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The function, stability, and turnover of plasma membrane (PM) proteins are

crucial for cellular homeostasis. Compared to soluble proteins, quality control

of plasmamembrane proteins is extremely challenging. Failure tomeet the high

quality control standards is detrimental to cellular and organismal health.

J-domain proteins (JDPs) are among the most diverse group of chaperones

that collaborate with other chaperones and protein degradation machinery to

oversee cellular protein quality control (PQC). Although fragmented, the

available literature from different models, including yeast, mammals, and

plants, suggests that JDPs assist PM proteins with their synthesis, folding,

and trafficking to their destination as well as their degradation, either

through endocytic or proteasomal degradation pathways. Moreover, some

JDPs interact directly with the membrane to regulate the stability and/or

functionality of proteins at the PM. The deconvoluted picture emerging is that

PM proteins are relayed from one JDP to another throughout their life cycle,

further underscoring the versatility of the Hsp70:JDP machinery in the cell.
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Introduction

The plasma membrane (PM) is a multi-protein collage where proteins are frequently

clustered and embedded in the lipid bilayer. PM proteins broadly consist of integral and

peripheral proteins. Together, they perform numerous cellular functions, such as cell

anchoring and cell-cell interactions, regulating cellular nutrient uptake and ion

homeostasis, as well as integrating cellular physiology with the environment.

Moreover, they are critical for the structural integrity of the PM (Alberts B et al.,

2002; Bernardino de la Serna et al., 2016). Therefore, preserving the functionality and the

heterogeneity of these cell surface proteins is crucial. To accomplish this, cells have an

intricate internal membrane system that mediates their insertion and removal from the

plasma membrane (Okiyoneda et al., 2011; MacGurn, 2014; Sardana and Emr, 2021).

PM proteins are extremely hydrophobic and are embedded, partially or completely in

the lipid bilayer. Hence, the biogenesis, trafficking, stability, and degradation of PM

proteins are far more challenging than soluble cytosolic proteins. Cells are extremely

sensitive to conformationally compromised PM proteins, and often this leads to loss of
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TABLE 1 List of Lipid interacting cytosolic JDPs.

JDPs Known lipid interaction domain References

Yeast

Hlj1 Tail-anchored (Beilharz et al., 2003; Youker et al., 2004)

Ydj1 Anchored by Farnesylation at C-terminal CAAX domain (Caplan et al., 1992)

Sec63, ERj5 Transmembrane domain (Feldheim et al., 1992)

Caj1 Charged residues (Herianto et al., 2021; Zhang et al., 2021)

Human

DNAJB 12,14 ER transmembrane proteins (Sopha et al., 2017)

DNAJA1, A2 Anchored by Farnesylation at C-terminal CAAX domain (Kanazawa et al., 1997; Terada and Mori, 2000)

ERdj1,2 Transmembrane domain (Dudek et al., 2005, p. 1; Skowronek et al., 1999)

Auxilin 1, 2 PTEN-like domain (Kalli et al., 2013; Lee et al., 2006)

Arabidopsis

AtDJA1, A2 (J2, J3) Anchored by Farnesylation at C-terminal CAAX domain (Barghetti et al., 2017; Sjögren et al., 2018)

AtERdj1,2,7 Transmembrane domain (Ohta and Takaiwa, 2014)

BOX 1 Hsp70: J-domain protein (JDP) machinery
Hsp70s, the 70 KDamolecular chaperones, are the key players in cellular proteostasis. They work in collaboration with two other components of

the chaperone network, i.e., Hsp40s (also called J-domain proteins or JDPs) and Nucleotide exchange factors (NEFs) (Mayer and Bukau, 2005;
Young, 2010; Rosenzweig et al., 2019). Hsp70s have a C-terminal Substrate Binding Domain (SBD), through which they bind to the hydrophobic
regions of their client proteins, and an N-terminal Nucleotide Binding Domain (NBD), which binds to ATP and hydrolyzes it to ADP. The ATPase
activity of Hsp70 is central to all its chaperone functions as this allosterically regulates its client-binding properties. However, the weak intrinsic
ATPase activity of Hsp70s is not sufficient for its chaperone functions. JDPs, the obligate co-chaperones of Hsp70s, have a conserved J-domain with
an invariant HPD motif responsible for stimulating the ATPase activity of Hsp70s, thereby potentiating its chaperone functions. The immense
versatility of Hsp70 stems from their ability to operate withmultiple JDPs in any given compartment, where, besides stimulating the ATPase activity of
Hsp70s, they also determine the multi-valency of Hsp70 chaperones (Qiu et al., 2006; Craig and Marszalek, 2017; Rosenzweig et al., 2019; Liu et al.,
2020). Furthermore, JDPs can also specify Hsp70s function by tethering Hsp70s to a specific subcellular localization (Kampinga and Craig, 2010).
JDPs are highly diverse in their structure, function as well as their cellular abundance. Different cellular compartments harbor multiple JDPs
performing general or highly specialized functions, ranging from folding, transport, and degradation of proteins, to mediating protein-protein
interactions and assembly or disassembly of protein complexes. While JDPs form obligate partnerships with the Hsp70 chaperone, there is
increasing evidence that some JDPs may have functions outside this association as well.
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cell integrity or death (Zhao et al., 2013; Juarez-Navarro et al.,

2020). To circumvent this, cells employ efficient, multi-layered

cellular protein quality control (PQC) machineries which act as

stringent checkpoints to tightly regulate the synthesis, folding,

and degradation of PM proteins (Reviewed in (Apaja et al., 2010;

Okiyoneda et al., 2011; Babst, 2014; MacGurn, 2014; Sardana and

TABLE 2 List of JDPs in mediating the PQC of PM proteins in yeast, human, and Arabidopsis.

Steps Pathways Hsp70 JDP Organism References

Biosynthesis/ER
targeting

Co-translational ER
targeting

Ssb1/2 Zuo1 Yeast (Pfund et al., 1998)

Hsp70L1 DNAJC2 Human (Hundley et al., 2005)

− AtDjC1 (AT3G11450)#, AtDjC2
(AT5G06110)#

Arabidopsis (Verma et al., 2017)

Chaperone-mediated
post-translational
Targeting

Ssa1* Ydj1* Yeast (Caplan et al., 1992)

Hsc70 Unknown JDP Human (Abell et al., 2007)

atHsp70-1# − Arabidopsis (Schweiger and Schwenkert, 2013)

Post-translational
targeting by GET/
TRC40 pathway

Ssa1 Apj1, Jjj3, Sis1 and Ydj1 Yeast (Ast et al., 2013; Cho et al., 2021)

Hsc70 Hsp40 Human (Abell et al., 2007; Rabu et al.,
2008)

− − Arabidopsis −

ER import Import and lipid
insertion in ER

Kar2 Sec63 Yeast (Jung et al., 2019; Sadler et al.,
1989)

BiP ERdj1, ERdj2 Human (Dudek et al., 2005; Skowronek
et al., 1999)

AtBiP1*, AtBiP2*,
AtBiP3*

At1G79940/AtERdj2A#, At4G21180/
AtERdj2B#

Arabidopsis (Maruyama et al., 2014; Ohta and
Takaiwa, 2014)

Protein quality
control in ER

Quality control by ER
luminal factors

− − Yeast (Mehnert et al., 2015)

BiP Erdj3*, ERdj4, ERdj5, ERdj6# Human (Dong et al., 2008; Otero et al.,
2010)

AtBiP1 AtERdj3A (AT3G08970)#, AtERdj3B
(AT3G62600), AtP58IPK (AT5G03160)#

Arabidopsis (Li et al., 2009; Nekrasov et al.,
2009; Ohta and Takaiwa, 2014)

Quality control by
cytosolic factors

Ssa1-4 Ydj1, Hlj1 Yeast (Youker et al., 2004)

Hsp70(HSPA1A),
Hsc70 (HSPA8)

DNAJA1, DNAJA2, DNAJA4, DNAJB1,
DNAJB12, DNADB14

Human (Farinha et al., 2002; Grove et al.,
2011; Meacham et al., 1999; Sopha
et al., 2012; Walker et al., 2010)

− − Arabidopsis

Protein quality
control at PM

NA Caj1 Yeast (Dobriyal et al., 2020)

