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Multi-omics approaches including proteomics analyses are becoming an

integral component of precision medicine. As clinical proteomics studies

gain momentum and their sensitivity increases, research on identifying

individuals based on their proteomics data is here examined for risks and

ethics-related issues. A great deal of work has already been done on this

topic for DNA/RNA sequencing data, but it has yet to be widely studied in

other omics fields. The current state-of-the-art for the identification of

individuals based solely on proteomics data is explained. Protein sequence

variation analysis approaches are covered in more detail, including the available

analysis workflows and their limitations. We also outline some previous forensic

and omics proteomics studies that are relevant for the identification of

individuals. Following that, we discuss the risks of patient reidentification

using other proteomics data types such as protein expression abundance

and post-translational modification (PTM) profiles. In light of the potential

identification of individuals through proteomics data, possible legal and

ethical implications are becoming increasingly important in the field.
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Introduction

Human phenotypes play a key role in biomedical research and clinical practice

towards better diagnosis, patient stratification and the selection of effective treatment

strategies. Computational approaches developed for the integration of multiple omics

data types allow for a more holistic understanding of molecular mechanisms in health and

disease-related processes (Chen et al., 2012). Such combined approaches can lead to the

discovery of biomarkers that enable personalised medicine approaches by representing

personalised prognosis and treatment efficacy. The acquisition of data derived from
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genomic, transcriptomic, and proteomic personal phenotypes

(among other types of omics techniques) holds implications for

both personalised medicine and data privacy-related issues,

considering technical, ethical, and legal aspects.

Research data collected as part of biological research can raise data

privacy issues when: 1) the data contains protected patient

information or otherwise when the data can be linked to a single

individual; 2) data need to comply with laws and/or regulations

regarding data privacy (e.g., theGeneralData ProtectionRegulation in

the European Union); and/or 3) the informed consent forms from

patients include limitations on data sharing (Bandeira et al., 2021).

The question of whether it is possible or not to identify individuals

using omics data has already been thoroughly explored for DNA/

RNA sequencing information (Gymrek et al., 2013; Erlich &

Narayanan, 2014), which is thus generally considered to be

patient-identifiable information by data protection regulations. This

is an extensively reviewed topic including e.g., literature devoted to the

state-of-the-art in genomic data privacy (Malin, 2005), breaching and

protection of privacy (Erlich & Narayanan, 2014) (Naveed et al.,

2015), technical approaches to address privacy in genomics (Wang

et al., 2017), and privacy-enhancing technologies in genomics

[PoPETs Proceedings (petsymposium.org)], among other topics.

With the growing importance of clinical proteomics studies,

potential ethical and legal issues are becoming increasingly

relevant in the field (BOONEN et al., 2019). Data generated

from proteomics studies include several data types that can be

characteristic of the proteomes of individuals at a given time.

These can include e.g., amino acid sequences, protein

expression levels and PTM (post-translational modification)

profiles.

The need for tailored datamanagement practices for sensitive

human proteomics data (Bandeira et al., 2021), and the related

ethical issues (Porsdam Mann et al., 2021) are topics that have

been recently reviewed. In this minireview, we describe the

current state-of-the-art when it comes to identifying

individuals based solely on proteomics data. Protein sequence

variation information will be covered in-depth, along with other

proteomic data types.

Types of genetic variation and its
consequences at the protein and the
phenotype level

Genomic sequence variation and epigenetic modifications

may affect downstream processes in numerous ways, including

changes to the proteomes and phenotypes of individuals

(Figure 1A). There are various types of genomic variation

events being the most common ones: single nucleotide

polymorphisms (SNPs) (Figure 1B), insertions and deletions

(INDELs) and larger genomic structural rearrangements.

