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Alzheimer’s disease (AD) is a neurological disorder caused by the abnormal
accumulation of hyperphosphorylated proteins. Dual-specificity tyrosine
phosphorylation-regulated kinase 1A (DYRK1A) is a dual phosphorylation enzyme
which phosphorylates the amyloid-β (Aβ) and neurofibrillary tangles (NFTs). A high
throughput virtual screening approach was applied to screen a library of
98,071 compounds against DYRK1A using different programs including AutoDock
Vina, Smina, and idock. Based on the binding affinities, we selected 330 compounds
for absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis.
Various pharmacokinetics parameters were predicted using the admetSAR server,
and based on the pharmacokinetics results, 14 compounds were selected for cross-
docking analysis using AutoDock. Cross-docking analysis revealed four compounds,
namely, ZINC3843365 (−11.07 kcal/mol−1), ZINC2123081 (−10.93 kcal/mol−1),
ZINC5220992 (−10.63 kcal/mol−1), and ZINC68569602 (−10.35 kcal/mol−1), which
had the highest negative affinity scores compared to the 10 other molecules
analyzed. Density functional theory (DFT) analysis was conducted for all the four
top-ranked compounds. The molecular interaction stability of these four
compounds with DYRK1A has been evaluated using molecular dynamics (MD)
simulations on 100 nanoseconds followed by principal component analysis (PCA)
and binding free energy calculations. The Gibbs free energy landscape analysis
suggested the metastable state and folding pattern of selected docking
complexes. Based on the present study outcome, we propose four antagonists,
viz., ZINC3843365, ZINC2123081, ZINC5220992, and ZINC68569602 as potential
inhibitors against DYRK1A and to reduce the amyloid-β and neurofibrillary tangle
burden. These screened molecules can be further investigated using a number of
in vitro and in vivo experiments.
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1 Introduction

Alzheimer’s disease (AD) is a common neurodegenerative disease
and comprises 60%–70% of all dementia cases. Dementia affects more
than 50 million people worldwide. There is an urgent need to develop
new therapeutics for AD because the currently available drugs cannot
stop the progression of the disease. If this disease progression is not
altered by the invention of new drugs to halt or slow down the
progression of AD, then it is estimated that the number of cases
will double by 2030 (Zeisel et al., 2020). AD is characterized by the
abnormal accumulation of proteins in the brain. Amyloid-beta (Aβ)
plaques and neurofibrillary tangles (NFTs) are the key biomarkers for
disease identification (Kumar et al., 2016). Aβ plaques are made by the
abnormal cleavage of the amyloid precursor protein (APP), while the
NFTs are made by the accumulation of the hyperphosphorylated tau
protein (Iqbal et al., 2016). The microtubule-associated protein tau
(MAPT) provides the stability of the microtubules by stabilizing
between the α-microtubules and β-microtubules. In the disease
condition, the hyperphosphorylated tau protein is detached from
the microtubules and forms oligomers. Tauopathies is an umbrella
term that describes the tau pathology in several neurodegenerative
diseases, which includes AD and Parkinson’s disease (PD) (Iqbal et al.,
2016). The tauopathies are not only involved in AD, they are also
involved in Pick’s disease, progressive supranuclear palsy (PSP), and
frontotemporal lobar degeneration with tau inclusions (FTLD-tau)
(Melchior et al., 2019). In AD, the amyloid beta-induced tau
aggregation is also observed; however, targeting only the Aβ
formation failed to stop the disease progression in AD patients
(Giacobini and Gold, 2013; Holtzman et al., 2016). Targeting tau
will be a key approach for altering AD progression. The
spatiotemporal pattern of tau pathology in AD is highly correlated
with brain atrophy and observed cognitive decline (Giannopoulos
et al., 2018). Tau acts as a neurotoxic protein due to high
phosphorylation, resulting in oligomerization sequestration and
ultimately forming NFTs by the aggregation (Spillantini and
Goedert, 2013). Various kinases can hyperphosphorylate the tau
protein at multiple epitopes; therefore, this excessively
phosphorylated tau (pTau) protein becomes toxic and is found in
higher concentrations (~4–5 fold) in AD patients’ brains. In a normal
brain, the phosphate concentration is 2–3 mol, while in the AD brain,
this concentration is higher and was recorded to be as high as 7–8 mol
(Iqbal et al., 2016). These insoluble and hyperphosphorylated forms of
tau build the aggregated filamentous oligomers, and these are
gradually deposited in the form of intraneuronal pretangles, and
these NFTs are the major hallmark for all types of tauopathies
(Morris et al., 2011; Bodea et al., 2016). Various strategies have
been applied to alter the aggregation and spreading of tauopathies,
and several compounds are also being tested in clinical trials (Verma
et al., 2018). To date, the exact cause of tau toxicity has not been
identified (Khanna et al., 2016). Hence, targeting the upstream
regulation of tau protein is an appealing strategy. Tau protein has
85 phosphorylation sites (80 Ser/Thr and 5 Tyr), in which more than
40 epitopes are recognized to specifically phosphorylate in the AD
brain by several kinases (Martin et al., 2013; Simic et al., 2016; Polanco
et al., 2018). We have targeted glycogen synthase kinase 3 beta (Shukla
et al., 2019; Shukla and Singh, 2021) and cyclin-dependent kinase 5
(Shukla and Singh, 2020a; Shukla and Singh, 2020b) and proposed
several potential lead compounds using computational methods.
Recently, several strategies to neutralize various kinases have been

applied to find novel inhibitors against AD. Some strategies have
identified potential therapeutics that are in clinical trials, while other
potential therapeutics have failed at different stages (Le Corre et al.,
2006; Vogel et al., 2009; Onishi et al., 2011; Lovestone et al., 2015).

