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Twenty-five years have passed since the appearance of the first atomisticmodel

of the nucleosome structure, and since then the number of new structures has

gradually increased. With the advent of cryo-microscopy, the rate of

accumulation of models has increased significantly. New structures are

emerging with different histone variants and a variety of proteins that bind

to nucleosomes. At the moment, there are more than four hundred structures

containing nucleosomes in the Protein Data Bank. Many of these structures

represent similar complexes, others differ in composition, conformation and

quality. In this perspective, we investigate the diversity of known nucleosome

structures, analyze data andmodel quality, variations in histone/DNA content of

nucleosomes and spectrum of their interactors. We outline those parts of the

nucleosome “structurome” that are already explored and those awaiting further

exploration.
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Introduction

Chromatin combines a high degree of compaction with the ability to access the DNA

for transcription. Chromatin is subject to constant rearrangements and does not have a

permanent structure. At the basic level of packaging, eukaryotic DNA forms complexes

with proteins - nucleosomes. Each nucleosome carries about 200 DNA b.p. only

145–147 b.p. of which are associated with proteins constituting nucleosome core

particle (NCP), the remaining 50 bp are called linkers, as they connect neighboring

NCPs (Figure 1D). The protein core of the nucleosome comprises four types of histones,

which in pairs form histone dimers H3-H4 and H2A-H2B. A complete nucleosome

contains two dimers of each type, however, histones can form smaller subnucleosomal

particles (Zlatanova et al., 2009; Armeev et al., 2019). There is a separate type of histone,

the linker histone also called H1 histone (or H5 in avian species), which binds to the

nucleosome to form a chromatosome. Chromatosomes are more stable than nucleosomes

and allow chromatin to be packed more tightly (Fan et al., 2003). Histone genes are

divided into replication-dependent (canonical histones) and replication independent
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(histone variants), which may be involved in specific nuclear

processes (Seal et al., 2022). Nucleosomes are also the target for

an extensive family of non-histone chromatin proteins. Such

proteins specifically interact with nucleosomes to perform a wide

range of functions, from kinetochore formation during DNA

replication to regulation of transcription and DNA repair.

The first atomic NCP structure was obtained in 1997

(deposited to PDB in 1998) by X-ray diffraction (XRD)

(Luger, 1997). In the past 25 years after the first one, 441 new

nucleosome containing structures were released (as of

20 September 2022), nearly half of them were released in the

last 5 years. Such burst could be explained by recent rapid

progress in cryo-electron microscopy (cryoEM). Numerous

structures of nucleosomes with histone variants have

appeared, as well as structures of complexes with other

chromatin proteins. However, this flow of structures makes it

difficult to keep pace and see all available information about

chromatin structure at its basis. In this work, we examine a set of

all currently available structures of nucleosomes and their

complexes. We evaluate the diversity of nucleosome

components and proteins associated with them.

Resolution and quality of known
nucleosome structures

Since the first structure released in 1997 until 2015 all

113 structures of nucleosomes in PDB were obtained by XRD.

The yearly median resolution of those structures was better than

3 Å, and is sufficient for protein backbone and large side chains

position determination. The best structure in terms of resolution

was released in 2002 (Davey et al., 2002). The structure presented

FIGURE 1
The distribution of nucleosome-containing structures published per year since 1998 (A) subdivided by acquisition method, (B) structure
resolution distribution (C) subdivided by type of structure: Free nucleosomes or nucleosomes in complex with non-histone proteins. (D)
Visualization of nucleosome in complex with linker histone, linker DNA region is shown in light gray. (E) Variety of nucleosome components among
the known structures. The PDB IDs for nucleosome component variants are presented in Supplementary Table S1.
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a complete atomic picture of a nucleosome assembled on a

modified human α-satellite DNA sequence, together with

bound water molecules and partially resolved histone tails. In

2016 the first structure of nucleosome obtained by cryoEM was

published with resolution of 4.5 Å (Wilson et al., 2016, 1) and

ever since 253 structures were obtained with cryoEM and

188—with XRD (Figure 1A). As a result, the per-year median

resolution of nucleosome structures has decreased significantly,

sometimes worse than 4 Å. (Figure 1B). However, the criteria for

determining resolution may be different between cryoEM

structures. The resolution in cryoEM structures is unevenly

distributed and could be significantly worse in the regions of

interest. Despite a general decrease in the resolution of structures,

the quality of the models is growing, judging by the clash-score,

rotamer-outliers (Supplementary Figures S1A,B). Such a trend

suggests that the models might be biased towards optimal

molecular geometry rather than experimental structure. The

local resolution is usually lower in highly mobile regions, such

as DNA in nucleosomes, flexible histone tails and interacting

proteins. CryoEM resolution of nucleosome-containing

structures is steadily improving (Supplementary Figure S1C),

reaching the XRD level of detail for some structures. We expect

an improvement of nucleosome structure resolutions in the

future by establishing consistent protocols as the method

matures. However, for EM structures it is always important to

assess the local resolution of electron density maps to separate the

confident model areas from vaguely defined zones.