Hsc70, Hsp70 DNAJA1, DNAJB2, DNAJA2 Human (Bagdany et al., 2017; Okiyoneda
et al., 2010)

− − Arabidopsis

Clathrin-
mediated
endocytosis

Ssa1 Swa2 Yeast (Xiao et al., 2006)

Hsc70 DNAJC6, GAK Human (Greener et al., 2000)

AtHsc70 AUXILIN-LIKE1 (At4g12780),
AUXILIN-LIKE2 (At4g12770),
AUXILIN-LIKE3 (At1g21660)#,
AUXILIN-LIKE4 (At4g36520)#,
AUXILIN-LIKE5 (At1g75310)#, JAC1/
AUXILIN-LIKE6 (At1g75100)#,
AUXILIN-LIKE7 (At1g30280)#

Arabidopsis (Adamowski et al., 2018; Lam
et al., 2001; Verma et al., 2017)

*Predicated based on known function and literature on other substrates. #Predicted based on sequence similarity/domain organization.
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Emr, 2021; Vasconcelos-Cardoso et al., 2022). At each of these

steps, PM proteins must pass the “fit to move forward” test. In case

they do not meet the quality control (QC) standards, they are

appropriately handled by one or the other component(s) of the

cellular PQC machinery (Anelli and Sitia, 2008; Okiyoneda et al.,

2011; Sun and Brodsky, 2019; Phillips et al., 2020; Schwabl and Teis,

2022). At the PM, too, these proteins are constantly at risk of

misfolding or aggregation. Furthermore, their stability and/or

abundance at the PM is also very tightly regulated; for example,

formany nutrient transporters,mild temperature shifts or availability

of substrate promotes their endocytosis and degradation (Apaja et al.,

2010; Ghaddar et al., 2014; Rodriguez-Furlan et al., 2019).

Molecular chaperones, mainly the Hsp70:J-domain protein

(JDP) machinery (see Box 1), play a major role in regulating

cellular proteostasis (Rosenzweig et al., 2019; Liu et al., 2020;

Zhang et al., 2022). In the last two decades, the essential

requirement of chaperones for various PQC pathways has

been extensively highlighted. Paradoxically, even though PM

proteins pose greater challenges to PQC machinery compared

to cytosolic proteins, the involvement of chaperones in the QC of

PM proteins is less understood. Nevertheless, different Hsp70s

and JDPs have been implicated in assisting PM proteins in their

biogenesis, maturation, trafficking, and degradation in different

organisms. Moreover, the ability of selected Hsp70s and JDPs to

directly associate with lipids and membranes sheds light on their

possible role in the PM as well (Caplan et al., 1992; Kanazawa

et al., 1997; Beilharz et al., 2003; Kalli et al., 2013; Radons, 2016;

Sopha et al., 2017; Sjögren et al., 2018; Dobriyal et al., 2020; De

Maio and Hightower, 2021; Zhang et al., 2021) (Table 1). The

importance of different chaperones and other PQC factors in

diseases associated with PM proteins is discussed elsewhere

(Juarez-Navarro et al., 2020). In this review, we collate data

available from multiple organisms, including yeast, plants, and

mammalian models, and come up with a unifying model to show

FIGURE 1
Journey of a PM protein. Soon after the ribosomal biosynthesis, the newly synthesized PM protein translocates to the ER (1). The well-folded
proteins are packed in vesicles and transported to the PM via the Golgi apparatus (2-3). The misfolded proteins from the endomembrane system can
be directed for proteasomal or lysosomal degradation (4). Due to misfolding or stimuli-based conformational change at the PM, proteins can be
packaged in clathrin-independent (5) or clathrin-dependent (6) vesicles. These proteins can be recycled to PM (7) or targeted for lysosomal
degradation (8). Different steps requiring Hsp70:JDPs are shown in the diagram.

Frontiers in Molecular Biosciences frontiersin.org04

Sagarika et al. 10.3389/fmolb.2022.1072242

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1072242


that, like cytosolic proteins, the versatile Hsp70:JDP systems are

guardians of PM proteins as well, throughout their odyssey in the

cell (Table 2).

PM proteins: The PQC machinery’s
nightmare

Maintaining the proper QC of PM proteins is one of the

major challenges faced by cellular PQC machinery. Like other

membrane proteins, PM proteins are folded into different

conformations and topologies governed by their primary

structures. Many membrane proteins are known to have dual

or multiple topologies, which adds to the complexity of the

plasma membrane PQC (PMPQC) (von Heijne, 2006;

Woodall et al., 2015). There are different types of membrane

proteins, including transmembrane proteins, which are

amphipathic. They harbor one or more hydrophobic

segments, spanning the lipid bilayer, and hydrophilic

domains, that stay exposed to the cytosol and extracellular

space (Deol et al., 2004). Several other PM proteins are

anchored to the lipid bilayer either through a hydrophobic

segment a covalent lipid (fatty acid chain or a prenyl group),

or a sugar modification. PM proteins have a complex life cycle

(shown in Figure 1). They follow the secretory pathway through

the cellular endomembrane system to reach their destination. En

route, they pass through different sub-cellular environments with

varying pH, ionic concentrations, and redox states (Anelli and

Sitia, 2008; Delic et al., 2013). PM proteins are synthesized on the

ribosomes and are co- or post-translationally targeted to the ER.

Then they are incorporated into the ER membrane to undergo

folding and maturation, which involves the participation of both

ER and cytosolic factors (Sun and Brodsky, 2019; Phillips et al.,

2020). ER provides an oxidative environment for the disulfide

bond formation and proper folding. ER-residing enzymes are

essential for adding GPI anchors to the anchored PM proteins.

The assembly and maturation of proteins are followed by their

packaging into vesicles and targeting to the Golgi apparatus for

further post-translational modifications (PTMs) and sorting to

PM. These organelles have different pH and provide a protective

environment to the proteins until they reach the cell surface. The

Golgi apparatus and vesicles are slightly acidic compared to the

cytosol and ER (pH 7-7.5). Any change in the pH (pH 6.2-6.8 at

cis-Golgi to pH 6.0-6.3 at the trans-Golgi network) or ion (H+,

Ca2+, Mg2+, Mn2+) concentrations can lead to perturbed Golgi

functions (Shen et al., 2013; Kellokumpu, 2019).

Being the cellular periphery, at the PM, proteins are often

exposed to various physical, mechanical, or chemical stress, risking

their native structure and function. Additionally, the lipid

composition of the PM too plays a vital role in maintaining the

local structure, dynamics, stability, and functionality of PM

proteins (Lenaz, 1987; Lee, 2004; Bukiya and Dopico, 2019;

Fratti, 2021). For example, the localized lipids interact with the

G-protein coupled receptors (GPCR) and affect conformation,

stability and signaling at the membrane (Mahmood et al., 2013;

Desai and Miller, 2018). Similarly, polyunsaturated fatty acids

(PUFA) interact with several voltage-gated ion channels to

regulate their activity (Elinder and Liin, 2017). Apart from the

direct interactions, localized lipid rafts also form membrane

compartments and, in turn, regulate the function, stability,

sorting, maturation, and turnover of proteins (Casares et al.,

2019; Lujan and Campelo, 2021). Even the final stages of PM

proteins’ life cycle are not simple (Figure 1). The removal of

proteins from PM follows the endocytic route, where the proteins

are packaged into vesicles and targeted to early endosomes (Zhao

et al., 2013; Ghaddar et al., 2014; Claus et al., 2018). These proteins

are further targeted to lysosome/vacuole for degradation.

However, endocytosis does not ensure degradation as, in some

cases, PM proteins are modified to their native structure and

recycled back to the PM (Claus et al., 2018; Rodriguez-Furlan et al.,

2019; Sardana and Emr, 2021).

Hence the complex life cycle of PM proteins counts on the

proper functioning of multiple PQC machineries that work in

parallel in different subcellular compartments. It is very likely

that these heterogeneous groups of proteins require dedicated

cellular factors during the complex journey inside the cell.

