
Hsp70.1 carbonylation induces
lysosomal cell death for lifestyle-
related diseases

Tetsumori Yamashima1,2*, Takuya Seike3, Shinji Oikawa4,
Hatasu Kobayashi4, Hidenori Kido3, Masahiro Yanagi3,
Daisuke Yamamiya3, Shihui Li3, Piyakarn Boontem2 and
Eishiro Mizukoshi3

1Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical
Sciences, Kanazawa, Japan, 2Department of Cell Metabolism and Nutrition, Kanazawa University Graduate
School of Medical Sciences, Kanazawa, Japan, 3Department of Gastroenterology, Kanazawa University
Graduate School of Medical Sciences, Kanazawa, Japan, 4Department of Environmental and Molecular
Medicine, Mie University Graduate School of Medicine, Tsu, Japan

Alzheimer’s disease, type 2 diabetes, and non-alcoholic steatohepatitis (NASH)
constitute increasingly prevalent disorders. Individuals with type 2 diabetes are
well-known to be susceptible to Alzheimer’s disease. Although the pathogenesis
of each disorder is multifactorial and the causal relation remains poorly
understood, reactive oxygen species (ROS)-induced lipid and protein oxidation
conceivably plays a common role. Lipid peroxidation product was recently
reported to be a key factor also for non-alcoholic steatohepatitis, because of
inducing hepatocyte degeneration/death. Here, we focus on implication of the
representative lipid-peroxidation product ‘hydroxynonenal’ for the cell
degeneration/death of brain, pancreas, and liver. Since Hsp70.1 has dual roles
as a chaperone and lysosomal membrane stabilizer, hydroxynonenal-mediated
oxidative injury (carbonylation) of Hsp70.1 was highlighted. After intake of high-fat
diets, oxidation of free fatty acids in mitochondria generates ROS which enhance
oxidation of ω-6 polyunsaturated fatty acids (PUFA) involved within biomembranes
and generate hydroxynonenal. In addition, hydroxynonenal is generated during
cooking deep-fried foods with vegetable oils especially containing linoleic acids.
These intrinsic and exogenous hydroxynonenal synergically causes an increase in
its serum and organ levels to induce Hsp70.1 oxidation. As it is amphiphilic; being
water-soluble but displays strong lipophilic characteristics, hydroxynonenal can
diffuse within the cells and react with targets like senile and/or atheromatous
plaques outside the cells. Hydroxynonenal can deepen and expand lysosomal
injuries by facilitating ‘calpain-mediated cleavage of the carbonylated Hsp70.1’.
Despite the unique anatomical, physiological, and biochemical characteristics of
each organ for its specific disease, there should be a common cascade of the cell
degeneration/death which is caused by hydroxynonenal. This review aims to
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implicate hydroxynonenal-mediated Hsp70.1 carbonylation for lysosomal
membrane permeabilization/rupture and the resultant cathepsin leakage for
inducing cell degeneration/death. Given the tremendous number of worldwide
people suffering various lifestyle-related diseases, it is valuable to consider how
ω-6 PUFA-rich vegetable oils is implicated for the organ disorder.

KEYWORDS

Alzheimer’s disease, calpain-cathepsin hypothesis, hydroxynonenal, non-alcoholic
steatohepatitis, type 2 diabetes

Hydroxynonenal and cell degeneration/
death

Oxidative stress is a complex process. As most of the body’s cellular
energy is manufactured in mitochondria by oxidative phosphorylation
in the electron transport chain, they are major sites generating reactive
oxygen species (ROS). The generation of ROS merely initiates transient
oxidative stress. While ROS attack diverse substances, one of the main
targets is lipids within biomembranes. ROS attack carbon-carbon
double bonds (Ayala et al., 2014) of ω-6 polyunsaturated fatty acids
(PUFA) at biomembranes, essentially linoleic and arachidonic acids,
and generate 4-hydroxy-2-nonenal (hydroxynonenal). The latter is
more stable than ROS which have a relatively short half-life, and
can react with targets like senile or atheromatous plaques far from
the initial site, because hydroxynonenal is water-soluble but
displays strong lipophilic characteristics. So, it has been considered
an ultimate mediator of toxic effects, and currently regarded as a
secondary and long-lasting oxidative stressor (Uchida, 2003;
Bekyarova et al., 2019; Gianazza et al., 2019). Hydroxynonenal is
the most intensively studied aldehyde, and may be either protective
or damaging to the cells, depending on its concentration (Bekyarova
et al., 2019). For example, at low concentrations, it is involved in the
control of signal transduction, gene expression, cell proliferation,
differentiation, and cell cycle regulation. In contrast, at high
concentrations, hydroxynonenal forms adducts with proteins, nucleic
acids and membrane lipids, which leads to the long-standing
cell disorder and the tissue damage (Humphries et al., 1998; Lashin
et al., 2006). As a toxic messenger, it reveals a pathophysiological
role that can propagate and amplify oxidative injury and induce cell
degeneration/death. The cell damage in certain organ can lead to
damage of other organs and cause severe complications.
Accordingly, it is reasonable to speculate that individuals with
certain lifestyle-related disease have an increased risk for other diseases.

ROS can continuously cause the tissue damage when their product
hydroxynonenal overcomes the antioxidant defense system (Pizzino
et al., 2017). Glutathione S-transferases, alcohol dehydrogenases, and
aldehyde dehydrogenases (ALDH), are representative enzymes which
are capable of degrading hydroxynonenal (Pham et al., 2002; Castro
et al., 2017; Zhang and Forman, 2017). Hydroxynonenal detoxification
by glutathione S-transferases is reduced with the age-dependent
enzyme depletion, which in turn may facilitate toxicity of
hydroxynonenal (Schaur et al., 2015). The mitochondrial enzyme,
ALDH2 is the key enzyme being involved in the detoxification of not
only ethanol’s metabolite ‘acetaldehyde’, but also another aldehydic
product ‘hydroxynonenal’ (Edenberg, 2007; Joshi et al., 2019).