Sequence variation residing within, or outside gene coding

(exons) can potentially manifest at the protein level in a

variety of ways. Synonymous SNPs (those not altering the

protein amino acid sequence), can potentially affect the

regulation of gene expression at the transcriptional or

translational level. Genomic variants may also be non-

synonymous (nsSNP), directly modifying the amino acid

sequence encoded by the gene, or in the case of RNA editing

(Rengaraj et al., 2021), the transcript (Figure 1B). There are

FIGURE 1
(A) Many downstream processes may be impacted by genetic variation in addition to the Environment and may implicate an individual’s
proteome and phenotype. (B) Two examples of sequence variants represented by common genome nsSNPs and epitranscriptomic RNA editing lead
to changes in the protein sequences.
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different types of nsSNPs, ranging from a missense variant

causing a Single Amino Acid Variant (SAAV), to much larger

changes such as multiple amino acid insertions, deletions,

protein truncation (nonsense variants), coding frameshifts,

protein mis-splicing and read-through, and gene fusion events

(Vegvari, 2016). Transcript variants, substitutions arising from

RNA-editing that recode protein sequences which consequently

may alter the PTM profile of the recoded residues increase

proteome diversity. Genomic variants result in the synthesis of

different proteoforms, which can also affect PTMs, contributing

to the proteome’s complexity and variability (Smith et al., 2013),

as well as potentially altering organisms’ phenotypic

characteristics. It should also be noted that each gene is

present in two copies or alleles in diploid organisms such as

humans, and variants may arise in either one (heterozygous) or

both (homozygous) alleles. When an nsSNP is heterozygous,

allele-specific protein expression and bias can occur.

Strategies to detect sequence variation at
the protein level

Thanks to the application of mass spectrometry (MS) high-

throughput proteomics approaches (Aebersold &Mann, 2016), it

is now possible to systematically analyse “proteotypes,” which

can be defined as a state of a proteome associated with a specific

phenotype. The most common shotgun proteomic approach is

liquid-chromatography (LC) followed by MS or also known as

bottom-up proteomics, where the peptides resulting from

digested proteins are separated by LC before being analysed

by the MS instrument. The so-called top-down proteomics

techniques directly analyse intact proteins, allowing precise

and comprehensive characterisation of various proteoforms,

such as protein mutations from genetic polymorphisms and

RNA splice variants as well as PTMs. This approach

potentially delivers data including a comprehensive

characterisation of proteoforms (Smith et al., 2013; Smith and

Kelleher, 2018). However, currently, there are many technical

challenges for top-down proteomics technologies, such as

obstacles in the characterisation of high-molecular-weight and

low-abundance proteins, and the lack of bioinformatics tools for

the analysis of complex proteoform MS data (Schaffer et al.,

2019). These technical limitations in depth and throughput

hamper its wider application (Lin et al., 2021). Bottom-up

proteomics adds an additional layer of complexity, due to the

required inference of peptides (including peptide variants) to the

parent proteins. An alternative to shotgun proteomics which tests

a random portion of the proteome, Selected ReactionMonitoring

(SRM) target assays, use optimised and specific separation and

detection parameters for a subset of preselected or proteotypic

peptides. Targeted MS considerably improves consistent and

precise quantification over standard shotgun LC-MS and

provides the sensitivity and selectivity required to detect and

precisely quantify low-abundance proteins and proteoforms such

as protein variants [reviewed in Schmidt & Schreiner, 2022].

Moreover, one of the main constraints of targeted proteomics is

limited multiplexing. This has recently been addressed effectively

by allowing the simultaneous quantification of about

1,000 analytes in one analysis (Stopfer et al., 2021).

Additionally, two types of data acquisition exist. In Data

Dependent Acquisition (DDA) approaches, only the most

abundant peptide ions are selected for fragmentation. To

overcome this issue (which potentially leads to a smaller

proteome coverage and consequently, to fewer SAAVs

identified and quantified) a systematic selection of the whole

range of ion peptide masses can be performed in cycles before the

fragmentation (in Data Independent Acquisition approaches

[DIA]). Here, the analysis usually relies on spectral libraries.

These libraries can be generated experimentally but also using

artificial intelligence algorithms. Their use in DIA analysis is an

active topic of research (Searle et al., 2020; Sun et al., 2022).