Targeting to ER

Almost all PM proteins follow the secretory pathway to reach

their destination. This begins with the translocation of PM

proteins to the endoplasmic reticulum (ER); either co-

translationally, where protein synthesis is coupled with protein

import into the ER or post-translationally, where protein

translocation takes place after the complete polypeptide is

synthesized (reviewed by (Rapoport, 2007; Cross et al., 2009;

Hegde and Keenan, 2011; Zimmermann et al., 2011; Aviram and

Schuldiner, 2017; Linxweiler et al., 2017). The mode of ER import

depends on the amino acid composition of the polypeptide.

Different Hsp70:JDP machineries assist these pathways to

stabilize the translation elongation, prevent misfolding,

aggregation, or facilitate interaction with the ER translocon

complex (Ast et al., 2013; Aviram and Schuldiner, 2017; Chen

et al., 2022) (Figure 2). During protein synthesis, the Ssb1/2

(yeast)/Hsp70L1 (mammals), together with Ribosome

Associated Complex (RAC), functions to regulate the folding

and targeting of nascent polypeptides to the ER. RAC is a

heterodimer composed of Hsp70, Ssz1 (HSPA14 in

mammals), and JDP, Zuo1 (DNAJC2 in mammals) (Hundley

et al., 2005; Otto et al., 2005). Upon nascent chain elongation,

Ssz1 and Zuo1 undergo a conformational change, thus making

the J-domain of Zuo1 accessible to binding with another Hsp70,

Ssb1/2 (Chen et al., 2022). Ssb interacts with a large number of

ribosome-associated nascent chains as well as the cytosolic factor,

signal recognition particle (SRP), to facilitate efficient translation
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and ER targeting of proteins (Pfund et al., 1998; Willmund et al.,

2013; Döring et al., 2017; Shiber et al., 2018). Together, Ssb and

Zuo1 help in co-translational protein folding and their targeting

to the ER (Kramer et al., 2019; Chen et al., 2022). Although

deletion of Ssb leads to widespread misfolding and aggregation of

newly synthesized polypeptides (Koplin et al., 2010), its

requirement in the biogenesis or maturation of membrane

proteins is unknown. While Ssb preferentially interacts with

cytosolic and nuclear proteins and less with membrane

proteins (Willmund et al., 2013), the sensitivity of yeast cells

lacking Ssb1/2 or the partner JDP, Zuo1, to aminoglycosides is

linked to an increase in cation influx as a consequence of altered

maturation of membrane proteins (Kim and Craig, 2005). It

suggests that Ssb1/2, along with Zuo1may regulate the biogenesis

of PM proteins as well (Peisker et al., 2010).

Co-translational translocation

Many of the transmembrane PM proteins undergo co-

translational translocation (Figure 2A). Co-translationally

translocated proteins usually harbor a cleavable hydrophobic

N-terminal signal sequence (SS) or a non-cleavable

transmembrane (TM) domain. As soon as the polypeptide

FIGURE 2
ER targeting and import of PM proteins. In different organisms, specific Hsp70: JDPs mediate the ER targeting of PM proteins by (A) CTT or (B)
PTT. During both CTT and PTT, ribosome-associated Hsp70:JDPsY,H interact and protect the nascent polypeptides (Otto et al., 2005; Döring et al.,
2017; Chen et al., 2022). PTT occurs through multiple pathways (1) GET/TRC40mdiatedY, (2) Chaperone mediatedH or (3) alternate pathwaysN (Rabu
et al., 2009; Casson et al., 2017; Cho et al., 2021). Further, the ER-localized Hsp70:JDPsY, H, A perform the protein import and lateral insertion of
PM proteins (Ohta and Takaiwa, 2014; Pobre et al., 2019; Itskanov et al., 2021, p. 63). Y Literature available in Yeast; H Humans; A Arabidopsis. N No
literature available. Names of Hsp70 and JDPs are denoted in different colors; Black for Yeast; Blue for Human.
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emerges from the ribosome, SRP recognizes and binds the

ribosome nascent chain complex (RNC) and targets it to the

Sec61 complex at the ERmembrane (Pool et al., 2002; Halic et al.,

2004; Linxweiler et al., 2017). As the RNC interacts with the

translocon, the peptide is inserted co-translationally into the ER

until the synthesis of a hydrophobic TM segment (i.e., stop

transfer sequence) terminates nascent chain translocation. TM

segments move laterally out of the translocon as they integrate

into the lipid bilayer (Figure 2). In recent years, an alternate ER

targeting mechanism involving Snd2p and Snd3p (SRP-

iNDependent targeting) has been reported to target substrates

to the Sec61 complex. It can partially compensate for the loss of

both SRP-mediated and post-translationally targeted substrates.

However, whether it operates co-translationally or post-

translationally is yet to be understood (Aviram et al., 2016;

Haßdenteufel et al., 2017; Lei et al., 2020). The co-

translational translocation pathways prevent the exposure of

nascent polypeptides to the cytosol. Although ribosome-

associated Hsp70:JDPs regulate the process, there is no report

of the involvement of additional cytosolic chaperones.

Post-translational translocation

In post-translational translocation (PTT), fully translated

polypeptides are targeted to the ER translocon. Proteins

remain unfolded for their translocation through ER. Hence

cytosolic factors, specifically Hsp70s and JDPs, associate with

the polypeptide to prevent intermolecular interaction and

aggregation, as well as facilitate interaction with the

translocon complex (Figure 2B). A substantial number of

proteins are translocated post-translationally into the ER in

yeast as well as in complex eukaryotes (Ast et al., 2013; Ast

and Schuldiner, 2013; Aviram and Schuldiner, 2014). For PTT of

membrane proteins, specifically tail-anchored (TA) proteins, at

least two distinct yet overlapping pathways have been reported.

First is the GET/TRC40 pathway, targeting TA proteins to the

GET/TRC40 receptor complex at ER, and second, the chaperone-

mediated pathway, targeting some secretory and TA proteins to

ER Sec translocon complex.

GET/TRC40 pathway
Tail-anchored (TA) proteins harbor a single

transmembrane domain at their C-terminus (Ast et al.,

2013; Casson et al., 2017). A major pathway for TA protein

targeting is by the guided entry of tail-anchored proteins

(GET) or transmembrane recognition complex of 40 kDa

(TRC40/ASNA1) pathway in yeast and mammals

respectively (Favaloro et al., 2010, 2008; Schuldiner et al.,

2008). In Arabidopsis, multiple GET pathway components

have been identified and predicted to be involved in the

translocation of TA proteins (Srivastava et al., 2017; Xing

et al., 2017; Anderson et al., 2021; Asseck et al., 2021), but our

understanding of the Hsp70:JDPs in this process is far from

complete. A pre-targeting complex composed of cytosolic

chaperone Sgt2 (yeast)/SGTA (mammals) and the Get4-

Get5 heterodimer (yeast)/TRC35-UBL4A-BAG6 complex

(mammals) recognizes the nascent TA polypeptide that

further interacts with the ATP-bound Get3 (yeast)/TRC40

(mammals). This transfers the TA protein to Get3/

TRC40 translocon complex for ER insertion (Jonikas et al.,

2009; Mariappan et al., 2011; Wang et al., 2011).

In yeast and mammals, JDP (Ydj1) and Hsp/c70 physically

interact with Sgt2/SGTA (Wu et al., 2001; Liou et al., 2007;

Chartron et al., 2011). Recent studies in yeast have identified

Hsp70:JDP machinery as the upstream component of this

pathway (Cho et al., 2021) (Figure 2B). Hsp70, Ssa1,

captures the TA polypeptide, which is further transferred to

the chaperone component, Sgt2. While Ydj1 helps Ssa1 to

capture nascent TA polypeptides and prevent their

aggregation, both Ydj1 and Sis1 (another cytosolic JDP)

enhance the transfer of TA polypeptides to Sgt2. The initial

client capture by Ydj1 requires both the functional J-domain

as well as the client binding domain, while only J-domain is

sufficient for TA polypeptide’s transfer to Sgt2. The study

clearly suggests that JDPs not only capture substrates but also

induce conformational changes to facilitate their transfer to

downstream factors and subsequently to the ER. Ydj1 needs

special mention here as it is tethered to the ER membrane

through c-terminal farnesyl modification, which is important

for targeting proteins to the ER (Caplan et al., 1992; Ast et al.,

2013). Additionally, yeast cytosolic JDPs, Apj1 and Jjj3, are

also implicated in targeting GPI-anchored protein Gas1 to ER

(Ast et al., 2013) through unknown mechanisms.