As millions of East Asians carry Glu504Lys loss of function
mutation (ALDH2*2), they are prone to lose ALDH2 activity and
accumulate hydroxynonenal (Chen et al., 2015; Joshi et al., 2019).

Those with ALDH2*2 mutation cannot clear toxic aldehydes, so
mitochondrial dysfunction occurs because of additional ROS
generation. Oxidative stress and energy failure synergically cause
various diseases. For instance, ALDH2*2 mutation was previously
demonstrated to be a risk factor for Alzheimer’s disease (Wang et al.,
2008; Chen et al., 2019). Kamino et al. found that subjects with
ALDH2*2 are prone to develop late-onset Alzheimer’s disease, by
interacting with apolipoprotein E allele 4 (ApoE ε4) (Kamino et al.,
2000). Furthermore, serum hydroxynonenal level was significantly
higher in type 2 diabetes. Accumulation of hydroxynonenal showed a
positive correlation with both increased hemoglobin A1c (HbA1c) and
fasting glucose levels in human patients (Figure 1). Accordingly, Lou
et al. (2020) suggested that hydroxynonenal is one of the causative
factors of type 2 diabetes. In addition, the occurrence of non-alcoholic
steatohepatitis (NASH) was reported to be closely related to
hydroxynonenal (Bekyarova et al., 2019). Using diverse
experimental paradigms, Seike et al. recently found that
hydroxynonenal causes hepatocyte death by disrupting lysosomal
membrane integrity (Seike et al., 2022). Taken together, the cellular
and molecular mechanisms of hydroxynonenal-induced organ injury
should be elucidated in detail with regard to the progression of
lifestyle-related diseases.

Monkey brains after the long-term injections of hydroxynonenal,
showed the widespread neuronal degeneration/death due to the
lysosomal membrane permeabilization/rupture without an
implication of amyloid ß. Therefore, Yamashima. (2021) recently
suggested such a concept that the exact causative substance of
Alzheimer’s disease might be not amyloid ß but hydroxynonenal.
Furthermore, the same monkey experimental paradigm indicated that
the major pathophysiological mechanism behind the development of
Langerhans cell degeneration/death in type 2 diabetes is oxidative
stress being mediated by hydroxynonenal (Boontem and Yamashima,
2021). Since glucose-induced insulin secretion is impaired by
hydroxynonenal, the resultant hyperglycemia conceivably causes an
increase of oxidative stress with the subsequent acceleration of lipid
peroxidation which facilitates generation of hydroxynonenal to
worsen type 2 diabetes (Miwa et al., 2000). In addition, both
experimental and clinical studies have affirmed that
hydroxynonenal-modified proteins play crucial roles in the
progression of chronic liver diseases (Barrera et al., 2015; Wang
et al., 2015). However, the molecular mechanisms of both
hepatocyte degeneration/death and progression from simple fatty
liver to NASH have remained unclear.

When the symptoms and/or signs of Alzheimer’s disease, type
2 diabetes, and NASH appear, usually the disease has already been
present for many years. For example, in Alzheimer’s disease, four
stages of the disease progression have been proposed: 1) pre-
disease stage without any pathophysiological alterations
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detectable, 2) pre-clinical stage with amyloid ß and
hyperphosphorylated Tau (pTau) depositions but without
cognitive decline, 3) stage of mild cognitive impairment (MCI),
and 4) the dementia stage (Chen and Zhong, 2013). Similar
processes of pre-diabetes or simple steatosis should be present
in type 2 diabetes and NASH, respectively. It seems worthwhile to
discuss whether and how hydroxynonenal is responsible for the
development of these lifestyle-related diseases.

Heat shock proteins (Hsp) were accidentally discovered by heat
shock in Drosophila melanogaster in 1962 by the epoch-making work
of Ritossa in Italy (1962). Other than thermal stress, Hsp expression is
induced by such insults as ischemia, heavy metals, nutrient
deprivation, irradiation, infections, inflammation, and exposure to
organics and oxidants (Lindquist and Craig, 1988). The Hsp70 family
is evolutionarily the most conserved subfamily, and the major stress-
inducible member of this family is Hsp70.1 (also called Hsp70,
Hsp72). Hsp70.1 is responsible for folding newly synthesized
polypeptides under physiological conditions and misfolded proteins
under stress. To carry out these tasks, Hsp70.1 employs a large number
of cochaperones and adapter proteins. Stress-induced upregulation of
Hsp.1 promotes cell survival against insults that have the potential to
induce cell damage. Hsp70.1 plays a key role to maintain intracellular
protein homeostasis. It has five activities in the cell: 1) binding
misfolded proteins to favor protein refolding cycles and prevent
their aggregation (Young et al., 2004), 2) bringing unfolded
proteins through membranes to enable delivery of cargo to
organelles (Hohfeld and Hartl, 1994), 3) recruiting proteins to the
proteasome for turnover (Demand et al., 1998), 4) transporting
proteins to the endosome/lysosome for chaperone-mediated

autophagy (Majeski and Dice, 2004), and 5) preserving lysosomal
membrane integrity (Kirkegaard et al., 2010). Lysosome membrane
integrity is protected by Hsp70.1, Lamp-1/2, LIMP2, CD63, etc.
Lysosome membrane disintegrity may occur by the degradation of
Hsp70.1 or Lamp-1 in response to ROS, proteases such as caspases and
calpains, as well as by the cytoskeleton disruption and changes in
sphingolipid composition. Lysosomal membrane integrity is affected
by both sphingolipid composition and acid sphingomyelinase
(EC3.1.4.12) (Gabande-Rodriguez et al., 2014). Acid
sphingomyelinase resides inside lysosomal lumen and its hydrolytic
activity is stabilized by bis(monoacylglycero)phosphate (BMP) (Linke
et al., 2001). The Hsp70.1-BMP interaction enhances association of
BMP with acid sphingomyelinase, which can activate this enzyme so
that it breaks down sphingomyelin to generate ceramide (Kirkegaard
et al., 2010). Ceramide protects the lysosomal membrane from
rupturing, because the increased concentration of ceramide possibly
facilitates fusion of lysosomes with other intracellular vesicles and cell
membranes (Heinrich et al., 2000; Kirkegaard et al., 2010; Yamashima,
2013).

