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The importance of circadian rhythms in human health and disease calls for a
thorough understanding of the underlying molecular machinery, including its key
components, the flavin adenine dinucleotide (FAD)-containing flavoproteins
cryptochrome 1 and 2. Contrary to their Drosophila counterparts, mammalian
cryptochromes are direct suppressors of circadian transcription and act
independently of light. Light-independence poses the question regarding the role
of the cofactor FAD inmammalian cryptochromes. The weak binding of the cofactor
in vitro argues against its relevance and might be a functionless evolutionary
remnant. From the other side, the FAD-binding pocket constitutes the part of
mammalian cryptochromes directly related to their ubiquitylation by the ubiquitin
ligase Fbxl3 and is the target for protein-stabilizing small molecules. Increased
supplies of FAD stabilize cryptochromes in cell culture, and the depletion of the
FAD precursor riboflavin with simultaneous knock-down of riboflavin kinase affects
the expression of circadian genes in mice. This review presents the classical and
more recent studies in the field, which help to comprehend the role of FAD for the
stability and function of mammalian cryptochromes.
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1 Introduction

The Latin expression circa diem translates “about a day” and stands for the 24-h periodicity.
Circadian rhythms entail diurnal and nocturnal variants, which refer to organisms active during
daylight or at night, respectively. In constant darkness, both diurnal and nocturnal animals
maintain 24-h periodicity in physiology and behavior, which points to the endogenous
mechanisms of rhythmicity (Allada and Bass, 2021). Disruption of circadian rhythms have
been associated with several pathologies and there are considerable efforts underway to exploit
circadian mechanisms for diagnosis, treatment, and prevention of diseases (Kramer et al., 2022).

Circadian rhythms are driven by intracellular molecular clocks that operate as
transcription-translation feedback loops. The protein components of these loops
cooperate to generate cyclic changes in their own abundance and activity (Patke et al.,
2020). In humans, the main clock entails the heterodimeric transcription factor Clock/
Bmal1 and its inhibitors period (Per1, Per2, Per3) and cryptochrome (Cry1, Cry2). Clock/
Bmal1 binds to E-box-containing gene regulatory sequences to drive transcription of
circadian genes, including those of its own inhibitors Per and Cry. The inhibitors
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translocate into the nucleus and form a 1.9-MDa repressor
assembly with Clock/Bmal1 to suppress the transcription (Aryal
et al., 2017). In addition to the main clock, mammals have
additional protein components that contribute to circadian
cycling, for example, the nuclear receptor Rev-Erb and the
retinoic acid-related orphan receptor α (RORα), which compete
for binding to the ROR response elements in promoters and
enhancers of target genes (Preitner et al., 2002; Sato et al., 2004).

2 Cryptochromes can act as flavin-
dependent photoreceptors

Cryptochromes are the main transcriptional repressors of
Clock/Bmal1. They constitute one of the three classes of blue
light-sensing flavoproteins and are found in bacteria, fungi,
plants and animals. Another class is the light-oxygen-voltage
(LOV) domains typically found in fungi and plants (Krauss
et al., 2009). Most recently discovered are the blue light sensing
using FAD (BLUF) domains primarily found in bacteria (Gomelsky
and Klug, 2002). Generally speaking, light induces chemical
changes of flavin cofactors in these photoreceptors, that in turn
lead to conformational rearrangement of proteins, which is
responsible for the downstream effects upon light stimulation.
There has been much progress in the mechanistic understanding
of the light sensing by photoreceptors, including that by
flavoproteins (Kottke et al., 2018).

It is commonly accepted that cryptochromes are evolutionary
related to DNA photolyases (Miles et al., 2020; Deppisch et al.,
2022). Both protein groups share structural homology and thus
are usually considered as one cryptochrome/photolyase family.
DNA-repairing photolyases transfer light energy to the fully
reduced flavin cofactor which then donates electrons to break
cross-linked pyrimidine dimers (Kao et al., 2005). Cryptochromes
show very distinct functionalities, most famously operating in the
circadian clock machinery in plants and animals. Initially, they
were classified into three groups: CRY-DASH, plant
cryptochromes, and animal cryptochromes (Lin and Todo,
2005). DASH stands for Drosophila, Arabidopsis, Synechocystis,
Human to indicate that the Arabidopsis and Synechocystis
photolyases of the branch are more related to Drosophila and
human cryptochromes than to bacterial photolyases (Brudler
et al., 2003). Yet, CRY-DASH members do show DNA repair
activity (Selby and Sancar, 2006; Tagua et al., 2015; Navarro et al.,
2020). The evolutionary relationship between different types of
cryptochromes and photolyases has been recently reanalyzed
(Ozturk, 2017, 2022).