Chaperone-mediated PTT
In humans, the insertion of TA proteins seems to be more

complex and substrate-specific. The TRC40/GET mediated

pathway, although specific, is not essential for targeting all TA

proteins (Coy-Vergara et al., 2019). Alternative pathways

involving Hsc70:JDPs, signal recognition particle (SRP), or

Sndp (SRP-iNDependent targeting), execute client targeting to

the ER (Abell et al., 2007; Rabu et al., 2009, 2008; Aviram et al.,

2016; Casson et al., 2017; Farkas and Bohnsack, 2021)

(Figure 2B). Hsc70 functions with JDPs to promote the ATP-

dependent membrane targeting of the TA protein, Sec61β, and
other TA precursors in vitro (Abell et al., 2007). However,

inhibition of Hsc70 affected only a subset of TA proteins’

integration in Hela cells ER, suggesting functional redundancy

with other Hsp70s or other parallelly operating pathways (Rabu

et al., 2008).

The Hsp70:JDP does not only interact with clients but also

with the ER translocon. Studies reveal that yeast Ssa1, through

its c-term EEVD motif, and Ssb1, through its nucleotide-

binding domain, interact with the tetratricopeptide repeat

(TPR) domain of Sec72 translocon (Tripathi et al., 2017).
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Similarly, in Arabidopsis, constitutively expressed AtHsp70-1

interacts with the ER translocation machinery component

AtTPR7 (Schweiger et al., 2012; Schweiger and Schwenkert,

2013). Although metazoans do not have a Sec72 ortholog, one

of the ER membrane JDPs, Erdj1, regulates translation and

protein import into the ER (Blau et al., 2005). However, the

precise mechanism of how exactly the JDPs regulate PTT in

humans, is still unknown. Several questions remain

unanswered; for example, 1) at which step Hsc70:JDPs act

on the proteins, 2) what drives its substrate specificity, 3)

whether it is in parallel or in the same pathways as TRC40, and

4) how it interacts with the ER translocon in the absence of

Sec72.

Import into the ER

ER is the hub of protein folding and maturation, and it also

acts as the first PQC checkpoint for PM proteins.

Unsurprisingly, the number and complexity of the Hsp70:

JDP network in the ER is only next to the cytosol. Moreover,

the ER-localized Hsp70:JDP complex is conserved across

yeast, mammals, and plants. Budding yeast has a single

Hsp70 (Kar2) and four JDPs, Scj1, Jem1, Erj5 and Sec63

(Nishikawa et al., 2005), and mammals have 7 JDPs Erdj1-7

working with Hsp70, BiP. Out of all these, yeast Sec63 and

mammalian ERdj1/2 aid in the protein import across ER

membrane, while the other JDPs are proposed to maintain

the ER PQC (Kampinga and Craig, 2010; Otero et al., 2010;

Melnyk et al., 2015). The JDP, Sec63/Erdj2, is a

transmembrane protein and is an integral part of the

conserved Sec61 translocon complex. It partners with

Hsp70, Kar2/BiP, through its luminal J-domain to facilitate

ATP-dependent unidirectional import of proteins (Corsi and

Schekman, 1997; Misselwitz et al., 1999, 1999; Melnyk et al.,

2015; Pobre et al., 2019; Daverkausen-Fischer and Pröls, 2021)

(Figure 2). Sec63 lacking the N-term residues (Sec63_ΔN39) is

severely impaired in the sorting of membrane proteins (Jung

et al., 2019). Along with import, Sec63 also helps in the lateral

gate opening of the Sec61 channel, thus helping in the lateral

insertion of proteins into the ER membrane (Itskanov et al.,

2021). Hence, it is an essential component of the ER

translocon pathway. Sec63 deletion in yeast is lethal, and in

humans, mutations in Sec63/Erdj2 are linked to autosomal

dominant polycystic liver disease (PCLD) (Sadler et al., 1989;

Davila et al., 2004; Janssen et al., 2012).

Apart from Erdj2, Erdj1 is also membrane-localized

with an N-terminal luminal J-domain and C-terminal

cytosolic domain, wherein the cytosolic domain binds

ribosomes and inhibits translation (Dudek et al., 2005).

Interestingly, this regulatory inhibition is released when

Erdj1 binds to BiP in the ER lumen. It has been hypothesized

that Erdj1 regulates translation in response to ER stress

through its interaction with BiP (Blau et al., 2005; Benedix

et al., 2010). However, under unstressed conditions, it

may have protein import functions, possibly redundant

with Erdj2.

In Arabidopsis there are six ER-localized JDPs (AtP58IPK,

AtERdj2A, AtERdj2B, AtERdj3A, AtERdj3B, and AtERdj7).

The ER luminal Hsp70, AtBiP, is present as three isoforms in

Arabidopsis, AtBiP1, AtBiP2, and AtBiP3 (Maruyama et al.,

2010). They probably interact with the J-domain of AtERdj2A/

B (Sec63 orthologs) to perform the energy-dependent protein

import in the ER (Yamamoto et al., 2008; Ohta and Takaiwa,

2014). However, it is important to further understand the

redundancy and/or specificities of the Hsp70:JDP network in

Arabidopsis. Although both AtERdj2A and AtERdj2B mediate

protein import, they may interact with different substrates or

different AtBiP paralogs, leading to diverse consequences.

More detailed studies will help us elucidate their substrate

specificity and novel mechanisms of protein import and their

insertion in the ER membrane in plants. Non-etheless, the

increased number of JDPs in ER from yeast to humans, and

plants posits that besides functional redundancy, and making

the system more robust, JDPs may also have unique functions

as well (Blau et al., 2005; Dudek et al., 2005; Yamamoto et al.,

2008; Benedix et al., 2010).

Protein quality control in the ER

Once proteins reach the ER, they undergo folding and

maturation. They require a variety of ER chaperones and co-

chaperones for the same. Consistent with their structural

heterogeneity, PM proteins undergo several maturation steps

that require the formation of cis-trans prolyl isomers, disulfide

bonds in the oxidizing ER environment, and the adoption of

complex transmembrane topologies. Also, the addition,

formation, and/or modification of sugar or lipid moieties is

crucial for the maturation of several PM proteins (Braakman

and Bulleid, 2011). The ER quality control (ERQC) machinery

provides a suitable environment for their maturation and

regulates the stoichiometry/concentration of subunits to favor

correct assembly. Apart from the quality of proteins, ERQC also

regulates the quantity of proteins by regulating their secretion

according to the physiological requirements of the cell. Once the

protein is folded and assembled, it is packaged into vesicles and

transported to the Golgi apparatus.

Role of luminal JDPs

In the ER lumen, yeast Kar2, Jem1, and Scj1; Human BiP and

ERdj3-6, and Arabidopsis AtBiP1-3, AtERdjs maintain the QC of

the luminal domains of trans-membrane proteins and soluble

luminal proteins. They not only interact with protein substrates
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but also regulate the ER stress signaling pathways. For e.g.,

ERdj4 interacts with the key UPR (Unfolded Protein

Response) (Box 2) signal activator, Ire1, and recruits BiP to

suppress the UPR signaling in Chinese hamster ovary (CHO)

cells (Amin-Wetzel et al., 2017). Similarly, in yeast and

Arabidopsis, Kar2/AtBiP1-3 regulates UPR induction (Noh

et al., 2003; Moreno et al., 2012). Although none of the

Arabidopsis JDPs are yet identified to directly regulate Ire1,

AtERdj3B interacts with SDF2, another crucial UPR regulator

(Nekrasov et al., 2009). AtBiP1-3 and AtERdjs regulate the

folding and maturation of a variety of PM proteins,

specifically pattern-recognition receptors (PRRs), thus

FIGURE 3
Protein Quality Control of PM proteins in ER membrane. PM proteins’ folding and maturation at ER involves both cytosolic and ER luminal
Hsp70:JDPmachineries. The cytosolic Hsp70:JDPs regulate the PQC by interacting with unfolded/partially folded proteins at the cytosolic domainY,

H (1), mediating the interactionwith Hsp90 for folding Y, H (2) and further trafficking to Golgi (3) (Youker et al., 2004; Donnelly et al., 2013; Li et al., 2017).
Defect in proper folding and maturation, can re-direct them for ubiquitinationY, H (4) and further proteasomal Y, H (5) or lysosomal degradationH

(6) (Nakatsukasa et al., 2008; Kim and Skach, 2012; He et al., 2021). Similarly, the luminal Hsp70:JDPs regulate the folding, maturation A, H (7) and
degradationA, H (8) of PM proteins by interacting at the luminal domains (Park and Seo, 2015; Ji et al., 2016). Y Literature available in Yeast; H Humans; A

Arabidopsis. Names of Hsp70 and JDPs are denoted in different colors; Black for Yeast; Blue for Human.