This review aims to indicate hydroxynonenal-induced cell
degeneration/death as a common cause of Alzheimer’s disease,
type 2 diabetes, and NASH. Here, we discuss such a common
cascade as ‘oxidative stress—generation of hydroxynonenal—calpain
activation—Hsp70.1 carbonylation—cleavage of Hsp70.1—lysosomal
membrane disintegrity—cathepsin release—cell death’ (Oikawa et al.,
2009; Yamashima and Oikawa, 2009) which leads to disorders of the
brain, pancreas, and liver. The authors are convinced that this is exactly
the first review discussing that the above three lifestyle-related diseases
may occur by the same culprit, ‘hydroxynonenal’.

FIGURE 1
Increased serum hydroxynonenal (4-HNE) level in the patients with type 2 diabetes (T2DM) Panel (A) The serum 4-HNE level was significantly higher in
T2DM patients, compared to the non-diabetic subjects (Control). Panels (B) and (C) The simple linear analysis shows that the serum 4-HNE level was positively
correlated with HbA1c (B) and fasting glucose (C). Panel (D) The serum 4-HNE level was closely related to the occurrence of T2DM. Reprintedwith permission
from Lou et al. (2020).
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Alzheimer’s disease

Alzheimer’s disease causes severe memory loss and progressive
dementia due to widespread loss of neurons and synapses, which was
thought to be caused by amyloid plaques, neurofibrillary tangles, and
amyloid angiopathy (Citron, 2002). Early-onset, familial Alzheimer’s
disease due to the genetic aberrations accounts for less than 5% of the
total cases. In contrast, sporadic Alzheimer’s disease of late-onset with
aging, accounts for more than 95%. Apolipoprotein E (APOE
19q32.13) ε4 allele has been considered the main genetic disorder
responsible for the sporadic form. ALDH2*2 is the most common
mutation in ALDH2 gene. Ohsawa et al. (2008) found that
ALDH2*2 mutation mice (Aldh2−/−) revealed Alzheimer-like
molecular changes such as increased hydroxynonenal generation

and amyloid ß formation, and Aldh2−/− mice were associated with
age-dependent neurodegeneration and memory loss. The
epidemiological study in China has identified ALDH2*2 as a
causative factor for Alzheimer’s disease (Wang et al., 2008).
Moreover, a case control study from Japan revealed that
ALDH2*2 was associated with the occurrence of late-onset
Alzheimer’s disease (Kamino et al., 2000). Recent meta-analysis
also demonstrated the positive correlation between ALDH2*2 and
occurrence of Alzheimer’s disease (Chen et al., 2019).

As a hallmark of Alzheimer pathology and a key event in early
cognitive decline in the disease progression, both synaptic
dysfunction and loss of synapses occur prior to the formation of
senile plaques which have been thought to be associated with
neuronal death. As an index of neurodegeneration and synaptic

FIGURE 2
Molecular markers and hydroxynonenal (HNE) adducts in the hippocampus of Aldh2−/− mice. Panel (A) Immunoblot analysis of hippocampal
homogenates from wildtype or Aldh2−/− mice. Aldh2−/− mice showed increase of Alzheimer’s disease-associated markers (top part) and decrease in synaptic
markers (bottom part), compared to the wildtype. Panel (B) Aldh2−/− mice showed a significant increase of HNE adducts, compared to the wildtype. APP,
amyloid precursor protein; P-tau, hyperphosphorylated tau protein; Casp, caspase; PSD95, postsynaptic density protein 95; CREB, cyclic AMP response
element binding protein. Reprinted with permission from D’Souza et al. (2015).

FIGURE 3
High hydroxynoneal levels in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). Panel (A) The plasma hydroxynonenal level (HNE) in the
patients with Alzheimer’s disease (AD) and the control subjects. (Cited from Rani et al., 2017). Panel (B) Tissue hydroxynonenal concentrations in the
hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyrus (SMTG), and cerebellum (CER) in the patients of MCI, early Alzheimer’s
disease (EAD), and age-matched control subjects. Adapted with permission from Williams et al. (2006).
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loss, D’Souza, et al. (2015) observed decreased levels of both the
postsynaptic protein PSD95 and the presynaptic protein
synaptophysin in the hippocampus of very young (3 months old)
Aldh2−/− mice (Figure 2). The latter showed increased level of
hydroxynonenal, concomitant with age-dependent, progressive
cognitive decline and hippocampal atrophy. Interestingly, in
addition to Alzheimer-like pathological changes, they found
significant vascular alterations such as age-dependent increases
in hydroxynonenal adducts and monomeric amyloid ß in the
brains of Aldh2−/− mice (D’Souza et al., 2015). Amyloid ß
angiopathy is a common pathological feature occurring in 60%–

90% of Alzheimer patients (Kalaria and Ballard, 1999; Attems and
Jellinger, 2014). The presence of cerebral amyloid angiopathy
significantly facilitates cognitive decline in the early Alzheimer’s
disease (Esiri et al., 1999). It is likely that both endothelial
dysfunction and arterial hypercontractility are associated with
chronic hypoxia of the brain.

In 2001, McGrath et al. (2001) reported high levels of
hydroxynonenal in the Alzheimer’s disease patients (6.0–25.2,
median 20.6 μmol/L), compared to the control subjects
(3.3–14.5, median 7.8 μmol/L) by the method of Esterbauer and
Cheeseman. (1990). In 2017; Rani et al. (2017) confirmed a
significant increase in hydroxynonenal level in the plasma of
Alzheimer’s disease patients (.38 ± .26 µM), compared to the
control group (.08 ± .05 µM) by the method of Benedetti et al.
(1980). Two different methodology showed approximately 3~5 fold
increase of the serum hydroxynonenal levels in Alzheimer’s
disease, compared to the control (Figure 3A). In addition, tissue
hydroxynonenal concentration was significantly higher in the
autopsy brain of patients with early Alzheimer’s disease and
MCI relative to the healthy subjects (Figure 3B) (Williams et al., 2006).
Especially, amyloid ß plaques and neurofibrillary tangles in the
hippocampus were shown to contain abundant hydroxynonenal
(Sayre et al., 1997; Ando et al., 1998).