The dual-specificity tyrosine phosphorylation-regulated kinase 1A
(DYRK1A) belongs to the family of DYRK. This family consists of five
different kinases (Duchon and Herault, 2016; Branca et al., 2017). The
DYRK1A gene is located on chromosome 21; in Down’s syndrome, the
protein expression is increased 1.5 fold (Tejedor and Hammerle,
2011). DYRK1A protein expression is tightly regulated in the brain,
and its overexpression and underexpression directly correlates with
intellectual disability (Luco et al., 2016). Several serine and threonine
residues of the tau protein can be directly phosphorylated by DYRK1A
(Ryoo et al., 2007; Azorsa et al., 2010). The formation of NFTs in
Down’s syndrome and other diseases is due to the overexpression of
DYRK1A protein (Liu et al., 2008). With the role of DYRK1A in tau
pathology progression, it is also involved in APP/Aβ formation. The
inhibition of DYRK1A in primary rat cortical neurons reduced the
phosphorylation of tau proteins at several sites in a dose-dependent
manner. It also reduced Aβ production in the HEK293 Aβ
overexpressing cells (Coutadeur et al., 2015). In an earlier study,
Wegiel et al. (2011) revealed that DYRK1A is responsible for the
hyperphosphorylation of APP, which increases the APP affinity
toward the BACE1 and gamma secretase, and due to this, the
plaque formation and deposition level is also increased. Kimura

FIGURE 1
Representation of the brief methodology used in the present study
to screen the library of 98,071 ligands against DYRK1A using the high-
throughput virtual screening approach, followed by MD simulations of
the four best lead compounds on 100 ns.
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et al. (2007) also suggest that DYRK1A forms a vicious cycle and
facilitates Aβ accumulation. The postmortem of the AD brain also
showed overexpression of DYRK1A, and these findings are consistent
with the previously described results (Ferrer et al., 2005). All these
studies suggest that the inhibition of the activity of DYRK1A could be
a potential approach to reduce Aβ and NFT levels.

New advances in computer-aided drug design (CADD)-based
methods have accelerated biologists’ efforts to identify lead drug
compounds against a plethora of contagious diseases (Baig et al.,
2018). These cutting-edge methods are capable of screening out large
compound libraries by minimizing the cost and time in a significant
manner. In this study, we screened the library of natural compounds
against DYRK1A with the fruitful utilization of CADD methods to
screen the potential inhibitors. After screening, we selected
14 compounds and performed cross-docking for validating the
screening studies. Finally, we carried out the molecular dynamics
(MD) simulation of 100 ns and predicted that ZINC3843365,
ZINC2123081, ZINC5220992, and ZINC68569602 can act as novel
inhibitors against DYRK1A. The complete methodology is shown in
Figure 1.

2 Materials and methods

2.1 Ligand selection

The subset of the natural dataset was considered for this study and
retrieved from the ZINC12 database (http://zinc12.docking.org/). The
ZINC database (Sterling and Irwin, 2015) comprises millions of
compounds from diverse families and diverse vendors. These
compounds are ready to use and can be downloaded in various
chemical file formats. We downloaded a subset n = 98,071 for the
virtual screening in the mol2 file format, which is derived from a
complete natural-compound catalog. These 98,071 compounds are
filtered based on Lipinski’s rule of five (ROF) criteria from the
complete natural compounds’ dataset (n = 178,231) (Benet et al., 2016).

ROF: Molecular weight ≤500 D, CLogP ≤5.00, the number of
hydrogen bond donors ≤5 and the number of hydrogen bond
acceptors ≤10, and the number of rotatable bonds ≤10.

2.2 Protein selection

The protein structure of DYRK1A was extracted from the RCSB-
Protein Data Bank (https://www.rcsb.org/) in the PDB format. This
structure was considered on the basis of resolution and the co-
crystallized inhibitor. Based on these parameters, we selected the
DYRK1A crystal structure (PDB ID: 4YLL, 1.4 Å, X-ray) (Falke
et al., 2015). The co-crystallized inhibitor 4E3 (10-bromo-2-iodo-
11H-indolo (Iqbal et al., 2016) quinoline-6-carboxylic acid) showed an
IC50 value of 120 nM in the inhibition assay (Falke et al., 2015).
4E3 was used as a positive control to compare the predicted hits.

2.3 Structure-based virtual screening

Before the virtual screening, the protein and ligands were prepared
using AutoDock tools. The protein was minimized using Chimera
1.13.2 software (Pettersen et al., 2004). The Amber ff99 SB force field

(Lindorff-Larsen et al., 2010) was used, and all the hydrogen atoms were
added to the structure. The heteroatoms were removed from the
structure; then, 100 steepest descent steps followed by 10 conjugate
gradient steps were used for the energy minimization. Finally, prepared
protein and ligands were converted to pdbqt files using PDB to PDBQT
python file. Polar and non-polar hydrogen atoms were added, followed
by the Kollman charges and atom types also assigned, respectively. In the
case of ligand preparation, the Gasteiger charges and all hydrogen atoms
were added with the rotatable bonds. Finally, the grid was set based on the
co-crystallized ligand 4E3. The catalytic residues such as Phe170, Val173,
Lys188, Phe238, Leu294, and Val306 of DYRK1A were selected for the
grid preparation. The dimensions 20 × 50 × 38 Å in the x, y, and z
directions in the grid were set. This grid was used for all screening
software. It is always an acceptable fact that consensus resulting from
more than two tools is more accurate than the result predictions fromone
software. Therefore, in this study, we used three tools for the virtual
screening. All the compounds were screened using idock (Li et al., 2012),
Smina—a fork of AutoDock Vina (https://sourceforge.net/projects/
smina/), and AutoDock Vina (Trott et al., 2010). The screened
compounds were shortlisted based on the binding affinity, and then,
common compounds were selected for absorption, distribution,
metabolism, excretion, and toxicity (ADMET) prediction.