All cryptochromes feature the conserved photolyase homology
region (PHR) and the C-terminal extension (CCT). The CCT varies
between different cryptochromes in its sequence and length and
contributes to the initiation of cellular responses following
excitation of FAD (Yang et al., 2000). Oxidized FAD bound to
PHR represents the resting cryptochrome state. Upon light
stimulation, electron transfer from tryptophan to flavin occurs
(Kottke et al., 2018). The reduction of flavin results in an anionic
semiquinone. Alternatively, if protonation from an adjacent amino
acid takes place simultaneously, the reduction produces a neutral
semiquinone flavin. Flavin reduction leads to conformational
changes, release of the CCT and other rearrangements of the

cryptochrome structure cumulatively ushering downstream
effects of the light stimulus (Ozturk et al., 2014; Ganguly et al.,
2016; Berntsson et al., 2019). Computational modelling predicts an
Arg-Asp salt bridge acting as an allosteric switch that in turn is
regulated by the redox state of FAD (Wang et al., 2021).

3 Type II animal cytochromeswork light-
independently

Animal cryptochromes can be subdivided in two types
according to their light dependence. Type I are light-responsive
cryptochromes, as exemplified by the Drosophila Cry (dCry).
Contrary to mammals, dCry is not a part of the circadian
transcription inhibitory complex. Tim/Per dimer is responsible
for the inhibition in fruit flies. Light-induced changes enable dCry
to interact with Tim and mediate its ubiquitylation by the ubiquitin
ligase Jet (Koh et al., 2006). Without Tim, Per becomes a target for
the ubiquitin ligase Slimb and is degraded as well (Grima et al.,
2002; Hw et al., 2002). The loss of Tim and Per starts a new
circadian cycle. Noteworthy, degradation of Tim exposes dCry and
leads to its ubiquitylation and degradation (Peschel et al., 2009).
Different affinities of Tim and dCry to the Jet ligase was proposed
to underlie their sequential degradation.

Type II are light-nonresponsive cryptochromes, such as human
Cry1 and Cry2. All analyzed vertebrates, among others zebrafish,
clawed frog, and chicken, possess Type II cryptochromes. (Chaves
et al., 2011b). In contrast to Drosophila-type proteins, type II
chromophores act as direct and light-independent repressors of
the circadian transcription complex (Griffin et al., 1999).
Surprisingly, mice lacking Cry1 or Cry2 showed accelerated and
delayed free-running periodicity of locomotor activity, respectively
(van der Horst et al., 1999). One possible explanation of this
dichotomy is the competition of the stronger suppressor
Cry1 and the weaker suppressor Cry2 for a rate-limiting
interaction with Per, which then determines the nuclear
translocation and inhibitory activity of Per (Hirota et al., 2012).
The individual knockouts obviously lack this competition. On the
other hand, the double knock-out manifested immediate and
complete loss of circadian rhythmicity when placed in constant
darkness, which proved the central role of cryptochromes in the
mammalian circadian machinery. Unexpectedly, the double-
mutant mice retained the ability to induce the expression of
Per1 and Per2 upon a brief light stimulus (Okamura et al.,
1999). The opsin-like protein melanopsin in retinal ganglion
cells was later proposed as the circadian photoreceptor
responsible for the above effect (Lucas et al., 2003; Semo et al.,
2003).

It was shown that mammalian Cry1 can inhibit Clock/Bmal1-
driven transcription without dissociating the complex from DNA
(“blocking”-type repression) (Ye et al., 2014). Per2 alone had no
effect, however, in the presence of cryptochrome, Per entered the
nucleus and was able to displace Clock/Bmal1 from the promoter
(“displacement”-type repression). Crystal structures showed how Cry
docks on Clock and suggested that Per can influence the binding of
Cry to the transcription complex (Nangle et al., 2014; Michael et al.,
2017). A further study provide functional evidence that Per can indeed
enhance interaction of cryptochrome with Clock/Bmal1 (Rosensweig
et al., 2018).
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4 Mammalian cryptochromes associate
with FAD very weakly