The oxidative stress hypothesis of Alzheimer’s disease (Butterfield,
1997; Markesbery, 1997; Praticò, 2008) suggests that oxidative damage
may be crucial for its occurrence. Hydroxynonenal would be
continuously generated as the long-term oxidative stressor. Both
free hydroxynonenal and its protein adducts were reported to
accumulate in the brains of patients with Alzheimer’s disease
(Lovell et al., 1997; Montine et al., 1997; Sayre et al., 1997;
Markesbery and Lovell, 1998; McGrath et al., 2001; Fukuda et al.,
2009; Reed et al., 2009; Butterfield et al., 2010). Joshi et al. (2019)
suggested such a concept that both ALDH2 inactivating mutation and
chronic excessive ethanol intake are potential contributors to
Alzheimer’s disease progression. After 11 weeks-intake of ethanol,
amyloid β42 levels in the brain were higher in ALDH2*2 mice,
compared to the control mice. However, even in the absence of
ethanol exposure, Aldh2−/− mice showed an increased
hydroxynonenal level and developed Alzheimer’s disease-like
pathology (D’Souza et al., 2015). Many studies have supported that
the generation of hydroxynonenal preceeds to the occurrence of
Alzheimer’s disease, although the underlying molecular mechanism
was uncovered until recently.

The lysosomal membrane destabilization was thought to be
responsible for the oxidative stress-induced cell damage, since ROS
were well known to induce leakage of the lysosomal content (Zdolsek
and Svensson, 1993; Antunes et al., 2001; Dare et al., 2001; Persson
et al., 2003). However, implication of ROS for the programmed cell
death in diseases was not elucidated in detail until the formulation of
the ‘calpain-cathepsin hypothesis’ by the authors (Yamashima et al.,
1998; Yamashima, 2000; Oikawa et al., 2009; Yamashima and Oikawa,
2009). Although extremely rare to encounter in the advanced stage of
Alzheimer’s disease, Yamashima. (2016) found evidence of lysosomal
membrane permeabilization in the cortical neuron of the Alzheimer
patient (Figure 4) with the aid of Prof. R.A. Nixon in New York.
Furthermore, by the consecutive injections of the synthetic
hydroxynonenal to Japanese macaque monkeys, Yamashima (2021)

FIGURE 4
Electron microphotograph of the lysosomal rupture being observed in the cortical neuron of human Alzheimer patient. Red arrows are lysosomal
membrane rupture/permeabilization, which shows a remarkable contrast to the intact lysosome (circles). Apl: autophagolysosome (Reprinted from
Yamashima (2020)).
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recently observed similar lysosomal disorder and widespread neuronal
death as seen in human Alzheimer patients. Accordingly, he suggested
such an idea that hydroxynonenal might be a real culprit of
Alzheimer’s disease, and amyloid accumulation may appear as a
byproduct of lysosomal and autophagy failure which was brought
by the calpain-mediated cleavage of the oxidized Hsp70.1. ROS can
induce lipid peroxidation of linoleic and arachidonic acids being
involved in biomembranes, and generate hydroxynonenal in vivo.
In addition, hydroxynonenal is generated during deep-frying of the ω-
6 PUFA-rich vegetable oils. Accordingly, intake of the excessive deep-
fried foods or high-fat diets may lead to an elevation of the
hydroxynonenal concentration in both the serum and organ
(Thaler et al., 2012; Yamashima et al., 2020).

Type 2 diabetes

Globally, the epidemics of not only Alzheimer’s disease but also
type 2 diabetes are increasing worldwide and have huge costs, human
suffering, and economic burden. Perlmuter et al. (1984) reported that
memory deficiencies in aging, non-insulin-dependent diabetic
patients were associated with higher HbA1c levels. Thereafter,
abundant epidemiological and molecular evidence suggests
considerable overlap in risk, comorbidity and pathophysiological

mechanisms between these two diseases (Biessels et al., 2006a; b).
Since Alzheimer’s disease and type 2 diabetes share many
pathophysiological features such as insulin resistance, amyloid
aggregation, inflammatory stress, and cognitive disturbances, there
should be common pathogenic processes. Accordingly, the nickname
of ‘type 3 diabetes’ for Alzheimer’s disease has been proposed, but the
reason of this close relation has been unknown until now. It still
remains unelucidated whether Alzheimer’s disease and type 2 diabetes
are parallel disorders due to coincidental events with aging, or
synergistically linked by pathogenic vicious circles (Arnold et al.,
2018). In the patients with Alzheimer’s disease, increased amyloid
ß and ROS levels enhance lipid peroxidation, thus increasing the level
of toxic hydroxynonenal (Butterfield et al., 2002). Hydroxynonenal
levels are significantly high in the autopsy samples of hippocampus
which were resected from the patients with MCI and early stages of
Alzheimer’s disease (Figure 3B) (Williams et al., 2006). Especially,
amyloid plaques and neurofibrillary tangles involved in the
postmortem hippocampus were shown to contain abundant
hydroxyonenal (Sayre et al., 1997; Ando et al., 1998).