2.4 Pharmacokinetics analysis

ADMET is a key parameter to approve a drug for clinical use. New
advances in computation-based methods have accelerated the
development of user-friendly algorithms and web servers to predict
and annotate the drug likeness properties of small chemical molecules.
In this study, for predicting the various pharmacokinetics descriptors,
we used the automated admetSAR server (Cheng et al., 2012). The
admetSAR server is widely used, and it predicts more than 50 different
features of ADMET properties (Yang et al., 2019). ADMET uses the
machine learning model and known information on various existing
FDA-approved drugs. We shortlisted 330 compounds based on the
virtual screening results and used them for ADMET analysis.

2.5 Molecular docking

The 14 compounds selected from the virtual screening and ADMET
analysis were employed for cross-docking with the AutoDock program
(Morris et al., 2009). AutoDock is widely used and freely available
docking software (Shukla et al., 2018). In AutoDock, we used the
dimensions 20 × 50 × 38 Å in the x, y, and z directions, the same
grid used for the virtual screening parameters. Next, we generated
100 binding poses for each ligand by using the Lamarckian genetic
algorithm. The binding poses were selected based on the binding affinity
and their interaction with the key catalytic residues.

2.6 Density functional theory calculations

Density functional theory (DFT) analysis was completed to decipher
the electron transport potential and electronic properties of the selected
lead compounds (Matysiak, 2007; Zhenming et al., 2011). The geometry
of all the ligands was optimized and then employed for the DFT
calculation through ArgusLab software (V: 4.0.1). We used the
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PM3 force field for the minimization of the ligand. It minimized and
optimized the geometry of the ligands in several cycles and then calculated
the various parameters. The highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) are commonly known
as frontier molecular orbitals and were found to give extremely applicable
information about electron density clouds around the molecule (Genc
et al., 2015). HOMO and LUMO are considered as a non-bonding type
and π molecular orbital, respectively. HOMO and LUMO are favorable
for the electrophilic and nucleophilic attacks, respectively. EHOMO and
ELUMO are the quantum chemical parameters, in which EHOMO has the
capability of donating the electron, while ELUMO can accept the electron
from the partner interactor. The higher value of EHOMO signifies that the
compound can easily donate the electron without substantial energy
requirement and vacate themolecular orbital (Gece and Bilgiç, 2009). The
ΔE (energy gap) represents the difference between the HOMO and
LUMO energy levels and is calculated by the ΔE = ELUMO − EHOMO

(Lu et al., 2010). It is a key parameter that defines the reactivity of the lead
compounds toward the DYRK1A binding site. A lesser energy gap
represents the reactivity of top-ranked compounds, which leads to the
increased electron-donating efficiency and reflects that it donates
electrons from the last occupied orbital with very less energy (Tripathy
et al., 2019).

2.7 Conformational dynamics analysis

The molecular dynamics simulation (MDS) is a well-known
technique for predicting the protein–ligand complex stability.
Hence, we performed the 100 ns simulation for apo–DYRK1A,
DYRK1A–4E3, DYRK1A–ZINC2123081, DYRK1A–ZINC3843365,
DYRK1A–ZINC5220992, and DYRK1A–ZINC68569602 using
GROMACS 2018.2 (Abraham et al., 2015). The ligand topology

was generated using the PRODRG server (van Aalten et al., 1996),
while the protein topology was generated by GROMACS using the
GROMOS96 53a6 force field (Oostenbrink et al., 2004). All the
complexes were solvated using the SPC water model, following the
parameters described by Gajula et al. (2016). The systems were then
neutralized by 6 Cl- ions. Next, the steric hindrance and atomic clashes
of all the systems were removed by energy minimization. NVT and
NPT simulation of 1 ns were conducted to fix the volume,
temperature, and pressure of the systems. All the systems were
employed for the final run of 100 ns. Output trajectory was
processed using the trajectory preprocessing tool called trjconv.
After MD simulations, different statistical parameters including the
root mean square deviation (RMSD), root mean square fluctuation
(RMSF), radius of gyration (Rg), number of hydrogen bonds, and
principal component analysis (PCA) were calculated by gmx rms, gmx
rmsf, gmx gyration, gmx hbond, gmx covar, and gmx anaeig modules,
respectively. The Gibbs free energy landscape was generated using the
GROMACS gmx sham tool as described earlier (Rajendran et al.,
2018). The trajectories were rendered using the Chimera 1.13.2.

2.8 Binding free energy analysis

The binding free energy analysis describes how the ligand is stable in
the protein-binding site through various interactions. We used the g_
mmpbsa tool (Kumari et al., 2014) for calculating the binding free energy
of the protein–ligand complex. It is based on the molecular mechanics
Poisson–Boltzmann surface area (MMPBSA) approach. The last 5-ns
trajectory was used for the binding energy calculation. ΔGbind was
calculated by the following Eq. 1:

ΔGbind � ΔGmm + ΔGsol − TΔS. (1)

FIGURE 2
Ligand superimposition. (A) AutoDock. (B) AutoDock Vina. (C) Smina. (D) idock. The red and yellow colors represent the co-crystallized and docked
ligands, respectively.
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ΔGmm (molecular mechanics energy) is calculated by the van der
Waals and electrostatic interactions. Polar and non-polar interactions
contributed to the calculation of the solvation-free energy (ΔGsol). The

solvent-accessible surface area (SASA) was used for the determination
of the non-polar solvation-free energy. The entropy contribution
(−TΔS) was excluded because of its high computational cost.

TABLE 1 Details of the four selected compounds with the control compound 4E3. ZINC ID, 2D structure, and binding affinity obtained after molecular docking are
shown.