During their biogenesis, flavoproteins need to incorporate flavin
cofactors to acquire the final structural and functional maturity.
Mammals cannot synthesize riboflavin, the precursor of flavin
mononucleotide (FMN) and flavin adenine dinucleotide (FAD)
cofactors, and thus rely on its uptake from external sources. Three
mammalian transporters of riboflavin have been identified, Slc52A1-3
(Yonezawa and Inui, 2013). Accordingly, FAD must be deadenylated
to FMN and FMN further dephosphorylated to riboflavin, before
cellular uptake of riboflavin can take place. Intracellularly, riboflavin is
then transformed back to FMN and FAD by the riboflavin kinase (Rfk)
and the flavin adenine dinucleotide synthetase (Flad1), respectively.

The association of flavin cofactors to apoenzymes in vivo is still
insufficiently understood. Most mammalian cells do not have free
flavin reserves, which means that flavoprotein synthesis and
maturation must be coordinated with the supplies of the flavin
cofactors. It is generally assumed that the cofactors bind to
apoproteins in a non-assisted manner and that the process is
driven solely by the high affinity of the interaction. Yet, there are
indications that the association of flavin cofactors with apoproteins
might be more complicated. For example, the affinity of Flad1 to its
product FAD is very high, which suggests that Flad1 might function as
an FAD chaperone that can only directly deliver FAD to the client
flavoproteins (Torchetti et al., 2011; Giancaspero et al., 2015).
Furthermore, the extent of cofactor-enzyme association may
change depending on the cellular status or interaction partners
present in flavoprotein complexes (Hashida et al., 2004;
Yazdanpanah et al., 2009). More research is needed to understand
the dynamics of flavin associations (Schnerwitzki and Vabulas, 2022).

The FAD-binding pocked of cryptochromes lies in the conserved
photolyase homology region (PHR). Because of the similarity of the
domain, it might appear surprising that animal Type I cryptochromes
can be purified with stoichiometric amounts of FAD, while Type II
(mammalian) cryptochromes isolated from different sources contain
only residual amounts of the cofactor (Oztürk et al., 2007; Kutta et al.,
2017). It is tempting to correlate the absence of the light-dependent
function of mammalian cryptochromes with their weak association
with FAD. The association constant (Kd) was measured to be 16 μM
and 68 μM for human Cry1 and Cry2, respectively (Kutta et al., 2017).
Intracellular flavin concentrations vary somewhat between different
cells, yet remain in the lower micromolar range (Hühner et al., 2015).
In view of these levels, the determined Kd’s imply only partial
saturation of human cryptochromes with FAD in the cell. From
the other side, local subcellular concentrations of metabolites can
differ significantly from those measured in bulk. For example, a
dynamic pool of FAD in the nucleus was described (Giancaspero
et al., 2013). Because of the weak affinity to cryptochromes, changes of
FAD concentration might be relevant for their stability and function.

5 Fbxl3 mediates degradation of
cryptochromes

The mechanism of cellular degradation of mammalian
cryptochromes was discovered in two independent genetic screens
in mice (Godinho et al., 2007; Siepka et al., 2007). Both used the
N-ethyl-N-nitrosurea (ENU) mutagenesis aiming to identify

molecular determinants of circadian wheel-running activity. In one
study the respective mutant was named “after hours” (Afh) (Godinho
et al., 2007). A single locus of Afh linkage had been found on mouse
chromosome 14, which was further refined to a gene-poor region
containing only 25 annotated genes. Scanning and sequencing of the
candidates detected a point mutation in an F-box gene, Fbxl3. The
mutation results in the substitution C358S. A second study identified
another mutant and named it “overtime” (Ovtm) (Siepka et al., 2007).
AlsoOvtm turned out to be a non-synonymous mutation in Fbxl3, this
time resulting in the protein variant I364T. The isoleucine 364 is
highly conserved in vertebrate Fbxl3 and in mouse paralogue Fbxl21.