Variety of DNA and histones in
nucleosome structures

It is known that the structure of nucleosome depends on the

DNA sequence. There are three main groups of nucleosomes

containing such sequences present in PDB. The largest group

contains “Widom 601” sequence (Lowary and Widom, 1998) and

its derivatives—246 structures (this is an artificially created high

affinity nucleosome positioning sequence). The second sequence

group is α-satellite sequences and their derivatives—166 structures

(α-satellite sequence is a natural sequence from human centromeric

chromosome region). Most of the nucleosome structures in this

group contain 146 bp of DNA (90 structures), 26 structures contain

shortened 145 bpDNA α-satellite sequence and 26 structures contain
longer 147 bp DNA sequence. The third sequence group contains

10 structures with telomeric sequence and several other sequences

(cen3 DNA, MMTV, DNA1, sat2 and Human-D02, see

Supplementary Table S1). Despite the fact that hundreds of

different nucleosome structures are stored in PDB, their DNA

sequences belong to a rather limited set. It is clear that increase in

the variety of different DNA types in nucleosome structures is vital

for understanding the nucleosome positioning. The median

resolution across all nucleosomal structures is 3.3 Å, since DNA

in nucleosomes is more mobile than histones the effective resolution

in DNA areas is lower. Thus, half of nucleosome structures likely

inherit DNA geometry from other high-resolution structures used as

templates.

Histone variants provide some specific functions, for example

participate in various biological processes such as gene expression,

DNA replication and DNA damage repair. Even a few amino acid

substitutions in histone variants may alter nucleosome dynamics and

stability (Dai et al., 2021). Therefore, the NCP structures with

different histone sequences may shed light on the physical nature

of the specific biological processes in which histone variants are

involved.

We employed histone variant annotation from HistoneDB

2.0 (Draizen et al., 2016) to assess the distribution of histone

variants in NCPs across the PDB (Figure 1E). H3 is the most

represented histone type in nucleosome structures; PDB contains

the following variants: H3.3, cenH3, TS H3.4, H3.5, H3.6, H3.Y.

There are structures with H2A variants H2A.1, H2A.B, H2A.X,

H2A.Z and macroH2A. However, macroH2A is present in

truncated form (around 107 out of 370 amino acids). Variants

H2A.L, H2A.P, H2A.W are still missing in PDB. The latter

variant H2A.W is a plant specific histone with a unique SPKK

motif in the C-terminal tail, whose implications on nucleosome

structure are yet to be characterized. There is only one H2B

variant present in PDB-deposited nucleosome structures -

H2B.1, while other histone variants, which are involved in

spermiogenesis (H2B.W, sperm H2B and subH2B) are not

available.

The effect of histone variants on the nucleosome structure

and dynamics is one of the major challenges in structural studies.

However, even canonical histones vary between species. Most of

the nucleosomes contain human and model organisms histones:

Homo sapiens (219 structures), Xenopus laevis (172),

Saccharomyces cerevisiae (12), Drosophila melanogaster (8),

Mus musculus (7). But there are structures of nucleosomes

with histones of methylotrophic yeast Komagataella pastoris

which are used for protein production (PDB ID: 7WLR)

(Fukushima et al., 2022), nucleosome of pathogenic unicellular

eukaryotic parasite Giardia lamblia (PDB ID: 7D69) (Sato et al.,

2021) and human nucleosome with incorporation of protozoan

parasite Leishmania histone H3 (PDB ID: 6KXV) (Dacher et al.,

2019). The first studies of archaea histones date to 1990

(Sandman et al., 1990), however the structure of histone-based

archaeal chromatin was resolved only recently. There is only one

structure of archaeal so-called “hypernucleosomes” from

Methanothermus fervidus (PDB ID: 5T5K) (Mattiroli et al.,

2017), where DNA is wrapped around an “endless” histone-

protein core. Interestingly, several viruses encode their own

histones, while other typo viruses can even incorporate host

eukaryotic histones into their nucleosomes. The first examples of

viral nucleosomes of Marseilleviridae (giant viruses that infect

amoebae) were resolved in 2021 (PDB IDs: 7LV8, 7LV9, 7N8N)

(Liu et al., 2021a; Valencia-Sánchez et al., 2021). Marseilleviridae

histones are present in doublets (H4 is fused to H3 and H2B is
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fused to H2A) and form particles similar to eukaryotic

“canonical” nucleosomes, though less stable and contain only

120 bp of DNA.