ZINC ID Structure AutoDock
(Kcal.mol-1)

AutoDock Vina
(Kcal.mol-1)

Smina
(Kcal.mol-1)

idock
(Kcal.mol-1)

4E3 −9.56 −9.9 −9.9 −10.11

ZINC2123081 −10.93 −12.1 −12.5 −12.32

ZINC3843365 −11.07 −12.5 −12.9 −13.09

ZINC5220992 −10.63 −13.3 −13.3 −13.50

ZINC68569602 −10.35 −12.3 −12.3 −12.49
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3 Results and discussion

3.1 Docking protocol validation

Before the virtual screening, we performed docking protocol
validation by re-docking analysis. The positive control ligand 4E3,
previously co-crystalized with the solved structure of DYRK1A (Falke
et al., 2015), was docked against DYRK1A (PDB ID: 4YLL) by all four
docking programs. The binding affinity of the positive control 4E3 from
AutoDock, AutoDock Vina, Smina, and idock was −9.56, −9.9, −9.9,
and −10.11 kcal/mol, respectively. The RMSD between the docked and
control ligands was 1.071, 1.070, 1.071, and 1.066 Å from AutoDock,
AutoDock Vina, Smina, and idock, respectively (Figure 2). All four
software programs produced a binding pose similar to that of the
crystal structure. This result represents that these software tools can be
used for virtual screening analyses for the library of 98,071 compounds of
the ZINC repository against DYRK1A.

3.2 Virtual screening

Virtual screening was completed for shortlisting the best compounds
from a pool of compounds (n= 98,071). All the compounds were prepared
and converted into the pdbqt file format by using an in-house Python
ligand conversion script. Next, the compounds were employed for the
virtual screening using all three virtual screening software programs. The
top compound ZINC38167083 showed the highest binding free energy
from all three software. It showed −14.1, −14.1, and −14.28 kcal/mol from
AutoDock Vina, Smina, and idock, respectively. The binding affinity of
98,071 compounds from all three software programs is shown in
Supplementary Table S1. We generated a short list of 330 compounds
showing a binding energy ≤ −11.5 kcal/mol for pharmacokinetics analysis.

3.3 Pharmacokinetics analysis

Pharmacokinetics analysis is a key parameter for drug identification
and characterization. Hence, we determined pharmacokinetics analyses
using the admetSAR server for all the 330 compounds. We predicted
17 parameters from the admetSAR server, such as the blood–brain
barrier, human intestinal absorption, Caco-2 cell permeability, P-gp
substrate/inhibitor, cytochrome P450 enzyme inhibition, toxicity,
carcinogenicity, and lethal dose (Supplementary Tables S2–S4). We
found 14 compounds that showed good activity for all of the
17 parameters except the Caco-2 cell permeability.

3.4 Docking analysis

As many as 14 compounds have been shortlisted for cross docking
analysis using the AutoDock program based on the drug likeness
evaluation (Supplementary Table S5). Molecular docking revealed that
out of 14 selected compounds, four molecules, namely, ZINC3843365,
ZINC2123081, ZINC5220992, and ZINC68569602, were found to
have the highest negative binding energy of −11.07, −10.93, −10.63,
and −10.35 kcal/mol−1, respectively, compared to the positive control
4E3, whose binding energy was estimated to be −9.56 kcal/mol−1.
These four molecules ranked at the top for interacting with DYRK1A
based on the binding affinity scores, molecular interaction patterns,

and compound specificity criteria as previously described. Popular
names, chemical structures (2D), binding energy, and molecular
interaction information of top-ranked compounds and controls are
presented in Table 1. Chimera Tool was employed to illustrate and
annotate the 3D molecular interactions of all four predicted docking
complexes (Figure 3). Marking of different molecular interactions, viz.,
hydrophobic interactions, hydrogen bonds, and salt bridges, help us to
understand the binding patterns of top-ranked molecules against
DYRK1A. We analyzed the selected four ligands using 3D and 2D
interaction diagrams. The hydrogen bonds donor and acceptor view of all
the ligands in the DYRK1A binding pocket is shown in Figure 4. The
detailed interaction diagrams were generated for all the ligands, including
the control compound, and are shown in Supplementary Figure S1. The
docking results presented in this studymay support previous reports on the
inhibition mechanism of small chemical molecules against DYRK1A. Lin
et al. (2022) demonstrated that two molecules, NSC361880 and
NSC361882, have the potential to inhibit the DYRK1A-mediated tau
phosphorylation and contribute to stabilizing the tubulin polymerization
in a structure-based virtual screening followed by a set of wet-lab
experiments. In a recent study, Shahroz et al. (2022) screened the
molMall database (https://www.molmall.net/) against DYRK1A and
reported the top six molecules based on the binding affinity, namely,
−9,539, −11,352, −15,938, −19,037, −21,830, and −21,878. In a recent
follow-up study, Chikodili et al., (Chikodili et al., 2022) explored the
African Natural Compounds Database and PubChem-derived natural
compounds as potential inhibitors against DYRK1A. The virtual
screening results exhibited twelve phytochemicals, namely, 3-[6-(3-
methyl-but-2-enyl)-1H indolyl]-6-(3-methyl-but-2-enyl)-1H-indole,
lanceolatin B, lysicamine, pratorinine, pratorimine, lanceolatin A,
lanuginosine, hippacine, (-)-semiglabrin, aegyptinone B, 3′-
prenylnaringenin, and 8-C-p-hydroxybenzylluteolin, as new drug
candidates against DYRK1A. The molecular interaction patterns of
bioactive molecules against DYRK1A reported in previous studies are
consistent with the screening results of the present study (Falke et al., 2015).

