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Host-microbiome interactions are known to have substantial effects on human

health, but the diversity of the human microbiome makes it difficult to

definitively attribute specific microbiome features to a host phenotype. One

approach to overcoming this challenge is to use animal models of host-

microbiome interaction, but it must be determined that relevant aspects of

host-microbiome interactions are reflected in the animal model. One such

experimental validation is an experiment by Ridura et al. In that experiment,

transplanting a microbiome from a human into a mouse also conferred the

human donor’s obesity phenotype. We have aggregated a collection of

previously published host-microbiome mouse-model experiments and

combined it with thousands of sequenced and annotated bacterial genomes

and metametabolomic pathways. Three computational models were

generated, each model reflecting an aspect of host-microbiome

interactions: 1) Predict the change in microbiome community structure in

response to host diet using a community interaction network, 2) Predict

metagenomic data from microbiome community structure, and 3) Predict

host obesogenesis from modeled microbiome metagenomic data. These

computationally validated models were combined into an integrated model

of host-microbiome-diet interactions and used to replicate the Ridura

experiment in silico. The results of the computational models indicate that

network-based models are significantly more predictive than similar but non-

network-based models. Network-based models also provide additional insight

into themolecular mechanisms of host-microbiome interaction by highlighting

metabolites and metabolic pathways proposed to be associated with

microbiome-based obesogenesis. While the models generated in this study

are likely too specific to the animal models and experimental conditions used to

train our models to be of general utility in a broader understanding of

obesogenesis, the approach detailed here is expected to be a powerful tool

of investigating multiple types of host-microbiome interactions.
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1 Introduction

All of us live in an intimate association with communities

of microorganisms, which are collectively termed our

microbiome. These microbial communities are with us our

entire lives, inoculated in as at the moment of our birth,

helping to guide our development, tuning our immune

systems, and beginning the process of decomposition at the

moment of our death. In between times, microbiomes have

been implicated in a wide variety of conditions, such as IBS,

inflammation, autoimmune disorders, susceptibility to certain

cancers, and depression (Huttenhower et al., 2012; Wylie

et al., 2012; Putignani et al., 2014; Yang et al., 2016a;

Schmidt et al., 2018). The gut microbiome is also known to

play a role in obesity (David et al., 2014; Bianchi et al., 2018;

Racz et al., 2018; Tseng and Wu, 2018). Obesity results in a

significantly increased risk in mortality (Global et al., 2016),

and is associated with elevated risk for serious health

conditions such as hypertension, type two diabetes, heart

disease, stroke, osteoarthritis, inflammation, and some

cancers (Consortia. Clinical, 1998; Kasen et al., 2007;

Bhaskaran et al., 2014; Ryan and Heaner, 2014; Blander

et al., 2017). The CDC estimates that the cost of obesity to

the United States healthcare system is about $173 billion a

year (Promotion, 2022). Although the microbiome is only one

factor of many contributing to obesity (Rabot et al., 2016; Xiao

et al., 2017), even a small decrease in the prevalence of obesity

in the world’s population will lead to significant reductions in

medical costs and prevent tens of thousands of premature

deaths.

With such a broad range of effects on host health, it

would seem that the microbiome is a profitable target for

addressing diseases such as obesity. A significant

complication to developing microbiome-based diagnostics

or treatments is the inherent, tremendous variability in

human microbiome communities, both from individual to

individual and within a single individual over time

(Schloissnig et al., 2013; David et al., 2014; Gerber, 2014;

Putignani et al., 2014). This diversity in microbiome

communities makes it difficult to attribute particular

microbiome community features with a specific disease,

such as obesity (Walters et al., 2014). Evidence suggests

that, for many conditions, host-microbiome interactions is

not due to the simple presence, absence, or relative

abundance of any single bacterial species or taxa in the

microbiome, but rather is the consequence of a network of

interactions in the microbiome community (Larsen and Dai,

2015a) (Walters et al., 2014; Larsen and Dai, 2015b).