Higher order chromatin structures

The linker histone H1 binds to the nucleosome near the DNA

entry-exit point, thus forming a chromatosome. Currently, there

are 33 structures containing linker histone, predominantly

human H1.4 variant (20 structures). Also, nucleosome

structures contain human H1.0 and H1.10 variants, chicken

H.5 and one structure from Xenopus with H1.0 and H1.8.

Variants scH1, TS H1.6, TS H1.7, TS H1.9 are not present in

structure databases now (Figure 1C).

The geometry of nucleosome fibers changes in the presence

of linker histone (Routh et al., 2008). The PDB contains

24 models containing parts of such fibers, both with and

without a linker histone. Here, we assessed the available

models (bioassemblies) and counted nucleosomes located on

continuous double-stranded DNA segments. The majority of

supranucleosomal structures contain two nucleosomes

(11 structures), 8 structures contain three nucleosomes and

5 structures contain four nucleosomes and one structure

contain six nucleosomes (PDB ID: 6HKT). Even larger fibers

containing 12 and 24 nucleosomes were studied (Song et al.,

2014), unfortunately the models were not deposited to the PDB.

The studies of larger fibers are of great importance, though much

more complex due to high flexibility of their structure.

Nucleosome complexes

A plethora of different non-histone proteins interact with

nucleosomes to regulate nuclear processes. It is important to

study the mechanism of such interactions, as they provide an

insight into the fundamental basis of genome regulation. There

are 193 structures that contain NCPs in complex with other

proteins. The first six structures were resolved by XRD in the

period from 2006 to 2013. The interactors resolved in the first

nucleosome complexes were relatively small peptides or proteins

- a fragment of Kaposi’s sarcoma herpesvirus LANA protein

(PDB ID: 1ZLA), regulator of chromosome condensation factor

(RCC1, PDB ID: 3MVD), regulatory protein SIR3 (PDB IDs:

3TU4, 4JJN, 4KUD, 4LD9). Since 2016 the number of complexes

has rapidly increased, most of them are obtained with cryoEM

but have relatively low resolution (Supplementary Figure S1D).

The years 2019 and 2020 were the most fruitful in terms of

published nucleosome complexes - 60 and 38, respectively

(versus 21 and 29 for single nucleosomes). Molecular weight

of NCP interactors spans from 0.4 to 687 kDa with 53 kDa

median. The heaviest complex is the histone acetyltransferase

NuA4 complex, shown in Figure 2 (PDB ID: 7VVZ).

There are 215 structural non-histone nucleosome interacting

partners found in PDB. The majority of proteins belong to

Saccharomyces cerevisiae proteins (96 proteins in

54 structures) and human proteins (78 proteins in

102 structures). Interestingly, there are only 15 nucleosomes

containing Saccharomyces histones. The half of interactor

proteins (94 out of 215) are present only in a single structure,

and 89 are present in two or more structures. Not all protein

sequences are resolved in the structures, but the length of the

resolved protein fragments steadily increases (Supplementary

Figure S2A).

To assess the functional diversity of NCP complexes with

non-histone interactors we designed a simplified protein

classification scheme [based on UniProt protein annotation

(The UniProt Consortium, 2021) and Gene ontology

(Ashburner et al., 2000; The Gene Ontology Consortium,

2021)]. This scheme describes Biological Process, Molecular

function and association of structure with histone post-

translational modifications (PTM). According to this scheme,

the majority of NCP complexes with non-histone interactors

belong to the following biological processes: Transcription

associated (112 structures), DNA repair (34) and Cell division

(24), (Supplementary Figure S2B).

There are five most represented molecular functional protein

groups in PDB by our classification: PTM writers (56 structures),

Chromatin remodelers (40), Transcription factors (19), RNA

polymerases (17) and complexes with Cyclic GMP-AMP

synthase (guanosine monophosphate-adenosine

monophosphate synthase) (noted as cGAS) (11) (Figure 2).

There are 17 structures of NCP with RNA polymerase.

However, there are no human RNA polymerases, even in

complexes with human histones. All interactors in this group

are from Saccharomyces cerevisiae or Komagataella phaffii.