3.5 Density functional theory analysis

The electronic properties of the selected four hits were analyzed using
DFT analysis. The chemical stability of the selected hits was studied by
calculating the energy gap between the EHOMO and ELUMO (Johnson et al.,
2010). HOMO and LUMO orbitals play a key role in charge transfer
between orbitals during a chemical reaction (Ahmed et al., 2021). In
previous computer-aided drug-designing studies, the authors have
described that higher energy gap compounds cannot quickly donate
their electrons, while lower energy gap compounds can quickly donate
their electrons and participate in the interaction (Sakkiah and Lee, 2012;
Gogoi et al., 2016; Tripathy et al., 2019). EHOMO and ELUMO values and
their energy gap were calculated and are shown in Table 2. The energy gap
ranged between .512 and 1.959 eV for the selected four compounds. We
observed the highest energy gap for ZINC2123081, which indicates that
this compound cannot quickly donate its electron. ZINC2123081 requires
a greater amount of energy to donate the electron to the LUMO orbital of
the binding site amino acid. ZINC5220992 showed the lowest energy gap
of .512 eV, which represents that it is a highly reactive and unstable
compound. ZINC2123081 can easily donate the electron and participate
in the different types of bonding interactions that form through electron
donation. ZINC3843365 and ZINC68569602 also showed a lower energy
band compared to ZINC2123081. The HOMO and LUMO distribution
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FIGURE 4
3D representation of the binding cavity of the control and top-rankedmolecules to the pocket site of DYRK1A. Pink and green colors reflect the hydrogen
bond donor and acceptor, respectively; (A) 4E3 control, (B) ZINC3843365, (C) ZINC2123081, (D) ZINC5220992, and (E) ZINC68569602.

FIGURE 3
3D representation of the molecular interaction between DYRK1A and ligands. (A) 4E3 control, (B) ZINC3843365, (C) ZINC2123081, (D) ZINC5220992,
and (E) ZINC68569602.
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of the four identified hit molecules (ZINC2123081, ZINC3843365,
ZINC5220992, and ZINC68569602) are depicted in Figure 5. Blue and
red represent the HOMO and LUMO distribution, respectively, which
signify the possible active sites present in the hit molecules (Figure 5).

3.6 Molecular dynamics simulation

The MD simulation was performed to predict the conformational
changes after ligand binding. It also explores the stability of the
predicted protein–ligand complex. We conducted 100 ns MDS
analysis. We initially calculated the RMSD, which showed that after
20 ns, all the systems reached an equilibration state; therefore, we
considered the last 80 ns trajectory for further analysis, including
RMSF, Rg, SASA, PCA, and binding free energy calculations.

3.6.1 Conformational stability
Conformational stability was analyzed using RMSD analysis.

RMSD indicates the deviation between the first and other frames
generated during MD simulations. We selected the backbone for the
RMSD calculation, and it is shown in Figure 6A. From Figure 6A, we

see that initially, RMSD for all the systems was increased, and after
20 ns, it became stabilized. The average RMSD value for
apo–DYRK1A, DYRK1A–4E3, DYRK1A–ZINC2123081,
DYRK1A–ZINC3843365, DYRK1A–ZINC5220992, and
DYRK1A–ZINC68569602 was .42, .32, .28, .34, .38, and .34 nm,
respectively. The average value and Figure 6A represent that
DYRK1A-ZINC2123081 showed the least RMSD value as compared
to apo-DYRK1A and other ligand complexes, including the control
compound 4E3. We have also seen that apo-DYRK1A showed .42 nm,
which is the highest RMSD value, while after ligand binding, the RMSD
value decreased and represents the stability in the protein–ligand
complex. The DYRK1A–ZINC5220992 complex showed .38 nm,
which was the highest value as compared to the other three predicted
hits. The apo–DYRK1A complex showed the highest average value, while
the trajectory increased to 8 ns, but after that, it showed a constant peak
until the end of the simulation (Figure 6A). The DYRK1A–4E3 complex
also showed an increase and decrease in the peak until 60 ns, but after that,
it remained stable. The DYRK1A–ZINC3843365 complex also showed a
very abrupt type of pattern from 35 to 44 ns. The
DYRK1A–ZINC5220992 complex showed a constantly increasing
RMSD until 40 ns, where the constant peak remained. The RMSD

FIGURE 5
Charge distribution of HOMO and LUMO with their energy bands. (A) ZINC2123081, (B) ZINC3843365, (C) ZINC5220992, and (D) ZINC68569602. The
red and blue colors represent the negative and positive charge, respectively.

TABLE 2 Orbital energy values of lead compounds with their energy band.

Name HOMO Energy (kcal/mol) LUMO Energy (kcal/mol) LUMO-HOMO (ΔE)

ZINC2123081 −11.405 −9.446 1.959

ZINC3843365 −10.024 −9.283 0.741

ZINC5220992 −10.513 −10.001 0.512

ZINC68569602 −11.682 −10.872 0.810
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results indicated that all the systems were stable and could be used for
further analysis.

3.6.2 Fluctuation analysis
Fluctuation analysis was performed using RMSF analysis of each

complex. RMSF represents the residual fluctuation in a protein. RMSF
analysis can track which residue or motif is more flexible or rigid
during the simulation. The loosely organized structural components
such as turns, loops, and coils generally show higher RMSF values,
while the well-folded structures such as alpha-helix and beta-sheets
show a lower RMSF. We calculated the RMSF value for all the systems
and plotted it in Figure 6B. Figure 6B shows strong fluctuations after
ligand binding. The average RMSF values for apo–DYRK1A,
DYRK1A–4E3, DYRK1A–ZINC2123081, DYRK1A–ZINC3843365,
DYRK1A–ZINC5220992, and DYRK1A–ZINC68569602 were .14,
.16, .12, .16, .18, and .14 nm, respectively. The highest RMSF value
was observed for DYRK1A–ZINC5220992, which characterizes higher
fluctuation and less stability of the complex. The
DYRK1A–ZINC5220992 showed a very high fluctuation (.8 nm) in
the N-terminal region, but it showed less RMSF values than all the other
complexes. The lowest RMSF value (.12 nm) was shown by
DYRK1A–ZINC2123081, which represents a stable complex. The
DYRK1A–4E3 complex also showed a higher RMSF value (0.16 nm),
which is higher than those of apo–DYRK1A, DYRK1A–ZINC2123081,
and DYRK1A–ZINC68569602. These results indicate that these two
complexes (DYRK1A–ZINC2123081 and DYRK1A–ZINC68569602)

are more stable than the DYRK1A–4E3 complex. The
DYRK1A–ZINC3843365 complex showed a RMSF value similar to
that of the DYRK1A–4E3 complex. We have seen the higher RMSF
value from residues 404–418 for DYRK1A–4E3 and
DYRK1A–ZINC5220992. The overall RMSF results indicate that
DYRK1A–ZINC2123081 and DYRK1A–ZINC68569602 are more stable
complexes than the other predicted hits.