Therefore, to understand host-microbiome interactions, a

network-based approach is required.

One way to overcome the challenge of microbiome

diversity to address how the microbiome predisposes a

host to obesity is to turn to experimental animal models.

The use of a mouse model has many significant advantages

(Turnbaugh et al., 2009; Bouskill et al., 2012). In particular,

the microbiome of laboratory-reared mice can be rigorously

controlled and standardized (Ward and Trexler, 1958). It is

important, however, to determine how well and under what

conditions an animal microbiome model might profitably

represent a human host. Ridaura et al. (2013) describes an

experiment in which the obesity phenotype of human donors

is transferred into mice via a microbiome transplant. In this

study, germ-free mice were inoculated with microbiome

communities collected from twins discordant for obesity.

Not only were human microbiome transplants found to be

persistent in their new mouse hosts, but mice that received

an “Obese” microbiome gained more weight, even on a low

fat, low sugar diet, than mice that received a “Lean”

microbiome transplant. So, for some aspects of human

obesity, a mouse model is a valuable tool (To the best of

our knowledge, the reverse experiment, transplanting a

mouse into a human host, has unfortunately not yet been

performed).

In this study, our goal is to leverage network-based

predictive computational modeling approaches to identify

mechanisms of interaction in microbiome-associated host

obesity. This approach is divided into three sub-goals: 1)

Predict the change in microbiome community structure in

response to host diet, 2) Predict a subset of the microbiome’s

metagenome, those genes associated with metabolism, from

microbiome community structure, and 3) use predicted

metagenomic data to model microbiome community

metabolome and predict a microbiome’s obesogenesis, the

likelihood that the microbiome predisposes the host to

obesity. We show that network-based approaches are better

predictors of host-microbiome interaction than very similar

methods that do not consider networks of biological

interactions. Models were trained on microbiome data

collected from a variety of previously published studies, as

well as the aggregated information from thousands of

sequenced and annotated bacterial genomes and the

collected information for bacterial metabolic networks. Our

criteria for the success of these models are 1) models can

accurately predict the experiments on which models were

trained, and 2) the integrated models can predict the

results for biological experiments outside of the training

data, highlighting the predictive abilities of network-based

host-microbiome interaction models.

While the specific network-based models generated in

these analyses are likely too narrowly focused to be of

general utility in the study of microbiome-associated

obesogenesis, we propose that the broader approach

presented here, integrating multiple individually trained

models into a predictive system, can be applied to a range

of host-microbiome interactions and will be a valuable tool for

future studies.
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2 Materials and methods

2.1 Collected datasets

For this study, a collection of previously published mouse

microbiome studies, each investigating some aspect of host-

microbiome interactions, were leveraged for our models.

2.1.1 Effect of diet on microbiome community
In the manuscript by Carmody Rachel et al. (2015), authors

report the changes in microbiome community structure in

response to changes in host diet in an experimental mouse

model system. Diets were provided as a gradient from High

Fat (HF) to Low Fat (LF) diet conditions. Adult male C57BL/6J

mice raised on LF diets were fed mixed LF and HF-diet pellets in

proportions of 0, 1, 10, 25, 50, 75, or 100% HF diet for 7 days.

Data were collected from 33 mice from the initial microbiome

communities and again after 7 days on the new diet for a total of

66 microbiome community observations. Data from this

experiment were collected from the metagenomics database

MG-RAST (http://metagenomics.anl.gov/) using the

“MGRASTer” tool (https://github.com/braithwaite/

MGRASTer/) in R (https://www.r-project.org/).

2.1.2 Metagenomic diversity of mouse
microbiomes

A study of the diversity of mouse microbiomes by Xiao et al.

(2015) is comprised of 184 mouse gut microbiomes with paired

microbiome community structure and metagenome sequence

data. Microbiomes were collected from eight mouse strains that

were maintained at seven different housing labs/facilities. 68% of

the mice in the dataset are male and 74% were raised on a LF diet.