Proteogenomics (PG) approaches can be used to integrate

DNA/RNA sequencing (genomics, RNA-Seq, Ribo-seq) and

proteomics data so that genetic variation in the protein amino

acid backbone can be detected. DNA/RNA sequencing data from

the same samples are used in PG approaches to identify expressed

protein variants (Nesvizhskii, 2014) for known genomic variation

events. Less prevalent and more technically challenging methods

for the detection of protein sequence variation include de novo

peptide sequencing, spectral library searching and open

modification searches (OMS). First, de novo peptide

sequencing is a method in which a peptide sequence or a

partial sequence tag can be determined directly from the MS/

MS spectra. This overcomes the limitation of traditional database

searchingmethods to only being able to assign peptides to spectra

if the sequence is present in the database. However, this strategy

is more computationally demanding and heavily reliant on

spectra quality and good fragmentation of peptides. Often de

novo approaches are used in conjunction with sequence database

searching. Another approach without using a reference sequence

database is spectral library searching, where experimental spectra

are matched to a spectral library (Shao & Lam, 2017). A

traditional limitation of this approach is that spectral libraries

require the previous assignment of the mass spectra to peptide

identifications. Finally, Open Modification Searches (OMS),

enable searching for PTMs and SAAVs by considering

potentially all mass shifts of an unmodified peptide. OMS can

identify many spectra left unassigned in a standard database

search. However, the vast increase in search space causes a

significant loss in sensitivity and an increased false discovery

rate (FDR).

A recent comparison between the PG and OMS approaches

[Figure 2 text-box 8, Salz et al., 2021] showed that currently, PG

represents a better alternative for the detection of variant

peptides. In this study, seven times more variant peptides

were detected by the PG method, whereas the OMS method

Frontiers in Molecular Biosciences frontiersin.org03

Fierro-Monti et al. 10.3389/fmolb.2022.1062031

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1062031


produced many false-positive identifications not supported by

the genome sequence. Additionally, large numbers of false

negatives were also detected since it is often challenging to

distinguish between the delta masses arising from PTMs or

SAAV-containing peptides.

Limitations in the detection of protein
sequence variation using MS

Considering the current state-of-the-art in MS-based

proteomics, a significant portion of the proteome remains

undetected in any given proteomics study. This is due to

different technical and biological reasons, which contribute to

the limitations in the detection of peptide variants (a subset of the

total proteome). These unobserved peptides will include existent

peptide variants, thus reducing the risk of individual

identification or reidentification.

1) Technical factors. In each sample, the dynamic range and

peptide detectability in the mass spectrometer (due to the

peptide ionisation properties) restrict the observable portion

of the proteome. Moreover, some protein regions cannot be

digested by trypsin (the most used protease), making them

undetectable by the common proteomics DDA workflows.

Non-specific adsorption loss of peptides during sample

preparation may affect the detection of protein sequence

variation. There are also limitations related to the

instrumentation because not all peptides can be fragmented

simultaneously. Additionally, the identification of peptide from

the MS/MS spectra are typically performed using a protein

sequence database analysis approach. In fact, de novo

interpretation of MS/MS spectra (a database-free analysis

method) is usually quite limited. Therefore, at present, for

proteomics data to get an acceptable protein sequence

coverage, a high-quality protein sequence database is generally

required. However, due to the reasons explained above, it is not

unusual that some proteins are identified by just one or two

representative peptides, which results in a very low overall

sequence coverage. This exemplifies a quite different scenario

when compared with DNA sequencing technologies, which can

usually provide very high sequence coverages (Bandeira et al.,

2021).

2) Biological factors. It is also possible for genome sequence

variation to go undetected in the proteome for a variety of

biological reasons. First, many genomic variants can be found

in intronic regions, which are not translated. Second, most

amino acids are encoded by more than one codon hence a

single nucleotide change in a protein-coding exon can be

silent (synonymous). Third, a variant may also disrupt the

translation process, resulting in a decrease in the abundance

of the variant protein, which can make it undetectable.

Fourth, it should be noted that only a portion of the entire

proteome is expressed at any given time (Bandeira et al.,

2021).