BOX 2 UPR
Unfolded protein response (UPR) is an evolutionarily conserved ER (Endoplasmic reticulum) stress response pathway to regulate the cell’s optimal

capacity for protein synthesis andmaturation. It is primarily induced by the accumulation of aberrant proteins in the ER due to various environmental
stimuli, activation of other cellular stress response pathways, or lack of efficient protein folding machinery in the ER. UPR signaling pathways
communicate the ER-stress to the gene expression machinery in the nucleus and cytosol, and regulate cellular transcription and translation. UPR
restores ER homeostasis by 1) expanding the ER membrane and increasing ER abundance to meet protein folding demands, 2) positively regulating
protein foldingmachinery, 3) activating the ERAD (ER-associated degradation) pathway etc. Further, under aggravated and long-term ER stress, UPR
signaling may lead to apoptotic cell death (Walter and Ron, 2011; Hetz et al., 2020; Read and Schröder, 2021).
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regulating their surface expression (Li et al., 2009; Saijo, 2010;

Gupta and Tuteja, 2011; Park and Seo, 2015). Moreover,

AtERdj3 interacts with AtBiP1-3 to regulate the biogenesis of

surface receptor EFR (PRRs for EF-Tu), thereby playing an

important role in regulating plant immune response

(Nekrasov et al., 2009).

The role of luminal Hsp70:JDPs are not restricted to the ER.

Human ERdj3, 4, and 6 show dual topology, which may also

tether them to the ER membrane to perform different functions

(Araki and Nagata, 2011; Daverkausen-Fischer and Pröls, 2021).

ERdj3 is predicted to have two transmembrane domains and it

interacts with clients as well as the Sec translocon. Interestingly,

under UPR stress, Erdj3 is reported to be overexpressed and

exported to the extracellular space to maintain proteostasis

(Genereux et al., 2015). Also, under stress or apoptosis, BiP

and the lectin calreticulin are trafficked to the PM (Zhang et al.,

2010; Genereux et al., 2015), further underscoring the versatility

of ER luminal Hsp70s and JDPs.

Role of cytosolic JDPs

Transmembrane proteins with an extended cytosolic domain

are acted upon by cytosolic chaperones. Hsp70, JDP, and

Hsp90 are involved in the early biogenesis of multiple PM

transporters by interacting with their cytosolic domains (Kim

and Skach, 2012; Donnelly et al., 2013) (Figure 3). They

sequentially pass through three complexes with different co-

chaperone compositions to achieve their active conformation.

First, Hsp70:JDPs interact with the substrates to form the “early

complex”. It prevents the aggregation and misfolding of

substrates and also targets the misfolded proteins for

degradation via ERAD (Box 3). The substrate is then

transferred from Hsp70 to Hsp90 by HOP, forming an

“intermediate complex”. Interaction with Hsp90 leads to the

formation of a “folding complex” and favors substrate

maturation and stabilization (Figure 3).

The early folding of mammalian chloride channel CFTR at

the ER requires Hsp90, Hsp70:DNAJB1/Hdj1, and Hsc70:

DNAJA1/Hdj2 (Meacham et al., 1999; Farinha et al., 2002;

Farinha and Amaral, 2005). Similarly, in HEK293T cells,

Hsp70 (HSPA1A) and Hsc70 (HSPA8), along with JDP,

DNAJA1, regulate the early QC of thiazide-sensitive NaCl

cotransporter (NCC), which further undergo Hsp90 mediated

folding and maturation (Donnelly et al., 2013). Hsp70:JDPs also

aid in the oligomerization and maturation of several membrane

proteins (Li et al., 2017; Needham et al., 2019). Mammalian JDPs,

DNAJB12 and DNAJB14, stabilize and promote tetrameric

assembly of UNC-103, hERG, and Kv4.2 K+ channel subunits

in vitro through an HSP70-independent mechanism. The

oligomerization of DNAJB12 is important for its functions (Li

et al., 2017). These observations reinforce the idea that cytosolic

chaperones are equally important and work as surrogates to

augment ER chaperones in regulating the PQC of PM proteins.

Protein quality control in Golgi

After the PM proteins pass through the ER, they are packaged

into vesicles and transported to the Golgi apparatus, which acts as

the second QC checkpoint. Only a few misfolded proteins escape

the ER PQC, and Golgi helps in 1) the retrotranslocation of

defective proteins to the ER, 2) targeting of protein for

proteasomal degradation, or 3) lysosomal degradation. Golgi is

a central hub for protein sorting and modification of secretory and

PM proteins. Some unassembled PM proteins, which escape the

ER PQC, and reach the cis-Golgi, are retrieved back to the ER by

“retention in ER sorting receptor 1” (Rer1), which mediates ER-

retrieval (these proteins might undergo ERAD). Some mutant PM

proteins further escape ER PQC and Rer1 retrieval and reach the

Golgi. There, they undergo Golgi-PQC and ESCRT (endosomal

sorting complex required for transport)-dependent vacuolar

degradation. Apart from vacuolar degradation, some proteins

also undergo proteasomal degradation by “endosome and Golgi

associated degradation (EGAD)”. However, the mechanism of

substrate recognition and the decision of ER retrieval vs

degradation remains unclear (Rosquete et al., 2018;

Hellerschmied et al., 2019; Benyair et al., 2022; Schwabl and

Teis, 2022). Although likely, the involvement of an Hsp70:JDP

in this process is not reported as yet.

Folding and stability at the PM

PM proteins, passing throughmultiple subcellular organelles,

finally reach their destination, the PM, where various extrinsic, as

BOX 3 ERAD
The Endoplasmic reticulum-associated degradation (ERAD) is an extensive PQC network that oversees the regulated degradation of ER proteins.

ER is the primary site for the folding and maturation of endomembrane, secretory and PM proteins, and failure to reach mature confirmation targets
these proteins for degradation. ERAD pathwaymediates the removal of unfolded, misfolded or unwanted proteins from the ER (Vembar and Brodsky,
2008). ERAD has three major branches based on the site of protein misfolding. Proteins with a lesion on the luminal, transmembrane, and cytosolic
domain are targeted by ERAD-L, ERAD-M, and ERAD-C pathways, respectively. Different classes ofmolecular chaperones, ubiquitinationmachinery,
and other PQC factors regulate these pathways. It involves recognition of misfolded substrates by chaperones, its ubiquitination by E2 ub
conjugating enzymes and E3 ub ligases, extraction out of ER by retrotranslocons, and finally, targeting to the proteasome for degradation (Kumari
and Brodsky, 2021).

Frontiers in Molecular Biosciences frontiersin.org10

Sagarika et al. 10.3389/fmolb.2022.1072242

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1072242


well as intrinsic factors regulate their function/stability.