3.6.3 Compactness analysis
Compactness analysis was conducted using the Rg calculation. We

calculated the Rg value for the last 80 ns trajectory (Figure 6C). The
average Rg values for apo–DYRK1A, DYRK1A–4E3, DYRK1A–
ZINC2123081, DYRK1A–ZINC3843365, DYRK1A–ZINC5220992,
and DYRK1A–ZINC68569602 were 2.16, 2.16, 2.19, 2.43, 2.23,
and 2.22 nm, respectively. The average value for
DYRK1A–ZINC3843365 showed the highest Rg value when
compared to all other systems. All four predicted hits showed a
higher Rg value than DYRK1A–4E3 and apo–DYRK1A complexes.
This result indicates that DYRK1A–4E3 is more stable than the selected
hit complexes. The DYRK1A–ZINC2123081 complex showed the least
Rg value as compared to the other selected hits. The
DYRK1A–ZINC3843365 and DYRK1A–ZINC5220992 complexes
showed a great deal of fluctuation in the peak, which indicates that
these complexes are not very compact and ligand binding is
inducing conformation changes in the complex. The remaining
ligands showed a stable peak. Hence, these results suggest

FIGURE 6
Stability analyses of all the systems. (A) RMSD value for 100 ns at 300 K. (B) RMSF value from the last 80 ns trajectory. (C) Radius of gyration vs. the time for
the last 80 ns. (D) Number of hydrogen bonds with respect to the time for all the selected hits including the control ligand. The black, red, green, blue, cyan,
and pink colors represent apo–DYRK1A, DYRK1A–4E3, DYRK1A–ZINC2123081, DYRK1A–ZINC3843365, DYRK1A–ZINC5220992, and
DYRK1A–ZINC68569602, respectively.
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DYRK1A–ZINC2123081 and DYRK1A–ZINC68569602 ranked
highest in gyration analysis.

3.6.4 Interaction analysis
Hydrogen bonds are very important and transient interactions for

protein–ligand analysis. Here, we have calculated the number of
hydrogen bonds for the control ligand 4E3 and predicted hits and
plotted them in Figure 6D. DYRK1A–ZINC2123081 showed more
hydrogen bonds than 4E3 and other predicted hit complexes. From
73 to 87 ns, DYRK1A–ZINC2123081 also showed 2–3 hydrogen
bonds. The average number of hydrogen bonds for all the
protein–ligand complexes was 1–2. DYRK1A–4E3 showed only
0–1 hydrogen bonds throughout the simulation, and at the
maximum time, it showed no hydrogen bonds. The
DYRK1A–ZINC5220992 complex showed 1–2 hydrogen bonds.
The DYRK1A–ZINC3843365 complex was stabilized by one hydrogen
bond throughout the simulation. DYRK1A–ZINC68569602 also
showed one hydrogen bond throughout the simulation. The overall
result of the hydrogen bond analysis indicates that all the predicted
hits are more stable than the DYRK1A–4E3 complex in terms of
hydrogen bonding.

3.6.5 Solvent accessible surface area
The solvent-accessible surface area describes the area which can

occupy the solvent, and an increased SASA value denotes a less stable
complex and vice versa. Hence, we calculated the SASA value for all
complexes (Figure 7A). The average SASA values for apo–DYRK1A,
DYRK1A–4E3, DYRK1A–ZINC2123081, DYRK1A–ZINC3843365,

DYRK1A–ZINC5220992, and DYRK1A–ZINC68569602 were
182.45, 182.97, 185.50, 187.34, 187.49, and 183.99 nm2.
Apo–DYRK1A and DYRK1A–4E3 showed the lowest SASA
values compared to those of the other predicted hits. The average
SASA value indicates that DYRK1A–ZINC5220992 showed a higher
SASA value than SASA values for the other selected hits. The
DYRK1A–ZINC3843365 complex showed a slightly lower SASA
value than the DYRK1A–ZINC5220992 complex but a higher value
than those of DYRK1A–ZINC2123081 and
DYRK1A–ZINC68569602 complexes. Figure 7A shows that we also
observed a stable type pattern after 20 ns. We have not found
any predicted compounds showing a low SASA value compared to
that of the control ligand, while the comparison between the
predicted hits showed that DYRK1A–ZINC2123081 and
DYRK1A–ZINC68569602 are the most stable complexes as
compared to the other two predicted hits.

Next, we analyzed the SASA value fluctuation based on residue;
hence, the residual SASA changes were calculated and plotted
(Figure 7B). The average residue SASA values for apo–DYRK1A,
DYRK1A–4E3, DYRK1A–ZINC2123081, DYRK1A–ZINC3843365,
DYRK1A–ZINC5220992, and DYRK1A–ZINC68569602 were .53, .53,
.54, .54, .54, and .53 nm2, respectively. We have seen similar average
values for apo–DYRK1A, DYRK1A–4E3, and DYRK1A–ZINC68569602,
while DYRK1A–ZINC2123081, DYRK1A–ZINC3843365, and
DYRK1A–ZINC5220992 complexes showed higher values than that of
the control compound. The overall pattern of SASA values show that all
complexes are stable and do not induce substantial residue fluctuation after
binding.

