (Rao et al., 2016). Animal

experiments have shown that CYP8B1 knockdown leads to

resistance to weight gain and hepatic steatosis caused by a

Western diet (Bertaggia et al., 2017).

FXR agonists can reduce lipotoxicity by promoting

mitochondrial β oxidation, reducing de novo adipogenesis,

and stimulating cholesterol excretion. Application of the FXR

agonist GSK2324 prevents NAFLD by selectively reducing BA

synthesis and reducing lipid absorption (Clifford et al., 2021).

Obeticholic acid, an FXR activator, has been shown to improve

hepatic steatosis and reduce liver inflammation and fibrosis

(Younossi et al., 2019). BA sequestrant (BAS), which binds

BA in the intestine and promotes its fecal excretion, has long

been used in the clinic to reduce LDL cholesterol levels and has

now been shown in animal experiments to reverse liver damage

and prevent NAFLD progression in mice fed a Western diet

(Takahashi et al., 2020). In addition, traditional Chinese

medicine (TCM) and TCM components have also been shown

to attenuate NAFLD by regulating BA metabolism. Hypericin, a

common ingredient of TCM with antioxidant-protective,

hepatoprotective and anti-inflammatory effects, has been

shown to improve the status of NAFLD by regulating

cholesterol and BA metabolism (Wang et al., 2021).

TABLE 1 Drugs and their effects on NAFLD treatment by regulating BA.

Drug category Medicines Function

FXR agonist GSK2324, obeticholic acid Reduced BA synthesis

BAS Colesevelam, cholestyramine Increased BA excretion

BA transporter protein inhibitors Elobixibat Lowering serum BA levels, increasing fecal BA concentrations and improving
microflora dysregulation

Gut microflora and its modulators Flaxseed powder Activation of the intestinal FXR-FGF15 and TGR5-NF-κB pathways and regulation
of BA metabolism

Biambiguous triple capsules Effects on BA metabolism

Akkermansia muciniphila and
quercetin

Promotion of the hepatic synthesis and transport of BA

L. rhamnosus LGG Inhibition of de novo BA synthesis and increased BA excretion

TCM and traditional Chinese medicine
ingredients

Glycyrrhizin Restoration of BA homeostasis

Inhibition of inflammatory injury

Hyperin Regulation of BA metabolism and excretion

Dihydroflavonoids Regulation of BA metabolism
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Glycyrrhizin has been shown to regulate BA metabolism and

subsequently improve NASH by restoring hepatic FXR inhibition

(Yan et al., 2018). As a bioactive component of a traditional

Chinese herbal medicine, dihydroflavonoids were shown to

significantly reduce CYP7A1 expression, suggesting that

they ameliorate NAFLD by regulating BA metabolism (Li

et al., 2022).

Interfering with the composition of intestinal

microorganisms to regulate the composition of BA, liver

metabolism and inflammation has also become a new

direction for the treatment of NAFLD. Supplementation with

Akkermansia muciniphila and quercetin regulates the intestinal

microbiota of mice, promotes the liver synthesis and transport of

BA, and attenuates NAFLD (Juárez-Fernández et al., 2021). The

consumption of biambiguous triple capsules has been shown to

affect BAmetabolism and reduce liver enzyme levels (Zhou et al.,

2021). The consumption of flaxseed powder has been shown to

regulate the intestinal microbiota and activate intestinal FXR-

FGF15 and TGR5-NF-κB pathways to regulate BA metabolism

and improve NASH(Yang et al., 2021). An ileal bile acid

transporter inhibitor (IBATi) reduces serum BA levels and

increase fecal BA concentrations. IBATi reduces

proinflammatory factor expression in the liver and attenuates

hepatic steatosis, inflammation and fibrosis by improving

intestinal dysbiosis in NAFLD model mice (Matsui et al.,

2021; Yamauchi et al., 2021). An increasing number of drugs

that interfere with BA metabolism and BA-related signaling

pathways have been suggested to treat metabolism-related

diseases, and more studies are needed to clarify their effects

and safety in the future.

6 Prospects and summary

In conclusion, NAFLD imposes a huge medical burden

worldwide. BA plays an important role in regulating

metabolism. The role of abnormal BA metabolism in the

occurrence and development of NAFLD and its associated

LC/HCC cannot be ignored. BA levels are increased in the

blood of NAFLD/NASH patients, generally including both

CBA and FBA, but different research results have also been

reported. Few studies have reported changes in BAmetabolism in

the liver of NAFLD/NASH patients, and the results are not

completely consistent. Therefore, changes in BA metabolism

during the development of NAFLD/NASH and its role in the

disease still remain to be explored.

A large number of patients are diagnosed with NAFLD, and

the identification of patients who can easily develop LC or HCC

is very important. BA has good utility in assessing NAFLD

progression in patients with T2DM (Wu et al., 2021), but BA

is rarely studied in diagnostic models of NAFLD. BA profiles

show significant differences in patients with chronic liver diseases

with different causes (Sang et al., 2021), suggesting the clinical

potential of BA profiles in the differentiation of liver injury types.

Retrospective studies have also shown that primary BA is

associated with future liver-related events in individuals with

NAFLD (Wegermann et al., 2021), suggesting the potential of BA

metabolism for predicting the NAFLD prognosis. Further studies

are needed to determine whether the future NAFLD severity can

be assessed by detecting BA metabolomic indicators. BA

metabolism changes in patients with NAFLD, and correcting

this change may improve NAFLD. Further studies are needed to

assess whether NAFLD can be treated by intervening in BA

metabolism in clinical practice.
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