Moreover, PM is extremely dynamic, with continuous fusion

and fission of membrane components. Further, the lipid and

protein components of the PM are immensely variable

depending on cellular physiology. PM proteins undergo

conformational changes due to various perturbations and

stimuli. These conformational changes are detected by the

plasma membrane PQC (PMPQC) machinery and if required,

the proteins are targeted for degradation (Nikko and Pelham,

2009; Zhao et al., 2013; Ghaddar et al., 2014). Little information is

available on refolding of these proteins at the PM (Bagdany et al.,

2017). Hsp70, along with Hsp90, are well known to regulate the

conformational rearrangement and modulate the ligand binding

activity of several cytosolic steroid receptors (Johnson and Craig,

2000; Pratt and Toft, 2003). It is likely that they regulate the

stability and activity of PM proteins as well. A recent study

underlined the role of Hsp70s in refolding and stabilizing the

misfolded CFTR (Bagdany et al., 2017). Additionally, Hsp90 and

Hsc70 stabilize the mature ΔF508CFTR in post-Golgi

compartments. They reduce its protease susceptibility and

shift the conformation towards native folding. Interestingly,

active Hsc70 and DNAJA2, but not DNAJA1, are required for

the conformational stabilization of the PM ΔF508CFTR at

restrictive temperatures (Bagdany et al., 2017).

At the PM, the extracellular domains of the PM proteins are

exposed and communicate with the outside environment.

Defects in the extracellular domains are linked to various

diseases (Accili et al., 1991; Amagai et al., 2015; Binder et al.,

2018; Guo et al., 2019). Although the presence of proteases and

chaperones, including Hsp70, BiP, and ERdj3, are reported in the

extracellular space, the mechanism by which they regulate the

proteins is yet to be established (De Maio, 2014; Wilson et al.,

2022). Additionally, several Hsp70s are known to associate with

lipids, interact with cell membranes, and even get inserted into

lipid bilayers (Guidon and Hightower, 1986a; 1986b) reviewed in

(De Maio and Hightower, 2021). Hsp70 (HSP1A) is known to

interact with phosphatidylserine (PS) and insert into the PM

during stress recovery to regulate a variety of cellular processes

(Bilog et al., 2019). It has also been shown to induce pores in lipid

membranes and insert into lipid bilayers to form stable ion

conductors (Arispe and De Maio, 2000; Macazo and White,

2014). Only time will tell if these perform some canonical

chaperone functions at the PM.

Endocytosis

PM proteins, once misfolded or no longer required, are

ubiquitinated and removed from the PM. They can be further

targeted for lysosomal degradation or can be recycled back to the

PM after de-ubiquitination. PM proteins undergo endocytosis by

several pathways, broadly categorized into clathrin-dependent or

clathrin-independent mechanisms (Mayor and Pagano, 2007)

(Figure 4). Clathrin-mediated endocytosis is the major and best-

understood pathway for PM protein endocytosis in yeast,

mammals, and plants (Lu et al., 2016; Kaksonen and Roux,

2018; Narasimhan et al., 2020). The process starts with the

association of cytoskeletal factors and adaptor proteins near

the substrate/cargo. It is followed by clathrin coat assembly

and the release of the mature vesicle from the PM. Soon after,

the vesicles are uncoated and fuse with endosomes. Some

proteins in the early endosomes are deubiquitinated and are

recycled back to the PM directly or via the trans-Golgi network. If

not recycled, the ESCRT machinery targets them and forms

MVBs, committing the proteins to lysosomal degradation.

Hsc70:Auxilin are essential for clathrin mediated

endocytosis. During vesicle invagination, Hsc70:Auxilin are

necessary for ATP-dependent clathrin exchange, thus

mediating rearrangement of clathrin coat. At the end of each

cycle, they moderate clathrin dissociation and possibly prevent

their aggregation in the cytosol. Also, auxilin and Hsc70 may

separately chaperone adaptor proteins, further helping to

generate new clathrin coated pits (CCPs) (Jiang et al., 2000;

Wu et al., 2001; Eisenberg and Greene, 2007; Sousa and Lafer,

2015).Yeast contains a single JDP, auxilin (Swa2), while in

humans, Auxilin (Aux1/DNAJC6) and cyclin-G-associated

kinase (GAK) Auxilin-2, regulate the clathrin dynamics (Xiao

et al., 2006; Krantz et al., 2013; He et al., 2020). Auxilin (Aux1/

DNAJC6) is nerve specific, while its homolog cyclin-G-associated

kinase (GAK) or Auxilin-2 is ubiquitously expressed.

Unlike auxilin, GAK is also enriched in the Golgi (Greener

et al., 2000).

In yeast, normal cell development and endocytosis depend on

the interaction of Swa2 (by J-domain andTPR-domain) withHsp70,

while Swa2-mediated clathrin binding is expendable (Gall et al.,

2000; Xiao et al., 2006; Krantz et al., 2013; Tuo et al., 2013). In HeLa

cells, transient GAK knockdown affected the transferrin uptake in a

J-domain-dependentmanner. The lack of J-domain did not affect its

interaction with clathrin or other endocytic factors but disabled

GAK’s ability to uncoat clathrin (Zhang et al., 2005). Stable depletion

of GAK inhibits the uptake of epidermal growth factor (EGF),

resulting in changes in downstream EGFR signaling and a 50-fold

increase in the expression levels of EGF receptor (EGFR) (Zhang

et al., 2004). Depletion of GAK reduces the trans-Golgi-associated

perinuclear clathrin and PM CCPs. Besides clathrin uncoating, the

depletion of GAK also partially inhibited trafficking between the

trans-Golgi network (TGN) and lysosomes. It alters the Golgi

morphology, probably by affecting the clathrin adaptors (Zhang

et al., 2005, 2004; Lee et al., 2005). In plants as well, the role ofHsp70:

JDP in uncoating of CCV (Clathrin coated vesicles) is reported.

AUXILIN-LIKE1 stimulates vesicle uncoating in the presence of

HSC70 and interacts with SH3P1 and clathrin in vitro (Lam et al.,

2001). In planta studies showed that overexpression of both

AUXILIN-LIKE1 and 2 leads to inhibition of endocytosis, most

likely by preventing clathrin recruitment to endocytic pits. They

result in an arrest in seedling growth and development. However,
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auxilin-like1/2 loss-of-function mutant does not result in endocytic

or developmental defects, suggesting a possible redundant role of

AUXILIN-LIKE 3-7 proteins (Adamowski et al., 2018).

Degradation of PM proteins

Genetic mutations, biosynthetic errors or cellular stress can

cause misfolding and aggregation of proteins. Clearing of non-

functional or cytotoxic PM proteins by different cellular

degradation machineries is essential for maintaining cellular

homeostasis. Luckily, for PM proteins, such PQC checkpoints

operate right from their synthesis in the cytosol, their movement

through the endomembrane system to their final destination in

the PM. Hsp70s and JDPs have a major role in the solubilization

of protein aggregates and the degradation of unfolded proteins

(Rosenzweig et al., 2019). Interaction of Hsp70:JDPs with the

degradation-competent clients may act as a signal for the

recruitment of E3 ubiquitin ligases, thereby targeting proteins

for protein degradation (Buchberger et al., 2010). Additionally,

Hsp70:JDPs interact with the substrate to avoid protein

aggregation or keep it in a competent state for ubiquitination

and further targeting to proteasomal degradation (Vembar and

Brodsky, 2008; Shiber et al., 2013). Below we discuss examples

where Hsp70:JDPs systems target specific PM proteins for

degradation, if deemed unfit.

Failure to enter the ER

Failure of PM proteins to enter the ER results in

ubiquitination, either co- or post-translationally, followed by

FIGURE 4
PM protein recycling/degradation by clathrin mediated endocytosis. In response to misfolding or stimuli mediated conformational changes,
Hsp70:JDPsmediate PM proteins’ ubiquitination H (1) (Bagdany et al., 2017). The proteins undergo clathrin-independent (2) or clathrin-dependent (3-
6) endocytosis. They can be targeted for lysosomal degradation (8-9) or recycled back to PM (10-11). A specific set of Hsp70:JDPs regulate clathrin-
dependent endocytosis Y,H,A, by mediating the membrane invagination, clathrin exchange, uncoating and recycling of clathrin to new vesicles
(Greener et al., 2000; Xiao et al., 2006; Adamowski et al., 2018). Y Literature available in Yeast; H Humans; A Arabidopsis.Names of Hsp70 and JDPs are
denoted in different colors; Black for Yeast; Blue for Human; Red for Arabidopsis.
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their proteasomal degradation (Wang et al., 2013; Tian et al.,

2021). Yeast cytosolic Hsp70:JDP (Ydj1) mediate proteasomal

degradation of import-incompetent proteins (Park et al.,

2007). Similarly, in human MCF-7 cell lines, Hsp70 and

DNAJB1 mediate rapid nascent polypeptide degradation

during heat stress (Tian et al., 2021). The mammalian

Hsp70 and DNAJA1 interact and facilitate the degradation

of the PM protein, Apolipoprotein B (ApoB) (Kumari et al.,

2022). In lipid-deficient conditions, ApoB does not enter the

ER and is deposited in the cytoplasm, where it is targeted for

degradation by Hsp70, Hsp90, Hsp110, and the ER membrane-

associated JDP, p58IPK (Zhou et al., 1998; Kumari and

Brodsky, 2021).