Insulin resistance is an essential factor for type 2 diabetes, and is
also a common feature of Alzheimer patients with or without type
2 diabetes. So, for understanding the association between Alzheimer’s
disease and type 2 diabetes, the phenomenon of insulin resistance is
essential. As insulin receptor is widely distributed throughout the

FIGURE 5
Calpain activation, Hsp70.1 cleavage, and cathepsin B leakage in themonkeys after the consecutive hydroxynonenal (HNE) injections. Panel (A) Activated
μ-calpain immunoreactivity (green) is negligible before HNE injections (Cont), whereas μ-calpain activation occurred after HNE injections (HNE), being
consistent with the Western blotting data (Panel (C), activated μ-calpain). After HNE injections, activated μ-calpain immunoreactivity (green) is colocalized
with Hsp70.1 immunoreactivity (red), showing a merged color of yellow (HNE, yellow). Panel (B) Cathepsin B is stained as tiny granules in the control
Langerhans islet (Cont), whereas stained as coarse granules with the perigranular immunoreactivity after HNE injections (HNE), which indicates lysosomal
membrane rupture/permeabilization. Panel (C) By Western blotting, μ-calpain is activated after HNE injections (dot rectangle), compared to the control
(Cont). As this anti-μ-calpain antibody recognizes only activated form of μ-calpain, but not inactivated form, positive bands indicate activation of μ-calpain.
Panel (D) In response to HNE injections, not only Hsp70.1 main bands (rectangle) but also cleaved Hsp70.1 bands of 30 kDa (dot rectangle) are increased,
compared to the control. Reprinted with permission from Boontem and Yamashima (2021).
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brain, insulin plays a crucial role as cerebral safeguard for neuronal
physiology and mental health (Berlanga-Acosta et al., 2020). Its role in
the brain is not restricted to the control of glucose uptake and
utilization for energetic purposes, because insulin has also pro-
survival, trophic, and anti-apoptotic effects (Kandimalla et al.,
2017). In addition, insulin signalling in the brain regulates
metabolic pathways in the liver and adipose tissue, and these
effects are thought to be mediated by the action of insulin in the
hypothalamus (Arnold et al., 2018).

Either free radicals (intracellular stimuli) or proinflammatory
cytokines (extracellular stimuli) activate c-Jun N-terminal kinase
(JNK), which facilitates serine phosphorylation in the insulin
response substrate protein, IRS-1 (Berlanga-Acosta et al., 2020). In
the brain, JNK is activated also by amyloid ß and pTau. Since
phosphorylation of serine residues inhibits the interaction of IRS-1
with the insulin receptor, the response to insulin would be disturbed.
JNK activation promotes the proinflammatory cytokine transcription,
which in turn enhances oxidative stress and accumulation of amyloid
ß and pTau, and ultimately enhances the insulin resistance (Berlanga-
Acosta et al., 2020). Insulin resistance in type 2 diabetes has been
defined as ‘reduced sensitivity in human body to the action of insulin’
(Goldstein, 2002), while insulin resistance in the brain can be defined
as ‘the failure of neurons to respond to insulin’ (Mielke et al., 2005).
Accordingly, insulin resistance and impaired cerebral glucose
metabolism are a core feature of both type 2 diabetes and
Alzheimer’s disease. Insulin is one of the key players of a vicious
circle perpetuating type 2 diabetes and Alzheimer’s disease.

Although the causative substance of oxidative-induced insulin
resistance long remained unclear, Mattson (2009) first reported
implication of hydroxynonenal in the insulin resistance. For
example, accumulation of hydroxynonenal-modified proteins
occurs in the pancreatic β-cells of GK rats as a result of
hyperglycemia (Ihara et al., 1999). Moreover, mice lacking the
hydroxynonenal-conjugating enzyme glutathione S-transferase

exhibit accumulation of hydroxynonenal in multiple tissues and
spontaneously develop obesity and insulin resistance (Singh et al.,
2008). Hydroxynonenal can form covalent adducts on IRS-1 and Akt,
and activate MAPK-signaling pathways to impair IRS activation
(Leonarduzzi et al., 2004; Demozay et al., 2008; Shearn et al.,
2011). Accordingly, hydroxynonenal and other lipid peroxidation
byproducts impair glucose-stimulated insulin secretion in isolated
β-cells (Miwa et al., 2000) and cause β-cell death (Lenzen, 2008). In
addition, hydroxynonenal is increased in adipocytes during obesity in
which it may impair the function of key proteins involved in lipid
metabolism (Grimsrud et al., 2007), and exhibit impaired insulin
action (Demozay et al., 2008). As insulin is the main regulator of
carbohydrate and fat metabolism, impairment of its function leads to
insulin resistance. Pillon et al. (2011) demonstrated that adduction of
insulin by hydroxynonenal induce structural and functional changes
of human insulin, and this also indicated a putative role of
hydroxynonenal in the development of insulin resistance.

Amyloid ß and insulin have a close relation; the former metabolism
is impacted by the latter and the threshold of insulin receptor sensitivity.
In contrast, amyloid ß interferes with insulin binding to its receptor
(Berlanga-Acosta et al., 2020). Previous studies have linked insulin
resistance with cognitive impairment and cerebral atrophy (Burns et al.,
2012; Moran et al., 2013). Insulin resistance has been highly correlated
with the reduced rate of glucosemetabolism in the brain of patients with
type 2 diabetes (Baker et al., 2011; Roberts et al., 2014). Further, in the
patients with type 2 diabetes who suffer from MCI, a decrease of the
cerebral blood flow has been observed (Chau et al., 2020). Both brain
and pancreas are particularly susceptible to lipid oxidation as a result of
high oxygen consumption in each organ. Although evidence concerning
a relationship between the two diseases at the molecular level is still not
sufficient, fatty acid peroxidation is linked to either Alzheimer’s disease
or type 2 diabetes. Especially, lipid peroxidation product
hydroxynonenal has reported to be a common factor for inducing
cell death in both the brain and pancreas as a cause of Alzheimer’s