Considering all these technical and biological factors, in our

view, the potential risk of identifying individuals from proteomic

data alone is low, unless one considers the potential detection of

rare sequence variants with a very low prevalence. To the best of

our knowledge, there is no population-based SAAVs data derived

from proteomics studies where SAAV frequencies have been

FIGURE 2
Timeline of selected publications in this manuscript. Some timely advancements toward identifying SAAVs and individuals’ proteomes are
described in the illustration.
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estimated. However, in the case of human genotypes, the larger

the sample size from which the allele frequencies can be obtained,

the more independent genetic markers needed to identify

individuals (Visscher & Hill, 2009), as may also be the case

for the SAAVs that are necessary for individual identification. In

a previous study, a panel of 50 SNPs was sufficient to identify an

individual unambiguously: the probability of identity was 6.9 ×

10–20 when assuming no family relations (Yousefi et al., 2018). In

fact, if an allele is very rare, it can dramatically reduce the number

of identifiable people with that given SAAV. It is also important

to highlight that the risk of identification of individuals should be

balanced with confidence in the peptide identifications,

considering the different levels of FDR and other statistical

scores. Indeed, since every peptide identification has different

statistical scores derived from the identification process, some

SAAVs are more statistically significant than others.

Case studies related to the identifiability of
individuals in proteomics data

Biomedical and forensic studies are two disciplines where the

concept of personal proteomes is relevant in the context of

identifiability. In both cases, the potential identifiability of

individuals can lead to mainly incidental (coming from

biomedical data) or intentional (forensic) findings. However,

the number of studies in the literature addressing the

identifiability risks in proteomics data is so far small.

First, in the context of applications in the forensic sciences,

the detection of proteins using proteomics approaches is

promising since it can be used to identify body fluids and

tissues, as well as to convey genetic information in the form

of SAAVs as the result of nsSNPs (Parker et al., 2021). These

applications also show a clear example of the potential for

identifying individuals considering many of the points

introduced in the previous section.

There have been several studies devoted to proteomics

genotyping. In this context, the human hair shaft proteome

provides a broad representation of the genome to test

proteome-based nsSNP imputation for the identification of

individuals. In a first pilot forensic study, an analysis of

SAAVs of hair shaft proteins was performed using a custom-

made protein database [Figure 2, text-box 2, Parker et al., 2016],

which contained all SAAVs with a greater than 0.4% allelic

frequency in either European-American or African-American

sample populations (http://evs.gs.washington.edu/EVS). Overall,

more than 35 × 103 nsSNPs with frequencies over 0.8% of the

population were considered. The probability of a particular

profile occurring in a population was estimated by applying a

statistical treatment of the individually imputed nsSNP profiles.

The resulting profile of imputed nsSNP alleles enabled a

probability estimation of individual non-synonymous SAAV

allelic profiles in the European population, with a maximum

power of discrimination that a given profile existed of 1 in

12,500 individuals. This allowed performing likelihood

measures of biogeographic background. When estimated using

a European sample population, the resulting overall profile

probabilities ranged from 9.98 × 10−1 to 7.21 × 10−5.

Subsequent studies of bulk samples were performed on the same

number of sample replicates using hair from the same individuals

[Figure 2, text-box 4, Mason et al., 2019]. Both single hair samples

derived from the same subjects and the bulk-hair samples resulted in

an overall higher number of total SAAV identifications. Interestingly,

the difference in the standard deviation observed between bulk-hair

and single hair samples indicated that in practice, single hair samples

may provide different sets of SAAVs depending on body location, hair

length or age.

In one more study, it was demonstrated that hair from different

body locations could lead to the identification of the same SAAV

markers [Figure 2, text-box 3, Chu et al., 2019]. Protein abundance

profiles of head and arm hair samples were more similar among

themselves than when compared to pubic hair. Additionally,

changes in protein abundance were found in 37 markers. This

enabled the distinction of hair fibres from different body locations

via principal component analysis. A different analysis approach was

used (Figure 2, text-box 6, Zhang et al., 2020) for the identification of

SAAVs in human hair keratin. This involved the construction of a

spectral library from hair samples. Overall, the library contained

6,280 spectra, including SAAVs that could be extended with wide-

ranging hair-derived peptides. This peptide spectral library

contained all identified peptides from their work, including

SAAVs that, when expanded with diverse hair-derived peptides,

could provide reliable and sensitive means of analysing hair digests.