FIGURE 7
SASA and PCA. (A) SASA value vs. the time for all the systems. (B) SASA value based on residues. (C) First 50 PCs vs. the eigenvalue for all the systems. (D)
2D projection of the first two principal components on the phase space. (E)Obtained eigRMSF from the first eigenvector vs. the residues. All the calculations
have been carried out from the last 80 ns trajectory at 300 K. The black, red, green, blue, cyan, and pink colors represent apo–DYRK1A, DYRK1A–4E3,
DYRK1A–ZINC2123081, DYRK1A–ZINC3843365, DYRK1A–ZINC5220992, and DYRK1A–ZINC68569602, respectively.
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3.6.6 Essential dynamics
The essential dynamics (ED) or PCA is used for the calculation of

correlated motions after ligand binding. We selected only the first
50 principal components (PCs) and plotted them against the
eigenvalue for the clear demonstration of the PCA results
(Figure 7C). DYRK1A–ZINC5220992 showed a higher value than
the values of other selected hits and control ligand 4E3.
Apo–DYRK1A, DYRK1A–ZINC2123081, DYRK1A–ZINC3843365,
and DYRK1A–ZINC68569602 showed lower values than that of
the DYRK1A–4E3 complex. These results indicate that these three
hits are more stable than the control complex, DYRK1A–4E3.We next
selected the first 10 eigenvectors and calculated their percent
correlation motions. The top 10 eigenvectors contributed with 80.9,
83.66, 71.42, 80.15, 85.5, and 77.8% values for apo–DYRK1A,
DYRK1A–4E3, DYRK1A–ZINC2123081, DYRK1A–ZINC3843365,
DYRK1A–ZINC5220992, and DYRK1A–ZINC68569602, respectively.
This result also indicates higher motions for
DYRK1A–ZINC5220992 as compared to 4E3 and other ligands.
DYRK1A–ZINC2123081 had the lowest motion, indicating a very
stable complex compared to the other predicted hits.
DYRK1A–ZINC68569602 also showed a lower value compared to
those of DYRK1A–ZINC3843365 and DYRK1A–ZINC5220992. In the
comparison of these two predicted hits, DYRK1A–ZINC5220992 showed
a higher value than DYRK1A–ZINC3843365. The overall result of PCA
suggests that DYRK1A–ZINC2123081 and DYRK1A–ZINC68569602 are
the most stable complexes.

From the aforementioned PCA results, we see that the first few
eigenvectors are important for characterizing the system dynamics.
Hence, we have selected the first two eigenvectors and plotted them
against each other in the phase space (Figure 7D). Here, the well-
defined and less space-occupying cluster represents the stable

complex, while the more space-occupying cluster defines the
unstable complex. We observed that apo–DYRK1A showed a more
stable cluster compared to the other complexes. DYRK1A–4E3 did not
demonstrate a very compact and dense cluster, while
DYRK1A–ZINC2123081 showed a very compact and less space-
occupying cluster (Figure 7D). While DYRK1A–ZINC3843365 also
does not demonstrate a very stable and dense cluster, it also does not
showing a much-dispersed type of cluster (Figure 7D).
DYRK1A–ZINC5220992 showed a dispersed type of cluster, while
DYRK1A–ZINC68569602 showed a stable cluster. 2D PCA suggests
that DYRK1A–ZINC2123081 and DYRK1A–ZINC68569602 are
more stable than the DYRK1A–4E3 complex (Figure 7D).

We next selected only the first eigenvector to analyze the ligand-binding
effect based on the residue. The value was calculated and plotted against the
eigenvalue vs. the residue (Figure 7E). The average values for apo–DYRK1A,
DYRK1A–4E3, DYRK1A–ZINC2123081, DYRK1A–ZINC3843365,
DYRK1A–ZINC5220992, and DYRK1A–ZINC68569602 was .07, .09,
.05, .07, .11, and .06 nm, respectively. Here, we also observed that
DYRK1A–ZINC2123081 showed the least value compared to the control
compound and other predicted hits. DYRK1A–ZINC68569602 also showed
a lower value as compared to that of DYRK1A–ZINC3843365.
DYRK1A–ZINC68569602 showed the least eigRMSF value.
DYRK1A–ZINC5220992 showed the highest eigRMSF as compared to
all other complexes, including apo–DYRK1A. These results support the view
that DYRK1A–ZINC2123081, DYRK1A–ZINC3843365, and
DYRK1A–ZINC68569602 are the most stable complexes in terms of
eigRMSF analysis.

3.6.7 Gibbs free energy landscape analysis
Gibbs free energy landscape analysis was conducted using the

first two principal components (Figure 8). In Figure 8, the deep blue

FIGURE 8
Gibbs free energy landscape. (A) apo–DYRK1A, (B) DYRK1A–4E3, (C) DYRK1A–ZINC2123081, (D) DYRK1A–ZINC3843365, (E) DYRK1A–ZINC5220992,
and (F) DYRK1A–ZINC68569602.
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color represents the lowest energy protein conformation, while the
red color represents the highest energy state protein conformation.
The deep well represents a thermodynamically favorable state for
the proteins. Here, we have calculated the FEL of apo–DYRK1A
and its associated protein–ligand complexes. Apo–DYRK1A
showed three energy minima, in which one has a bluer color
and represents the stable state. It signifies that apo–DYRK1A
showed three conformational states. For the DYRK1A–control
complex, we have seen two energy funnels, which are separated
by an energy barrier, representing that the control complex showed
two conformational states. DYRK1A–ZINC2123081 showed clear
energy minima with a deep valley, indicating that this complex is
much more stable than the control complex.
DYRK1A–ZINC3843365 showed many energy funnels, which are
very close to each other, signifying that DYRK1A–ZINC3843365 can
change its conformational states very quickly and can obtain a new folding
state. DYRK1A–ZINC5220992 has a large blue-colored area, which
represents the stable cluster. It also showed many energy funnels. We
have observed a similar type of pattern for DYRK1A–ZINC68569602.
The overall result represents that DYRK1A–ZINC2123081,
DYRK1A–ZINC5220992, and DYRK1A–ZINC68569602 are the most
stable complexes, and they are the more thermodynamically favorable
complexes.