FIGURE 6
Alda-1 in CDAAmice suppresses liver fibrosis (Panel A and lysosomal disintegrity (Panel B). Panels (A, B) rectangles: CDAAmice show fibrosis on the Sirius
red staining and lysosomal permeabilization on the Lamp-2 staining, while Alda-1 treatment (CDAA + Alda-1) disclosed decreased immunoreactivity of not
only Sirius red and Lamp-2 but also HNE. Panel (C)Western blotting analyses of liver hydroxynonenal protein adducts in CDAA mice (CDAA) and CDAA mice
with Alda-1 treatment (CDAA + Alda-1). Alda-1 treatment discloses decreased adducts. Panel (C) Each bands were quantified and shown as relative fold
ratios. Adapted with permission from Seike et al. (2022).
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disease and type 2 diabetes. Increased levels of hydroxynonenal were
reported in patients with type 2 diabetes (Miwa et al., 2000; Lou et al.,
2020) or in the brains of patients with MCI and Alzheimer’s disease
(Barone et al., 2012; Scheff et al., 2016), as well as in the plasma and
cerebrospinal fluid of Alzheimer patients (Selley et al., 2002). Miwa
et al. (2000) suggested that the excessive hydroxynonenal impairs
glucose-stimulated insulin secretion in isolated pancreatic β-cells,
and contributed to the β-cell death in type 2 diabetes. In recent years,
increased levels of hydroxynonenal were detected in serum, plasma,
blood, urine, cells, and tissues of human patients with type 2 diabetes
by different methods (Dator et al., 2019; Ito et al., 2019; Dham et al.,
2021). Using the monkey experimental paradigm, the authors
recently found that the long-term injections of the synthetic
hydroxynonenal can cause not only neuronal degeneration but
also Langerhans cell degeneration by oxidizing Hsp70.1 (Figure 5)
(Boontem and Yamashima, 2021; Yamashima, 2021). In the brain,
the vicious circle is established between the impaired insulin
signaling system and the neurotoxic ingredients as amyloid ß and
pTau. Intriguingly, all of these three (hydroxynonenal, amyloid β,
and pTau) are capable of activating μ-calpain. To explain the close
relation between Alzheimer’s disease and type 2 diabetes, the authors
speculate that ‘calpain-mediated cleavage of oxidized Hsp70.1’ may
occur in both the brain and pancreas (Yamashima et al., 2020). It is
probable that the common causative factor of Alzheimer’s disease
and type 2 diabetes is ‘hydroxynonenal’.

Non-alcoholic steatohepatitis (NASH)

NASH is a progressive subtype of non-alcoholic fatty liver disease
(NAFLD), being first defined by analogy to alcoholic hepatitis.
However, this disease occurs in persons who consume little or no
alcohol. NASH is characterized by the accumulation of fat in the liver
(steatosis) along with inflammation and different degrees of scarring
or fibrosis (Chalasani et al., 2017). The occurrence of NAFLD is
associated with obesity, insulin resistance, and dyslipidemia, and its
incidence is currently prevalent in the Western countries (Younossi
et al., 2016). Since NASH-related liver cirrhosis and hepatocellular
carcinoma are nowadays increasing, NASH is emerging as a world
health problem (Estes et al., 2018). Multiple causative factors have
been implicated in the pathophysiology of NAFLD. Although the
underlying mechanism how NAFLD progresses to NASH is still not
fully understood, accumulated evidence has suggested that oxidative
stress is involved in this process (Seki et al., 2002; Rolo et al., 2012;
Serviddio et al., 2013; Liu et al., 2015; Bellanti et al., 2017; Bekyarova
et al., 2019). In the liver damage caused by a variety of hepatotoxic
drugs and solvents, lipid peroxidation is considered a key factor for
damaging hepatocytes, and the generation of reactive intermediates is
a common event (Coleman et al., 2007). However, not only the
mechanism underlying hepatocyte degeneration/death but also the
role of toxic lipid peroxidation product ‘hydroxynonenal’ in NASH,
long remained unclear.

FIGURE 7
Hydroxynonenal (HNE) induces liver injury in the Japanese macaque monkeys. Panel (A) Macroscopic findings of livers of the control (Cont) and HNE-
treated (HNE)monkeys. Black arrows show nodular discoloration. Panel (B)H-E staining andHNE immunostaining of liver tissue from the control group (Cont)
and HNE-treated (HNE) group. HNE immunoreactivity was negligible in the control hepatocytes, but was distinct in the latter hepatocytes. Panel (C)Western
blotting analyses of the liver HNE protein adducts in the control (Cont) and HNE-treated (HNE) group. P, proteinmarker. Panel (D) Bands of panelCwere
quantified and shown as relative fold ratios Panel (E) ALT showed a significant increase after hydroxynonenal injections (HNE), compared to the control (Pre).
Adapted with permission from Seike et al. (2022).
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Ensuing excessive ROS production enhances lipid peroxidation
to elevate the concentration of hydroxynonenal, and cause
hepatocyte damage and liver injury (Wang et al., 2015; Castro
et al., 2017). Hydroxynonenal is generated mainly from linoleic
acid, and is one of the most cytotoxic aldehydes for the liver
(Mattson, 2009; Czerwińska et al., 2014; Castro et al., 2017).
However, the molecular mechanism of hydoxynonenal-induced
hepatocyte injury has not been elucidated. Chronic fructose
consumption was found to cause fat accumulation in the liver
(Bekyarova et al., 2017). Surplus of fatty acids in the fatty liver
leads to mitochondrial production of excessive ROS which generate
highly toxic hydroxynonenal. Significant increase in the serum
hydroxynonenal levels has been demonstrated in the NASH
patients, compared to those with simple steatosis (Videla et al.,
2004).

From diverse experimental paradigms focusing hydroxynonenal-
treated hepatocellular carcinoma cell lines, CDAA diet-fed NASH
model mice (Figure 6), monkeys after the consecutive injections of
synthetic hydroxynonenal (Figure 7), and human NASH patients
(Figure 8), Seike et al. (2022) recently reported that hydroxynonenal
can induce hepatocyte death due to the lysosomal membrane
permeabilization/rupture. They demonstrated that hydroxynonenal is
involved in the pathogenesis of NASH by activating μ-calpain via
G-protein coupled receptor 120 (GPR120) and disrupt the lysosomal
membrane with the resultant leakage of cathepsin enzymes causing
hepatocyte death. Blockade of GPR120 or μ-calpain expression could
suppress lysosomal membrane disintegrity and inhibit hepatocyte
degeneration/death. Administration of Alda-1 (Chen et al., 2008;

Perez-Miller et al., 2010), which activates ALDH2 to degrade
hydroxynonenal, could reduce liver fibrosis as well as
hydroxynonenal-induced lysosomal disintegrity and inflammation
(Figure 6). Interestingly, in the monkeys after the long-term
injections of the synthetic hydroxynonenal, the liver showed
heterogenous discoloration which histologically comprised of nodular
fatty degeneration with depositions of hydroxynonenal (Figures 7A,B).
Furthermore, in the biopsied liver specimens from the NASH patients
also, the degree of hydroxynonenal deposition in hepatocytes was more
severe in cases with high scores of the lobular inflammation, ballooning
and fibrosis, and was closely related to the extent of lysosomal rupture
(Figures 8B,C) (Seike et al., 2022).