We also analyzed the representation of human chromatin

proteins of different functional classes in the structures of the

complexes, Supplementary Figure S2C. The most structurally

studied class is kinetochore components (70%). In other classes

(Chromatin remodelers, PTM erasers, PTM readers, PTM

writers) the range of coverage is 2%–18%.

One of the epigenetics regulation layers is histone post

translational modifications, which can alter nucleosome

structural dynamics and regulate DNA accessibility (Bernier

et al., 2015; Brehove et al., 2015; Kim et al., 2015). We analyzed

NCP complexes’ structures for association with histone PTMs

and revealed that one-third of NCP complexes is associated

with methylation and one-seventh with ubiquitination,

Figure 2. Human most studied methylation sites include

H3K4, H3K9, H3K27, H3K36, H3K79, H4K20, H3R8,

H4R3 [annotated at HISTome 2 (Shah et al., 2020)]. The

largest number of structures is associated with methylation

of H3K4 (16 structures) predominantly by COMPASS

complex, this mark indicates active gene promoters.

H3K79 methylation—one of marks of transcription
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regulation and DNA damage response is presented in

13 structures and the mark of active chromatin H3K36—in

9 structures. Currently, 8 out of 30 human histone lysine

methyltransferases are in the structures of NCP complexes

and there are no structures of NCP in complex with human

methyltransferases for H3K9 and H4R3 sites. First structures

with acetylation machinery appeared in 2022 (PDBs: 7W9V,

7VVZ, 7VVU). Less than 10 structures are linked with writing

or reading PTMs from the following sites: phosphorylation of

H3T3; methylation of H3K27, H4K20; demethylation of H3K4,

H3K9 and ubiquitination of H2AK15, H2A119, H2AK127,

H2AK125, H2AK129, H2BK120 Figure 2, Supplementary

Table S2.

Another key functional class of chromatin complexes is

chromatin remodelers, which modify the composition or

location of nucleosomes using the energy from ATP hydrolysis.

The resolution revolution in cryoEM contributed to the emergence

of chromatin remodeler typo complexes in 2017. Chromatin

remodelers are divided into four families, the most represented

in complexes with nucleosomes is SWI/SNF family (29 structures),

followed by CHD (13), INO80 (6) and ISWI (5) (Supplementary

Table S2). Thus, the discovered structures cover all known

remodeler families, and even if the resolution is low, it is

possible to obtain some mechanistic insights about protein-

DNA interactions. The next stage of nucleosome complexes

research might be expanding the range of proteins interacting

FIGURE 2
Representation of NCP in protein complexes. The bar plot indicates the number of structures annotated by the molecular functions (see text).
The structures of class representatives are depicted in circles with PDB IDs. The panel around PTM (post-translational modification) writers
represents a number of structures associated withmodification (methylation, ubiquitination, acetylation, PARylation and phosphorylation) of specific
sites. The panel around chromatin remodelers represents the number of structures in the chromatin remodeler family, which are additionally
subdivided into human and non-human complexes. The infographic does not include the following categories: Histone chaperone (three
structures), Histone exchange (two structures), DNA integration (two structures). The PDB IDs for each protein category are presented in
Supplementary Table S2.
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with nucleosomes to other DNA interacting proteins. For example,

there are currently no structural details about the interplay

between nucleosome and CRISPR-Cas systems, which are

potential candidates for novel therapy approaches and detection

systems (Yarrington et al., 2018; Novikov et al., 2021).

Nucleosome complexes in human
pathologies

Nucleosomes play a pivotal role in chromatin maintenance

and gene expression regulation. There are well-studied histone

mutations which lead to cancers (Nacev et al., 2019; Espiritu

et al., 2021). The part of these histone mutations is represented

in NCP structures: 23 out of 434 nucleosome structures contain

the following histone mutations: Lysine to Glutamine (KQ)

Substitutions in the H3 and H4 Histone-Fold Domains (Iwasaki

et al., 2011), oncohistone mutations H3.3K36M (yeast and

human nucleosomes) (Liu et al., 2021b), H3 and H4 mutated

residues located at the protein–DNA interfaces flanking the

nucleosomal dyad (Muthurajan et al., 2004).

We analyzed non-histone nucleosome structural interactors that

are involved in oncogenesis by OncoKB annotation (Zdobnov et al.,

2021). To increase the number of proteins, we also considered

human ortholog proteins for non-human proteins from OrthoDB

(Zdobnov et al., 2021). As a result, 24 out of 105 human nucleosome

interacting genes are annotated in OncoKB (Chakravarty et al.,

2017): five oncogenes (EZH2, NSD2, SOX2, DOT1L, SMARCE1)

and 18 Tumor Suppressor Gene (ARID1A, BRCA1, DNMT3A,

EP300, EZH2, PBRM1, SETD2, SMARCA4, SMARCB1, ARID2,

BARD1, KMT2A, KMT2C, SUZ12, PARP1, DNMT3B, SMARCE1,

TP53BP1).