Fbxl3 belongs to the family of so-called F-box proteins that owe
their name to the eponymous domain originally found in the cyclin F
(Bai et al., 1996). Fbxl3 is a member of the F-box protein subfamily
characterized by the presence of leucine reach repeats which are often
involved in protein-protein interactions (Jin et al., 2004). As one of
four subunits in the E3 ubiquitin ligase complex SCF (Skp1-Cul1-F-
box protein), F-box proteins are responsible for substrate recognition.
Until now, around 70 F-box proteins have been identified in
mammals. The E3 ligase complex containing Fbxl3 is called
SCFFbxl3 and was found to recognize and ubiquitylate Cry1 and
Cry2 (Busino et al., 2007; Siepka et al., 2007). The interaction
between Fbxl3 and cryptochromes was discovered by means of
mass spectrometry analysis of the pulldowns of the overexpressed
Fbxl3 in HeLa cells and was verified biochemically (Busino et al.,
2007). The specificity of binding was tested using nine other F-box
proteins and six other proteins from the cellular clock machinery,
including Per1 and Per2. Importantly, the Afh variant of Fbxl3 failed
to interact with Cry1 and showed reduced interaction with and in vitro
ubiquitylation of Cry2. Similarly, the Ovtm variant was compared to
wild-type Fbxl3 (Siepka et al., 2007). In this latter setup, the interaction
of the variant with cryptochromes was comparable, however, the
variant induced less degradation of Cry1 compared to the wild-
type Fbxl3. Of note, the stability of Ovtm itself seemed to be
affected by the mutation. Thus, both the decreased capacity of
Ovtm to ubiquitylate cryptochromes and the lower availability of
the mutant ubiquitin ligase contribute to the observed circadian
disturbances in the mutant mice.

6 Fbxl21 mediates degradation of
cryptochromes in the cytosol

The complexity of cellular degradation of cryptochromes was
uncovered by two further genetic studies that identified an
additional ubiquitin ligase, Fbxl21, which interferes with the Fbxl3-
driven degradation of Cry in the nucleus. One study was another ENU
screen in mice (Yoo et al., 2013). The authors isolated and cloned the
circadian mutant “past-time” (Psttm) which shortens circadian period
and destabilizes cryptochromes during the circadian cycle. The linkage
locus contained 167 open reading frames with no known circadian
clock genes. Yet, it contained Fbxl21, a paralogue of Fbxl3, that turned
out to bear the G149E mutation, which creates a charged protrusion
and thus is expected to destabilize the LRR domain of the protein.
When compared to Fbxl3, Fbxl21 interacted with Cry more strongly,
at the same time it was less efficient in the ubiquitylation activity. One
of the reasons for this apparent discrepancy might be the number of
lysine targets of the different ubiquitin ligases: many lysine residues in
the case of Fbxl3 vs. only one preferred lysine (K11) in the case of
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Fbxl21. Also the second study documented weaker ubiquitylation of
cryptochromes by Fbxl21 (Hirano et al., 2013). Here, the authors
prepared and compared Fbxl3 and Fbxl21 knock-out mice. The
antagonistic interplay of both ligases became evident in the double
knock-out: the combined deficiency showed alleviation of the
circadian period-lengthening phenotype seen in the single knock-
out of Fbxl3. Furthermore, both studies revealed preferentially
different localization of the ligases in the cell: Fbxl3 was found in
the nucleus while Fbxl21 acted mainly in the cytosol. Strong binding
but weak ubiquitylation of Cry by Fbxl21 in the cytosol can be seen as a
form of sequestration and protection of Cry from its strong
ubiquitylation by Fbxl3 in the nucleus.

7 Ubiquitylation of cryptochromes
requires FAD-free proteins

In plant and insect cryptochromes and related photolyases, FAD
cofactor is buried deep inside the cofactor pocket in crystal structures.
The structure of murine FAD-bound cryptochrome 2 came as a
surprise, because it revealed quite a different arrangement (Xing
et al., 2013). Noteworthy, the structure was determined by
reconstituting purified apo-Cry with high concentrations of FAD.
The cofactor was only partially embedded in murine Cry2 and exposed
one side of its adenosine diphosphate to the solvent. The exposed
conformation fits well with the low apparent FAD dissociation
constant and explains the loss of the cofactor while purifying
mammalian cryptochromes from endogenous sources or upon
heterologous expression.

A remarkable molecular configuration was unveiled by the atomic
structure of the complex between the nearly full-length version of
murine Cry2 and the Fbxl3-Skp1 dimer (Xing et al., 2013). It turned
out that the last residue of the Fbxl3 tail, tryptophan 428, reaches the

core of the FAD-binding pocket and occupies the cofactor site. To
enter the pocket, the Fbxl3 tail stacks its P426 against W310 of
Cry2 and additionally flips H373 and T427 of Cry2. In the FAD-
bound state, these residues directly interact with the cofactor (Xing
et al., 2013). The structure suggested that FAD and Fbxl3 compete for
binding to cryptochrome (Figure 1). Indeed, applying FAD in vitro,
the authors were able to release Fbxl3 from the complex. In the case of
the murine Cry1, there are no structural data regarding its interaction
with Fbxl3. Nevertheless, careful analyses of the crystal structure of the
unliganded Cry1 suggested that association of Fbxl3 across the FAD-
binding pocket was possible as well (Czarna et al., 2013).