Calpain-mediated cleavage of
carbonylated Hsp70.1

In diverse experimental models, μ-calpain activation brought
about necrotic cell death via the lysosomal membrane
permeabilization/rupture and the resultant leakage of cathepsin
enzymes. Similar lysosomal membrane disintegrity was confirmed
to occur by the calpain-cathepsin cascade also in the
neurodegeneration model of Caenorhabditis elegans (C. elegans). In
this model, loss of function of the proteases CLP-1 and TRA-3
(equivalent to calpains in C. elegans) as well as ASP-3 and ASP-4
(equivalent to cathepsins in C. elegans) was neuroprotective
(Syntichaki et al., 2002). The ‘calpain-cathepsin hypothesis’ was
originally formulated in 1998 (Yamashima et al., 1998), but the

FIGURE 8
Hydroxynonenal (HNE) is involved in the progression of disease in human NASH. Panel (A) Semi-quantitative assessment of HNE immunoreactivity in the liver
tissue of patients with non-fatty liver disease (NAFLD). The density of HNE immunoreactivity was scored into 3 grades: no staining (Grade 0), weak and uniform
staining (Grade 1), and intense spots (rectangle) with uniform staining (Grade 2). Panel (B) Immunofluorescence staining of the liver tissue from patients with non-
fatty liver andNASH shows that lysosomalmembrane permeabilization/rupturewas negligible in the former (yellow rectangle), but occurred remarkably in the
latter (red rectangle). Blue, DAPI; green, cathepsin B (CTSB); red, Lamp-2. Panel (C) Relationship between the HNE staining score and double-stained granule sizes
for Lamp-2 and cathepsin (B). Panel (D) Electron microphotographs of the non-fatty liver and NASH liver. Lysosomes with distinct limiting membrane structures
were observed in the non-fatty liver (white arrowhead). In contrast, lysosomes in the NASH liver showed disintegrity of the lysosomal membrane (yellow
arrowheads). Panel (E)Western blotting analysis of μ-calpain in the liver tissues of non-fatty liver and NASH, shows an increased activation of μ-calpain in NASH. P,
protein marker. Panel (F) Bands of panel E are quantified and shown as relative fold ratios. Adapted with permission from Seike et al. (2022).
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FIGURE 9
Upregulation, oxidation, and cleavage of Hsp70.1 after transient brain ischemia. Panel (A) Two-dimensional gel electrophoresis with immunoblot
detection of carbonylated protein analysis (2D Oxyblot) of the postischemic hippocampal CA1 tissues after immunoprecipitation with anti-Hsp70.1 antibody,
shows upregulation of carbonylated Hsp70.1 on the postischemic days 3 (pink) and 5 (blue), compared to the control (black). The specific oxidation index is
significantly high on days 3 and 5. Panel (B) Matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF) analysis of the
upregulated spots with the Mascot search. Both the peptide sequence of the carbonylated peptide ion (459-FELSGIPPAPR*G-470) and the presence of
y2 fragment ion atm/z 113.12, indicates that carbonylation occurred at Arg469 in Hsp70.1. R*: Carbonylated arginine Panel (C) In response to hydroxynonenal
being generated by ROS, carbonylation occurred at the key site, Arg469 of Hsp70.1. A decrease of its molecular weight from 157.20 to 113.12 is compatible
with the insult of carbonylation (Panels A,B,C: cited fromOikawa et al., 2009). Panel (D) In-vitro cleavage of Hsp70.1 by activated μ-calpain in brain tissues from
the non-ischemic monkey. It is likely that hydroxynonenal-induced carbonylation facilitates calpain-mediated cleavage of the carbonylated Hsp70.1.
Reprinted with permission from Sahara and Yamashim (2010); Yamashima et al. (2014).

FIGURE 10
The calpain-cathepsin cascade explaining the molecular mechanism from ω-6 fatty acid-rich PUFA to cell death in lifestyle-related diseases. Diverse G
protein-coupled receptors as GPR40/109A/120 in the brain/pancreas/liver are related to Ca2+ mobilization in response to fatty acids. Simultaneously,
circumferential oxidative stress and/or deep frying may cause oxidation of ω-6 fatty acid with the resultant generation of hydroxynonenal. Hsp70.1 is a stress-
induced protein or lysosomal stabilizer that confer cell protection against diverse stimuli, but its dysfunction caused by calpain-mediated cleavage of
carbonylated Hsp70.1 induces diverse cell degeneration via lysosomal rupture and autophagy failure. It is probable that the same disorder may occur for the
other lysosomal membrane proteins like Lamp-2. Adapted with permission from Yamashima et al. (2020).
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substrate protein of calpain at the lysosomal membrane was initially
unknown. Ten years later, however, the proteomics analysis
comparing the hippocampal tissues of monkeys before and after
transient global brain ischemia, disclosed that the target molecule
of activated μ-calpain is Hsp70.1. The postischemic hippocampus
showed a remarkable upregulation of Hsp70.1 a few days after
transient ischemia on the 2-D oxyblot analysis (Figure 9A).
Furthermore, the proteomics analysis (Matrix-assisted laser
desorption ionization-time of flight/time of flight analysis) showed
a decrease of its molecular weight from 157.20 to 113.12, so the specific
oxidative injury ‘carbonylation’ was identified at the Arg469 of
Hsp70.1 due to the oxidative stress during the reperfusion phase
(Figures 9B,C) (Oikawa et al., 2009; Yamashima and Oikawa, 2009). In
addition, using brain tissues of monkeys, the calpain-mediated
cleavage of the carbonylated Hsp70.1 was demonstrated to occur
in vitro in parallel with hydroxynonenal-induced carbonylation
(Figure 9D) (Yamashima et al., 2014; Liang et al., 2016). As calpain
alone without hydroxynonenal-treatment (Figure 9D, time point ‘0’)
showed no cleavage of non-oxidized Hsp70.1, hydroxynonenal-
mediated carbonylation obviously facilitated calpain-mediated
cleavage of Hsp70.1. Since Hsp70.1 cleavage was blocked by the
specific calpain inhibitor N-acetyl-Leu-Leu-Nle-CHO (ALLN) dose-
dependently, Hsp70.1, especially after the oxidative modification, was
thought to be susceptible to cleavage by activated μ-calpain (Sahara
and Yamashima, 2010; Yamashima, 2013; Yamashima et al., 2014).