Defects in folding andmaturation in the ER

The ER harbors a very stringent PQC network where the

quality and quantity of proteins are tightly regulated. However,

defects in protein folding or maturation often lead to its

degradation by ER-associated degradation (ERAD) (Box 3)

or selective ER autophagy (Anelli and Sitia, 2008; Chino and

Mizushima, 2020). Hsp70:JDPs regulate the folding,

maturation as well as degradation of PM proteins both in

the cytosol and the ER lumen (Figure 3). A vast portion of

PM proteins are transmembrane proteins and are acted upon by

both cytosolic and luminal PQC components. The Hsp70:JDPs

interact with the misfolded proteins to mediate their

ubiquitination and maintain them in a retro-translocation

competent state (Silberstein et al., 1998; Gillece et al., 1999;

Nishikawa et al., 2001; Vembar and Brodsky, 2008; Xie and Ng,

2010; Shiber et al., 2013; Pobre et al., 2019). Upon

ubiquitination, the ERAD substrates are retrotranslocated to

the cytosol by the AAA-ATPase, Cdc48, and targeted for

proteasomal degradation (Wolf and Stolz, 2012). In yeast,

Hsp70 (Ssa1), Hsp42, and Hsp100 interact with the

substrates to prevent aggregation (Shiber et al., 2013;

Doonan et al., 2019).

Role of luminal JDPs
In budding yeast, luminal JDP, Scj1, interacts with

E3 ubiquitin ligase, Hrd1, for the degradation of soluble

proteins. However, the luminal Hsp70:JDPs have little effect

on the degradation of membrane proteins (Plemper and Wolf,

1999; Nishikawa et al., 2001; Mehnert et al., 2015). In higher

eukaryotes, the role of ER luminal JDPs in regulating PM

proteins is more evident. In human m17 neuroblastoma cells,

Hsp70, BiP, targets the GPI-anchored mutant prion protein, PrP

Q217R, for proteasomal degradation (Jin et al., 2000). A study in

mice showed that BiP regulates the degradation of pre-B cell

receptors (pre-BCR), thus regulating pre-BCR signaling (Ji et al.,

2016). Similarly, in HEK293 cells, BiP, along with ERdj4 and

ERdj5, regulate the ERAD of misfolded surfactant protein C (SP-

C) proprotein associated with human interstitial lung disease

(Dong et al., 2008). Erdj4 (DNAJB9) also physically interacts and

regulates the expression of cystic fibrosis transmembrane

conductance regulator (CFTR) at the cell surface (Huang

et al., 2019).

Interestingly, luminal JDPs can also regulate the degradation

of substrates, independent of Hsp70. One of the ERAD

substrates, the mammalian Epithelial sodium channel (ENaC),

is composed of α-, β-, and γ-subunits. Nearly 75% of each subunit

resides in the ER lumen and membrane, and ~25% resides in the

cytoplasm. In the kidney, the β- and γ-subunits are constitutively
expressed at much higher levels than the α-subunit. In the

absence of the α-subunit, the β- and γ-subunits undergo

degradation. Jem1, Scj1 (in yeast), and Erdj3, Erdj4 (in

Xenopus oocyte) can function independently of luminal

Hsp70 to facilitate ENaC degradation (Buck et al., 2010).

Role of cytosolic JDPs
Often the large, multimeric PM proteins harbor an

extended cytosolic domain. Cytosolic Hsp70:JDPs often

interact with these domains to regulate their maturation or

degradation. In budding yeast, two JDPs, namely Hlj1 and

Ydj1, regulate the degradation of various misfolded PM

proteins, including mammalian protein CFTR, ABC

transporter Ste6* and Pma1-D378S mutant (Zhang et al.,

2001; Huyer et al., 2004; Youker et al., 2004; Han et al.,

2007; Nakatsukasa et al., 2008). Both Hlj1 and

Ydj1 associate with the ER and act in an Ssa1-dependent

manner. Interestingly, the majorly cytosolic JDP, Sis1, also

regulates the ubiquitination of a subset of ERAD substrates;

however, its Hsp70 co-chaperone activity seems to be

dispensable for the function (Shiber et al., 2013). It is

suggested that depending on the extent of misfolding, the

role of Ssa1 might be dispensable for substrate ubiquitination

(Shiber et al., 2013). This is not particularly surprising, as

many JDPs carry out chaperone functions that do not require

their J-domain (Ajit Tamadaddi and Sahi, 2016). JDPs, Cwc23,

and Jid1, are also reported to affect the ERAD of certain

substrates in unknown ways (Taxis et al., 2003). However,

later studies found Jid1 to be localized to mitochondria and

Cwc23 to have nuclear functions (Bursać and Lithgow, 2009;

Sahi et al., 2010). Hence, the observed effects might not be

direct.

In mammalian systems, CFTR is one of the most

extensively studied PM proteins. The most prevalent CFTR

mutation, ΔF508, is found in ~90% of cystic fibrosis (CF)

patients, where it impairs CFTR folding, inhibits channel

gating, and decreases PM stability. Cytosolic (DNAJB1/

Hdj1, DNAJA1/Hdj2) and ER membrane JDPs (DNAJB12,

DNAJB14) work with cytosolic and luminal Hsp70s and

Hsc70, respectively, to oversee the ER-PQC of CFTR

(Meacham et al., 1999; Choo-Kang and Zeitlin, 2001;

Farinha et al., 2002; Grove et al., 2011; Sopha et al., 2012;
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Li et al., 2017). In vitro studies suggest that the co-translational

interaction of Hsc70 makes CFTR less susceptible to

degradation, while post-translational interaction favors

degradation (Matsumura et al., 2011). Co-overexpression of

Hsp70 and DNAJB1 in Baby hamster kidney (BHK) cells

stabilized the immature form of wildtype CFTR but not

mutant ΔF508 CFTR (Farinha et al., 2002). In HeLa cells,

DNAJA1 and Hsc70 interact with the cytosolic domain of

misfolded (ΔF508 CFTR) as well as wild-type CFTR. While the

misfolded protein is targeted for degradation, chaperones

interact with the wild-type CFTR only until it attains its

tertiary structure. The levels of complex formation between

ΔF508 CFTR and DNAJA1/Hdj2-Hsp70 are approximately 2-

fold higher than those with wild-type CFTR (Meacham et al.,

1999; Grove et al., 2011), suggesting additional chaperone

assistance required by the mutant CFTR as compared to the

wild-type protein. Another mammalian channel protein,

ENaC, is differentially regulated by Hsc70 and Hsp70.

While overexpression of Hsc70 favors the degradation,

Hsp70 stabilizes the protein, thus modulating its trafficking

and surface expression (Chanoux et al., 2013; Kang and Jeon,

2021). The Hsp70:DNAJA1 regulate the degradation of CFTR

and other proteins via the CHIP E3 Ub ligase mediated

ubiquitination. Similarly, NaCl cotransporter (NCC), whose

loss of function results in Gitelman syndrome, is regulated by

cytosolic Hsp70-JDPs. HEK293T cells expressing Gitelman

mutants of NCC showed enhanced association with

Hsp70 and Hsp40 as compared to the wild-type protein

leading to higher CHIP-mediated degradation (Donnelly

et al., 2013).