It remains to be proven that the paralogue Fbxl21 engages in a
similar interaction with the FAD-binding pocket of cryptochromes.
The C-terminal tails of the human and murine Fbxl21 have proline
and tryptophan at the identical positions as in Fbxl3, the structural
features that would allow Fbxl21to compete with FAD for the
cofactor-binding pocket. Of note, the overall strength of the
interaction between Fbxl21 and Cry was reported to be higher
when compared to the Fbxl3-Cry interaction according to
pulldown experiments (Yoo et al., 2013). Different reasons might
underlie the increased binding affinity in cellular extracts, such as
additional interactors and posttranslational modifications. More
structural data is required to understand the Cry-Fbxl21 interaction
and its dependence on FAD.

In contrast to Fbxl3 binding, the interaction of murine Cry1 and
Per2 was found to leave the FAD-binding pocket accessible and
unoccupied (Schmalen et al., 2014). Detailed inspection of the
conformation of individual residues in the pocket allowed the
authors to propose a slightly negative effect of Per2 association on
the binding of FAD. Yet the presence or absence of FAD in the
complex could not be inferred unambiguously based on the available
structural evidence alone. On the other hand, the data allowed the
authors to conclude that the Per2 and Fbxl3 association with Cry1 is

FIGURE 1
A stereoview of murine cryptochrome 2 with bound FAD (yellow) (PDB ID code 4I6G). Ten C-terminal amino acids of the ubiquitin ligase Fbxl3 were
superimposed from the Cry2-Fbxl3-Skp1 complex structure (PDB ID code 4I6J) and are colored in red.
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mutually exclusive, which suggests that Per2 stabilizes the
cryptochrome by shielding it from ubiquitylation (Schmalen et al.,
2014).

8 FAD pocket-binding compounds
protect cryptochromes from
degradation

The docking of ubiquitin ligase SCFFbxl3 onto the FAD-binding
pocket of cryptochromes suggests a way to protect them from
ubiquitylation by small molecule competitors targeted to that
protein site. Actually, the proof of this principle had been
published even before the structure of Cry2-Fbxl3-Skp1 was solved.
Specifically, workers screened a library of ca. 60000 compounds for
effects on Bma1l-dLuc reporter and identified three carbazole
derivatives that lengthened the period of luminescence rhythms
(Hirota et al., 2012). One of them, KL001, was used to prepare an
affinity agarose that enabled purification and identification of its
binders Cry1, Cry2 and to a lower extent Per1. FAD cofactor,
when used at low millimolar concentrations, inhibited
Cry1 interaction with the affinity resin. KL001 inhibited
ubiquitylation of Cry1 in vitro indicating an impaired interaction
of cryptochrome with the ubiquitin ligase Fbxl3.

Since FAD was able to compete with both Fbxl3 and KL001, it
seemed plausible that KL001 docks onto the FAD-binding pocket of
cryptochromes. This assumption was confirmed when the crystal
structure of Cry2 in complex with KL001 was solved (Nangle et al.,
2013). The structure revealed the chimeric nature of KL001: its
carbazole ring bound similarly to FAD, the other half imitated

structurally the tail of the ubiquitin ligase Fbxl3 (Figure 2). The
authors observed a noteworthy structural sensitivity of the
phosphate-binding loop in the FAD-binding pocket to a tyrosine
residue of a neighbour protein in the crystal. This sensitivity together
with the loop sequence conservation prompted the authors to suggest
a possible role of protein-protein interactions in modulating the
affinity of Cry to FAD (Nangle et al., 2013).