3.6.8 Binding free energy analysis
The binding free energy of all selected hits and the

DYRK1A–4E3 complex was calculated by using the MMPBSA tool. The

last 5 ns trajectory snapshots were used, and various energetic terms such as
the van derWaals energy, electrostatic energy, polar solvation energy, SASA
energy, and binding free energy were calculated and shown in Table 3.
The binding free energy for DYRK1A–4E3, DYRK1A–ZINC2123081,
DYRK1A–ZINC3843365, DYRK1A–ZINC5220992, and
DYRK1A–ZINC68569602 was −147.23, −123.19, −120.81, −171.43,
and −130.57 kJ mol−1, correspondingly. This observation showed that
DYRK1A–ZINC5220992 has a higher binding affinity than the control
compound 4E3 and other predicted hits, while the control compound
4E3 showed more binding affinity than the other three predicted hits.

We next explored the residue-wise energy contribution for all the
selected protein–ligand complexes and control compound 4E3. We
selected a few important residues to clarify the results and plotted
them in Figure 9. We observed that Ile165, Val173, Leu294, and
Val306 are the key residues that play important roles in the
protein–ligand stabilization. The other residues, Gly166, Phe170,
Ala186, Val222, Phe238, and Leu241, also show interactions against
DYRK1A. The overall result of binding affinity represents that all the
predicted hits show good binding affinity and demonstrate the
stability of the complex.

3.6.9 MD pose analysis
Lastly, we analyzed the MD pose from 0 ns to 100 ns and

generated a 2D interaction diagram for detailed analysis
(Supplementary Figure S2). We have seen many new
interactions in 100 ns and the ones not available in the 0 ns
frame. We observed two hydrogen bonds with Lys55 and

FIGURE 9
Residue-wise decomposition of the binding free energy. Only the catalytic residues which are actively participating in the ligand stabilization are plotted
here.

TABLE 3 Table represents van der Waals, electrostatic, polar solvation, SASA, and binding energies in kJ.mol−1 for the control compound (4E3) and predicted hits.

S. No. Complex Van der Waals energy Electrostatic energy Polar solvation energy SASA energy Binding
energy

1 DYRK1A-4E3 −210.35 ± 9.24 2.54 ± 5.44 78.73 ± 15.04 −18.15 ± .85 −147.23 ± 15.58

2 DYRK1A-ZINC2123081 −198.86 ± 10.08 −16.69 ± 8.14 109.85 ± 18.95 −17.49 ± .80 −123.19 ± 13.57

3 DYRK1A-ZINC3843365 −160.08 ± 12.84 −12.49 ± 9.07 66.59 ± 15.90 −14.83 ± 1.01 −120.81 ± 13.35

4 DYRK1A-ZINC5220992 −262.79 ± 12.96 −18.54 ± 9.75 130.57 ± 14.73 −20.68 ± .85 −171.43 ± 14.53

5 DYRK1A-
ZINC68569602

−175.50 ± 15.92 −4.10 ± 5.06 65.69 ± 14.78 −16.66 ± 1.30 −130.57 ± 14.41
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Asp174 in the 0 ns snapshot for the DYRK1A–4E3 complex while
these are not visible in the 100 ns snapshot because the ligand
orientation was completely changed. In the case of
4YLL–ZINC2123081, we observed more Pi–Pi interactions in the
100-ns snapshot as compared to the 0-ns snapshot. In the 0-ns
snapshot, only Lys55 showed one Pi bond with one hydrogen bond
interaction, while in the 100-ns snapshot Lys55 showed a Pi–Pi
interaction. Additionally, Tyr113 showed one more interaction.
Several hydrophobic interactions are also increased.
4YLL–ZINC3843365 showed the Pi–Pi interaction with Lys55 in
the 100-ns snapshot, while it was not observed at 0 ns. At 0 ns,
4YLL–ZINC5220992 showed a two-hydrogen bond interaction with
Leu108, while the Pi–Pi interaction was increased at 100 ns. Gly33 and
Phe105 showed the Pi–Pi interaction. Lastly, we analyzed
4YLL–ZINC68569602, and it did not show major changes in the
interaction. We also did not see a major loss in the interaction.
The overall analysis showed that all the complexes retain 0-ns
interactions, and they form more interactions with several other
residues. These observations indicate that all ligands are stable in
the binding cavity of DYRK1A during a 100-ns simulation.

4 Conclusion

AD has been recognized as one of the most prevalent chronic
neurodegenerative disease, affecting approximately 44 million
people worldwide in a significant manner. The overexpression
of DYRK1A plays a principal role in cognitive deficits in people
suffering from AD. The screening of leading compounds against
significant targets has become a promising strategy in the
discovery of potential drugs using an integrated molecular
docking and molecular modeling approach. In this study, we
performed high-throughput virtual screening,
pharmacokinetics analysis, PCA, and MD simulations to
identify the best lead molecules among the ZINC library of
98,071 compounds. A virtual screening-based molecular
docking pipeline was employed to shortlist the best lead
compounds against DYRK1A based on the binding affinity and
drug-likeness properties. A total of 14 compounds were
shortlisted based on the binding scores followed by the drug
likeness property evaluation. Based on the cross-docking
analysis, four compounds, viz., ZINC3843365, ZINC2123081,
ZINC5220992, and ZINC68569602, were ranked as the top
interacting molecules significantly interacting with the pocket
site of DYRK1A. Additionally, MD simulation analysis was
conducted to investigate the interaction pattern stability of
these compounds with DYRK1A at the atomic level on 100 ns.
Binding free energy analysis of docked complexes supported the
MD simulation trajectories and confirmed the stability of top-
ranked molecules. The outcome of the present study suggests that
the four compounds, namely, ZINC3843365, ZINC2123081,
ZINC5220992, and ZINC68569602, may evolve as promising
therapeutics against AD and can be further investigated in a
wet-lab with the help of cell culture and small animal
experiments.
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