Design of novel compounds for epigenetic targets requires

detailed structural information of the interaction interface.

Meanwhile, there are only 4 non-histone nucleosome interacting

proteins which are approved as targets for epigenetic drugs: Poly

[ADP-ribose] polymerase 1 (P09874), Poly [ADP-ribose] polymerase

2 (Q9UGN5), DNA (cytosine-5)-methyltransferase 3A (Q9Y6K1),

Histone-lysine N-methyltransferase EZH2 (Q15910). To date, one

molecule is in clinical trials targeting Lysine-specific histone

demethylase 1A (O60341) as provided by ChEMBL database.

Discussion

Histone proteins are among the most conservative proteins, and

indeed from the first glance all nucleosomes in PDB look alike.

However, nucleosomes differ in histone variants, PTMs DNA

sequences and there are chromatin proteins that alter their structure.

Sequence-dependence of nucleosome assembly still remains

a subject of debate. Unfortunately, the variety of PDB-deposited

nucleosomal DNA sequences is limited. Moreover, the majority

of nucleosome models do not have sufficient resolution and the

structure of DNA in such models is usually derived from other

high-resolution structures. There is a strong need for systematic

research of DNA sequence influence on nucleosome structure

and positioning. We believe that such studies currently are

limited by cryoEM data analysis pipelines, which limit the

ability to reconstruct relatively flexible DNA.

Another under-researched field of nucleosome structural biology

is that dealing with the effects of PTMs on nucleosome structure.

Given the amount of different PTMs and their combinations, such

effects could be feasibly studied in silico via full atom molecular

dynamics simulation. Besides, the majority of PTMs are located in

intrinsically disordered histone tails, thus making computational

methods even more suitable for this task.

Large complexes of nucleosomes and parts of chromatin fibers

appear in PDB. The size of structures grows together with their

conformational flexibility and heterogeneity, making it difficult to

apply structural biology methods. XRD structures are influenced by

crystal packing effects; cryoEM is not yet capable of reconstructing

the structure ensembles of highly flexible complexes. Nevertheless,

there are already structures of large complexes that reveal functional

roles of nucleosomes, such as nucleosome rearrangements during the

RNA polymerase II passage (Kujirai et al., 2018). In order to explore

such structures, it is necessary to combine structural biologymethods

and integrative modeling approaches based on different

heterogeneous experimental datasets (Webb et al., 2018).

Despite a certain number of resolved structures of NCP in

complexes with other proteins (193 structures), the set of known

interactor structures is incomplete. Nonetheless, there are resolved

complexes of nucleosomes with all main chromatin protein

categories and even all chromatin remodeler families. The latter

structures provided crucial molecular details of remodelers action

and an interplay between DNA and histone octamer configuration

during nucleosome remodeling (Farnung et al., 2017; Liu et al., 2017).

However, the number of structures varies considerably between

chromatin protein categories and the representation of functional

categories is very heterogeneous. Among the PTM writers the

majority of resolved nucleosome complex structures are associated

withmethylation, while acetylation plays an equally important role in

the regulation of nuclear processes. The first structures with

acetyltransferases were resolved this year. There are NCPs in

complex with methyltransferases for extensively studied lysine

methylation, however there are no structures with arginine

methyltransferases. There is a plethora of possible PTMs

including some emerging noncanonical histone modifications,

which also need to be studied to reveal a specific mechanism of

their functioning.

In this perspective, we considered the diversity of nucleosome

structures and their complexes. Nucleosome structural studies are

useful not only for fundamental science, but also for a number of

applications. For therapeutic applications, non-histone interactors

of nucleosomes can serve as specific drug targets, particularly for

treatment of cancer. Histone PTMs (Chervona and Costa, 2012;

Zhao and Shilatifard, 2019; Lee and Kim, 2022), as well as free
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nucleosomes in tissues (Fedyuk et al., 2022) can be used as

prognostic and predictive biomarkers in oncology diagnostics.

On the other hand, it is necessary to study plant nucleosomes,

especially those of cultivated plant species. To sum up, there is a

need to expand our knowledge of molecular epigenetic processes

by building a comprehensive map of nucleosome structural

interactions with non-histone partners for fundamental science,

medicine and agriculture.
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