Meanwhile, several other small molecules have been developed
and characterized, which bind to the FAD pocket and act in an
isoform-nonselective and isoform-selective manner. In addition to
KL001-like activators, small molecule inhibitors of cryptochromes
have been established as well, such as KS15 (Chun et al., 2014),
however, there are no structural data regarding their mode of
association with cryptochromes yet. In contrast, binding of a
number of activators has been successfully analysed by means of
X-ray crystallography. The isoform selectivity of some of them, such as
KL101, KL201, and TH301 (Miller et al., 2020b; Miller et al., 2020a), is
remarkable given the high sequence and structural similarity of the
FAD-binding pocket in the isoforms of cryptochromes. A partial
explanation of this selectivity is the requirement of the C-terminal
tail for the interaction (Miller et al., 2020b). As opposed to the
similarity of the pockets, the disordered C-terminal tails of
cryptochromes show high sequence divergence, which might be the
structural basis for isoform-specific effects of the activators. Indeed,
swapping of the cryptochrome tails abolished the binding of
KL101 and TH301 to Cry1 and Cry2, respectively. An additional
determinant of the isoform-specificity of the activator compounds was
identified in a recent study that described conformational isomerism
of the gatekeeper tryptophan in the FAD-binding pockets of Cry1 and
Cry2 (Miller et al., 2021). As expected, the isoform-nonselective

FIGURE 2
A stereoview of murine cryptochrome 2 with bound KL001 (red) (PDB ID code 4MLP). The position of FAD (yellow) in the FAD-binding pocket was
superimposed from the Cry2-FAD structure (PDB ID code 4I6G).
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compound KL001 could accommodate with both conformations of
the gatekeeper tryptophan, the Cry1- and Cry2-specific, without
apparent steric clashes.

9 FAD supplementation increases
intracellular levels of cryptochromes

An early indication of the in vivo importance of FAD for cryptochrome
function came from the overexpression of Potorous tridactylus photolyase
in Cry1/Cry2-double knockout mice (Chaves et al., 2011a). The photolyase
could act as a true cryptochrome and restored the molecular oscillator in
the liver of these mice. Recently, it was shown that a missense mutation
(Ala260 to Thr) is responsible for familial advanced sleep phase (FASP), a
heritable human sleep disorder (Hirano et al., 2016). The Ala260 resides in
the FAD binding pocket, which suggested that FAD binding might
modulate cryptochrome function in vivo. Indeed, FAD supplementation
of cell culture medium increased steady-state levels of transfected Cry1 and
Cry2 in 293T cells (Hirano et al., 2017). Similarly, endogenous
cryptochromes could be stabilized with additional FAD in NIH
3T3 cells, albeit more weakly, when measured in a cycloheximide chase
assay which quantifies protein degradation rates in vivo. Very high
concentrations of FAD were required in those experiments, which
might be due to the fact that the added FAD must be converted to
riboflavin first to be taken up by cells. As mentioned earlier, intracellular
riboflavin is then phosphorylated back to FMN by riboflavin kinase (Rfk)
followed by adenylation of FMN to FAD by flavin adenine dinucleotide
synthetase 1 (Flad1). In support of a role for FAD in cryptochrome stability,
transient and stable knockdowns of Rfk inNIH3T3 cells reduced the steady
state levels and stability of transfected and endogenous cryptochromes
(Hirano et al., 2017). The authors went on to verify these effects using
riboflavin-free diet and siRNAagainst Rfk inmice. Interestingly, a circadian
fluctuation of nuclear FAD levels in mouse liver was detected, which is in
linewith the role of the cofactor in fostering cryptochromes structurally and
functionally. The fluctuation was observed under a light-dark cycle and the
mechanism of its generation remains to be determined.

10 Conclusion

Over the last years, many new structural and functional details of
animal cytochromes have been uncovered, which allows us to
appreciate the complexity and beauty of the molecular clocks that
drive our circadian cycles. However, the question regarding the role of
the cofactor FAD in Type II cryptochromes remains open. Currently,
there is not much direct evidence that FAD is necessary for the
function of mammalian cryptochromes. The available data is
mostly from in vitro reconstitutions and in vivo experiments where
rather high levels of flavins were applied. The structural data,

including the recent analyses of the cryptochrome-binding small
molecules, suggest a competition between FAD and Cry interactors
for association with cryptochromes, yet the biological role of the
competition model has yet to be verified.

Given the weak binding, more biophysical observations in cells
and in relevant subcellular compartments might be helpful.
Biochemically, the identification of new partner proteins and
analyses of cryptochromes together with their interactors would
help clarify the circumstances and importance of FAD binding.
Finally, experimental models allowing manipulation of flavin
household globally or tissue-specifically would likely uncover new
links between cryptochrome function, metabolism and the circadian
physiology.
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