The ER membrane anchored JDPs, DNAJB12 and

DNAJB14, also regulate the QC of PM proteins at their

cytosolic domain. Modest elevation of DNAJB12 (but not

its J-domain mutant, DNAJB12-QPD) decreased the

accumulation of both wild-type and mutant (ΔF508) CFTR

by increasing its association with Hsc70 and the ubiquitin

E3 ligase, RMA1. Depletion of DNAJB12 increased CFTR

folding efficiency up to three-fold and permitted a pool of

ΔF508 CFTR to fold and escape the ER (Grove et al., 2011). It

is suggested that DNAJB12/14 enhance the protein

degradation in an Hsp70-dependent manner to regulate the

maturation of proteins in cells. DNAJB12/14, although

involved in ERAD of CFTR and gonadotropin-releasing

hormone receptor mutant, S168R-GnRHR (Houck et al.,

2014), they do not participate in ERAD of misfolded hERG

(K+ channel) proteins (Li et al., 2017). Rather, DNAJA1,

DNAJA2, and DNAJA4 overexpression in HEK-293 and

HeLa cells inhibited the hERG maturation and trafficking

in an Hsc70-dependent manner (Walker et al., 2010). It

suggests the specificity of JDPs in handling different PM

proteins.

Besides the ERAD pathways, multiple PM proteins are also

degraded by selective ER-autophagy (Figure 3). Often, large

misfolded membrane proteins can accumulate in complex

tertiary structures, which are difficult to unfold and

retrotranslocate. These ERAD-resistant clients are degraded

by ER autophagy, for e.g., misfolded gonadotropin-releasing

hormone receptor (GnRHR) E90K-GnRHR and N1303K-

CFTR (Houck et al., 2014; He et al., 2021). Intuitively,

inefficient ERAD also leads to the autophagy of some

substrates. Although the mechanism is not completely

understood, Hsp70 and DNAJB12 have been shown to

interact with the autophagy machinery in the presence of

specific complex substrates. Depletion of DNAJB12 inhibits

the lysosomal targeting of N1303K-CFTR in HEK293 cells.

Also, the overexpression of the DNAJB12-QPD mutant

(J-domain mutant) prevented ER phagy. Hence, it acts with

the partner Hsp70 to regulate ER phagy of complex substrates

(He et al., 2021). However, at this point, the involvement of

other Hsp70:JDP machinery in ER autophagy cannot be

ruled out.

Removal of proteins from PM

PM Proteins destined to be degraded are recognized at their

exposed cytosolic domain. Cytosolic adaptors (in yeast) or

chaperones (in mammals) interact with the substrates,

recognize the conformational changes, and recruit the

E3 ubiquitin ligases (Babst, 2014; MacGurn, 2014).

Ubiquitination of proteins ensures their endocytosis and

fusion with early endosomes. Further, they can be

deubiquitinated and recycled back to the PM directly or

through Golgi; else, they are targeted for MVB sorting and

undergo lysosomal degradation (Figure 4).

In yeast, the major components of the PMPQC pathway

include the ART-Rsp5 system, which recognizes,

ubiquitinates, and targets proteins for degradation.

Although the turnover of multiple PM proteins is regulated

by E3-ubiquitin ligase, Rsp5, the degradation of misfolded PM

proteins in yeast is poorly understood. To this end, it is even

proposed that in budding yeast, PM proteins with an exposed

misfolded cytosolic domain might be escaping the PMPQC

network and may not be as efficiently degraded (Lewis and

Pelham, 2009). The multi-functional JDP Ydj1, although it

operates with Rsp5 for cytosolic heat-denatured substrates, it

is not involved in the QC of PM proteins (Fang et al., 2014). It

is still an open question if another JDP operates with Rsp5 for

the degradation of PM proteins. Nevertheless, Caj1, a cytosolic

JDP in budding yeast, negatively regulates the Rsp5-mediated

degradation of tryptophan transporters Tat1 and Tat2

(Welsch et al., 2003; Hernández-López et al., 2011; Dobriyal

et al., 2020). Interestingly, Caj1 also associates with different

lipids, reportedly phosphatidic acid and phosphatidylinositol-

5-phosphate. Besides being majorly cytosolic, Caj1 is partially

localized to the PM as well (Dobriyal et al., 2020; Herianto
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et al., 2021; Zhang et al., 2021). Overexpression of Caj1 (but

not Caj1 H34Q mutant) stabilized tryptophan permeases

Tat1 and Tat2, suggesting a possible role of Hsp70:JDP

machinery in regulating the stability/turnover of PM

proteins in budding yeast.

In mammals, a more elaborate PMPQC network has been

deciphered that regulates the turnover of misfolded proteins.

Several molecular chaperones and co-chaperones recognize

and decide the fate of the misfolded PM proteins (Okiyoneda

et al., 2011). Similar to the chaperone-mediated substrate

handling at the ER, defective PM protein degradation is

regulated by JDP-Hsp70-Hsp90s. However, Hsp70/

HSPA1A, Hsc70/HSPA8, DNAJA1, and DNAJB2 are

among the major components of PMPQC, deciding the

fate of misfolded proteins (Okiyoneda et al., 2011). They

help in the ubiquitination of proteins by the recruitment of

the E3 ubiquitin ligase, CHIP (C-terminal Hsp70 interacting

protein) (Connell et al., 2001). Hsp70, through its C-terminal

EEVD motif, directly interacts with the N-terminal TPR

domain of CHIP. The interaction stalls protein folding

and concomitantly facilitates the ubiquitination of Hsp70-

bound substrates. In this process, the JDP stimulates the

chaperone activity of Hsp70 and CHIP and increases client

ubiquitination (Rosser et al., 2007; Zhang et al., 2015).

Several misfolded PM proteins undergo Hsp/c70-JDP-

CHIP mediated degradation. For example, the mature,

glycosylated ΔF508CFTR interacts with Hsp70 and

DNAJB2/Hdj1 under restrictive conditions in post-Golgi

compartments in BHK-21 cells (Bagdany et al., 2017). Si-

RNA mediated downregulation of Hsc70 (HSPA8),

DNAJB2 (Hdj1), DNAJA1 (Hdj2), and DNAJC7 (TPR2)

caused the accumulation of mutant ΔF508CFTR at the PM

of HeLa cell lines (Okiyoneda et al., 2010). Similarly, JDP,

Hsp70, Hsc70, and Hsp90, along with CHIP, are known to

interact with the unfolded protein CD4T-λC at the PM but not

with the native protein to facilitate ubiquitination and

degradation (Apaja et al., 2010). CHIP-mediated PQC was

also found for dopamine D4.4 receptor (DRD4) and

vasopressin V2 receptor (V2R) mutants, which escape the

secretory pathway PQC, and undergo rapid degradation at

the PM (Apaja et al., 2010). In yet another case, defects in the

turnover of the hERG K+ channel, which leads to long QT

syndrome 2 (LQT2), is also regulated by Hsp70-CHIP.

Disruption of Hsp70’s interaction with CHIP prevented

substrate-based rapid endocytosis of both wild-type as well

as unstable mutant hERG from the PM (Apaja et al., 2013). In

the human collecting duct (mpkDCT and mpkCCD cells),

CHIP-Hsc70 directly interact and regulate the degradation of

water channel aquaporin (AQP2), thus maintaining the urine

osmolarity and renal water handling (Lu et al., 2007; Wu et al.,

2018). A JDP co-chaperoning Hsp70 in these processes is yet

to be identified.

Conclusion and perspectives

PMproteins are essential for life. During their lifetime, they pass

through a series of rigorous PQC checkpoints that ensures their

proper folding, stability, functionality, and finally, their abundance

in the cell. Hsp70:JDP networks in the cytosol, the ER, as well as at

the PM are emerging as the key players that assist in the trafficking,

biogenesis, maturation as well as degradation of PM proteins. As

they navigate inside the cell, PM proteins are relayed through many

different JDPs. And depending on the type of client, JDPs may have

pro-folding or pro-degradation functions. Understanding how

Hsp70:JDP machinery manages to perform this task is the

Achilles heel of this field. Interestingly, multiple JDPs

sequentially operate with a single pool of Hsp70 to perform

rather unique PQC functions on a single PM protein, suggesting

highly intricate and regulated interactions between JDPs with client

proteins and with Hsp70. Finally, the discovery of lipid interacting

and PM-associated Hsp70s and JDPs is bound to bring about a

paradigm shift in our understanding of how these versatile

chaperones cater to the needs of PM proteins at the plasma

membrane.
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