Hydroxynonenal-mediated carbonylation of Hsp70.1 plays a
supportive but crucial role for facilitating the calpain-mediated
Hsp70.1 cleavage in the postischemic neurons (Sahara and
Yamashima, 2010). As Hsp70.1 has dual functions as a chaperone
protein and lysosomal membrane stabilizer, the Hsp70.1 disorder
induce cell degeneration/death via the lysosomal membrane disintegrity
with the resultant release of cathepsin enzymes. In addition, accumulation
of garbage proteins occurs by the autophagy failure due to
Hsp70.1 disorder (Adapted with permission from Figure 10).
Presumably, the molecular mechanism of ß cell degeneration/death in
type 2 diabetes can be explained also by the ‘calpain-cathepsin hypothesis’,
because both calpain activation and extralysosomal leakage of cathepsin B
were confirmed in the monkey pancreas after the consecutive injection of
hydroxynonenal (Figure 5) (Boontem and Yamashima, 2021). However,
there are still some limitations to explain the molecular mechanism of
NASH by the calpain-mediated cleavage of the oxidized Hsp70.1, because
in the damaged liver tissues at the advanced stage of disease (experiments),
Seike et al. failed to confirm carbonylation and cleavage of
Hsp70.1 disorder as demonstrated in the brain and pancreas (Seike
et al., 2022). Unfortunately, they could not identify the substrate
proteins which was oxidized (carbonylated) by hydroxynonenal and
cleaved by activated μ-calpain at the lysosomal membrane of
hepatocytes. It is conceivable that long term insults (exposure of 5 mg/
week of hydroxynonenal for 24 weeks) was inappropriate to demonstrate
calpain-mediated cleavage of the substrate proteins which presumably
occurred in the earlier phase of exposure. If the timing of tissue sampling
after the insult or during disease process is appropriate, calpain-mediated
cleavage of the carbonylated Hsp70.1 would be demonstrated in diverse
experimental models and human diseases.

The calpain-mediated cleavage of Hsp70.1 is physiologically
indispensable for the turnover of cell proteins, but is detrimental for
the cell survival when excessive. Activated μ-calpain was demonstrated
in the previous studies to cleave not only Hsp70.1 (Oikawa et al., 2009;
Yamashima andOikawa, 2009; Zhu et al., 2014; Yamashima et al., 2020),

but also Lamp-2 (Arnandis et al., 2012; Rodriguez and Torriglia, 2013;
Gerónimo-Olvera et al., 2017), and v-ATPase subunit b2 (Arnandis
et al., 2012) which are localized at the lysosomal membrane.
Accordingly, in the NASH liver either of the latter two or all of the
three lysosomal membrane proteins might be the substrates of activated
μ-calpain especially after the carbonylation by hydroxynonenal. Future
studies are needed to elucidate this issue. Overall, the lysosomal
membrane contains more than 100 proteins, which comprised of
anchoring proteins, transporters, receptors, and enzymes (Schröder
et al., 2010). Recent studies have uncovered a range of lysosomal
membrane proteins that can influence lysosomal cell death (Mrschtik
and Ryan, 2015). The influence of ROS, calpain, and hydroxynonenal
upon diverse lysosomal membrane proteins should be studied further to
understand the detailed mechanism of lysosomal cell death which
should be related to the occurrence of lifestyle-related diseases.

Conclusion

1) The ‘calpain-cathepsin hypothesis‘ initially suggested implication
of calpain and cathepsin for the ischemic neuronal death of
monkeys. Now, it can expand the lysosomal theory about the
pathogenesis of lifestyle-related diseases such as Alzheimer’s
disease, type 2 diabetes, and NASH.

2) ROS may initiate a chain of responses that results in generation of
hydroxynonenal with the long-term protein damage. High-fat diets
or deep-fried foods cooked by ω-6 PUFA-rich vegetable oils, may
induce the calpain-cathepsin cascade for the occurrence of cell
degeneration/death in the brain, pancreas, liver, etc.

3) Garbage proteins like amyloid β and pTau accumulate as
byproducts of the autophagy failure due to Hsp70.1 disorder.
These garbages in turn would facilitate calpain activation to
promote the vicious cycle of programmed cell death.

Future perspectives

1) At present, it is difficult to clarify whether the main source of
hydroxynonenal production is intracellular (e.g., generated at
biomembranes by the circumferential and/or intrinsic oxidative
stress) or extracellular (e.g., incorporated into the serum via
high-fat diets and deep-fried foods etc.). This should be studied
further.

2) The ‘calpain-cathepsin hypothesis’ can cover most of the
mechanism of necrotic cell death. However, further studies are
necessary to completely elucidate the mechanism and pattern of
lysosomal cell death specific for each lifestyle-related disease.

3) Investigating the impact of oxidation of the lysosomal membrane
proteins, especially focusing Hsp70.1, Lamp-2, v-ATPase subunit
b2, etc., will help elucidate the mechanisms responsible for the cell
death in lifestyle-related diseases.
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