Also, the study showed that genetically variant peptides derived

from human hair shaft proteins could be used to differentiate

individuals of different biogeographic origins.

In yet another forensic study, human finger-marks were

utilised for proteomic genotyping, detecting SAAVs deduced

from the matching nsSNPs (Figure 2, text-box 5, Borja et al.,

2019). From a total of 264 SNP allele inferences (including

260 true and 4 false positives), 60 SAAVs were validated after

matching proteomics and exome sequences, with a PSM FDR of

1.5%. Using data from the Thousand Genomes Project, genotype

frequencies from the major matching populations were used to

estimate the probability of randommatching, which resulted in a

value of 1 in 1.7 × 108, with a median probability of 1 in 2.4 × 106.

Also, this peptide SAAV detection method enabled the inference

of the matching SNP alleles in the donor, as well as in most

populations, as proven in the hair studies, and it’s claimed to

complement other methods of human identification.

A recent study performed on hair shafts resulted in a deep

proteome coverage. The methodology consisted of a three-step

ionic liquid-based extraction and two-dimensional reverse-phase

LC-MS stages performed at high and low pH. Analysis of SAAV

data provided significantly higher numbers in identifications of

both variant and reference SAAVs with a maximum power of
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discrimination of 1 in 3.10 × 1014, which appears to be close to the

requirements for forensic applications (Figure 2, text-box 9, Wu

et al., 2022). In this case, an OMS approach using the software

pFind was used. As highlighted above, OMS approaches are not

considered, at least currently, as reliable as the typical PG

analysis, so in our view, the results of this study should be

taken with more caution.

Forensic studies aside, to the best of our knowledge there is

only one omics study on this topic in the literature. There, it was

shown that MS data collected from the same person could

potentially be used to reidentify individuals using nsSNPs

(Figure 2, text-box 1, Li et al., 2016). Overall, 158 proteomics

samples were collected coming from the serum of 80 breast

cancer patients and 78 healthy individuals (used as controls), as

well as an additional set of blood/serum samples coming from

30 individuals. The detected nsSNP sites showed up to 20 minor

allelic variant sites corresponding to 25 mass spectra. The minor

allele frequencies indicated that the participants could be

correctly reidentified with high confidence (p-value<10–10).

Identifiability risks of other proteomics
data types

In addition to protein sequence variation, the risk of

identifying individuals is also present in other proteomics data

types. Peptide and protein expression/abundance values

(analogously to gene expression values) have already been

studied in this context. As clinical proteomics can generate

analyses of large-scale cohorts of e.g., plasma protein levels, it

can usually report on many more biological conditions than the

main one under examination, making ‘Incidental Findings’ an

integral feature of the approach. A recent study describing a meta-

analysis of clinical plasma proteome datasets revealed that

individual-specific protein expression values could be used to

reidentify the individuals, and additionally, also found some

incidental findings that had ethical considerations (Figure 2,

text-box 7, Geyer et al., 2021). Individual protein expression

levels depend on several factors such as age and lifestyle,

however, proteomics data can provide broad insight into

linking observed proteins to genetic and phenotypic features

such as ethnicity, gender, and disease. Furthermore, proteomics

findings have revealed that the abundance of proteins involved in

the same biological process varies among individuals. It appears

that these processes are tightly regulated at the protein level (Wu

et al., 2013). Additionally, some studies have observed a significant

difference between the proteomes of different genders and their

reproductive states. As an example, females have an increased

prevalence of oestrogen-regulated proteins, such as sex hormone

binding globulin (SHBG) and pregnancy zone protein (PZP),

which are detectable using MS-based proteomics. SHBG and

especially PZP further increase more than tenfold during

pregnancy (Moore & Dveksler, 2014; Gordon et al., 1977). MS-

based detection of Vitamin-D binding protein [DBP, also known

as Group-specific Component (GC)] allelic types and abundance

in plasma abundance has been linked to ethnicity. The gene

encoding this protein has three common alleles Gc1f, Gc1s, and

Gc2, each with very different allele distributions and protein

expression profiles depending on ethnic background. Gc1f is

most frequently found in West Africans and African

Americans, and least common in Caucasians (Kamboh and

Ferrell, 1986; Constans et al., 1985).

Proteomics, like genomics data, can predict disease risks which

can influence personal decisions (i.e., concerning insurance, jobs,

family planning, or other lifestyle choices) in helpingminimise disease

development. However, proteomics-based diagnoses involving

medically unactionable information could have a significant

negative impact on patients, leading to unnecessary medical

procedures and mental health considerations. One example is the

case of the three APOE alleles (APOE2, APOE3, and APOE4), which

can be differentiated by sequence-specific peptides. Detection of the

APOE4 allelic peptide (present in 7.5%–15.6% of the population)

represents a non-actionable biomarker-related condition, strongly

indicating a significantly increased risk of Alzheimer’s disease

(Mckay et al., 2011). However, actionable knowledge about the

APOE2 allele (6.7%–10.0% of the population), linked to increased

cholesterol levels and cardiovascular pathologies (Mckay et al., 2011),

allows early intervention and medical treatment. Another example is

the glycated formofHaemoglobinHbA1c, an actionable biomarker of

diabetes. It is easily detectable by plasma proteome profiling

experiments, and highly relevant for a third of the population.

Finally in this context, the U.S. Food and Drug Administration

(FDA) has approved 50 proteins as health status biomarkers,

which can be identified by MS-based proteomics (Geyer et al.,

2016). These MS-quantified markers include the C-reactive protein

(CRP) and the protein serum amyloid alpha 1 (SAA1) with

abundance changes linked to infection and an individual’s

inflammation status. Both are protein measurements that are

highly requested in clinical practice.

The same principles used for peptide and protein expression

abundance could also be applied to peptides/proteins with

differential PTM profiles that can be associated with disease

phenotypes in individuals. This topic has recently been

extensively reviewed by others in cancer (Zhu et al., 2022), or

in neurodegenerative diseases (Azevedo et al., 2022) such as

Alzheimer’s disease (Karikari et al., 2022). It is also worth

highlighting a study where differential PTM-based proteoform

profiles were detected using top-down proteomics, which was

derived from underlying SAAVs characteristic of different

individuals (Lin et al., 2019).

Future perspectives

Analysing (clinically sensitive) human proteomics data

might lead to the identification of individuals, raising ethical
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concerns. At present, in our view, the identification of an

individual remains very challenging and unlikely. However,

matching two datasets or matching a proteomics dataset to a

DNA/RNA sequencing one, based on a set of identified SAAVs,

can be feasible. Despite this, several methodologies are

continuously improving SAAV detection, and new algorithms

are being developed, involving for instance analysis approaches

without using sequence databases or experimentally generated

spectral libraries. By detecting SAAVs, rather than using only

genomic sequencing data, it is possible to better predict disease

risk considering Proteomics SAAV data. For instance, SNPs

associated with disease risk may affect the expression of

disease protein biomarker(s) when these SNPs are properly

identified or quantified as SAAVs. This medically actionable

or unactionable information is critical as it may result in

potentially negatively influencing future personal decisions.

In addition to other parameters, phenotypes derived from

proteomics data must be evaluated regarding their risk for

identifiability, considering which minimal information would be

required to assess the identifiability potential. Likewise, data

standards and archiving practices in the field will need to evolve

to comply with the state-of-the-art in other omics disciplines such as

genomics and transcriptomics, including for instance the availability

of controlled-access proteomics data repositories (Keane et al.,

2021). Indeed, the datasets available in current proteomics

repositories (which are completely open), could be reanalysed as

new methods arise, creating future risks in terms of identifiability

even if these risks were not apparent at the time of the data

submission.

To finalise, it should be reiterated that inherent ethical and

privacy issues must be formally considered in the proteomics

field. In that context, in our view, it is critical that larger-scale

studies can be conducted to gain a deeper understanding of the

identifiability risks associated with the different proteomics data

types and approaches.
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