There were 1558 unique enzyme functions (using Enzyme

Commission (EC) ontology annotations) present in the

available metagenomic data that make up the enzyme

function profiles of a microbiome community. Microbiome

community structure and metagenomic data are available

through the GigaDatabase website (http://gigadb.org/dataset/

100114).

2.1.3 Obesity and microbiome
A key complication in the studies of the microbiome’s effect

on obesity is to distinguish the causal interactions of diet on the

microbiome from the effects of the microbiome on obesity. In a

study published by Xiao et al. (2017), this challenge is addressed

by considering two different mouse genotypes. In mouse strain

C57BL/6J, treatment of mice with a COX-inhibitor prevents HF-

diet induced obesity. A total of 30 Sv129 mice (10 LF diet, 10 HF

diet, and 10 HF + inhibitor) and 24 BL6 mice (7 LF diet, 8 HF

diet, and 9 HF + inhibitor) were used in this study. The

microbiome community structure data from this experiment

are available through the GigaDatabase website (http://gigadb.

org/dataset/100271).

2.1.4 Microbiome transplant
The manuscript by Ridaura et al. (2013), as previously

mentioned in the Introduction, describes an experiment in

which the obesity phenotype of human donors is transferred

into mice via a microbiome transplant. Microbiome community

structure data for “Lean” and “Obese” human microbiome

transplants were collected from the Supplemental Files of the

manuscript.

2.1.5 Harmonizing microbiome experiment
datasets

In order to integrate the selected diverse published datasets

into a single computational framework, all microbiome

communities need to be described using a common set of

bacterial taxonomic identifiers. Using the most abundant taxa

that describe communities across all microbiome datasets, twenty

taxa (4 Orders, 15 Genera, and a category for “Other”) were

selected (Table 1). On average, the class “Other” comprises about

16% of bacterial abundances in selected microbiome community

structures. All community datasets were normalized such that

total bacterial abundance sums to 100. The complete set of

microbiome community datasets is available in Supplementary

Data Sheet S1.

A method for describing host diets that can accommodate

arbitrary combinations of HF and LF diets is required for host-

microbiome-diet interaction models. For this, host diet is

described as a vector of nutrient parameters. The LF diet

parameters were collected from available data sheets for

ENVIGO “Teklad Custom Diet” (http://www.envigo.com/

products-services/teklad/laboratory-animal-diets/), comprised

of Diet Mix TD.08811 made with Mineral Mix TD.94046 and

Vitamin Mix TD.94047. High Fat (HF) data parameters were

collected from available datasheets for LabDiet “JL Rat and

Mouse/Auto 6F” (http://www.labdiet.com/). The amino acid

composition for casein in LF diet was inferred from an

analysis found in (Gordon et al., 1949). There are 48 total diet

parameter features, comprised of 17 protein/amino acids,

7 carbohydrates, 4 fats, 8 minerals, 11 vitamins, and Kcal/g

(Table 2). For use in models, all diet parameters were defined

as arbitrary values between 0 and 100. Diet parameters for high

fat and low fat diets from collected experiments were normalized

to values between 20 and 80 (high and low values were selected so

that the model is hypothetically capable of considering diet

conditions with lower or higher nutrient concentrations than

those used to train the model) and log2 transformed.

2.2 Predict change in microbiome
community structure in response to host
diet

For this study, we leveraged the previously published

Microbiome Assemblage Prediction (MAP) model approach
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for predicting microbiome community structure as a function of

environmental data and using a learned network of microbiome

community interactions (Larsen et al., 2011). Briefly described, a

MAP model consists of two steps. The first is to generate a

community interaction network from collected microbiome data

as a directed acyclic graph, such that nodes are environmental

conditions or bacterial taxa, all root nodes are environmental

conditions, and interactions in the network are predicted causal

interactions between environmental parameters and bacteria

taxa, or between bacterial taxa. The second step is to describe

the community interaction network as a system of equations,

such that the abundance of a bacterial taxa can be described as a

function of the values of parent nodes (environmental parameter

or bacterial taxa) in the interaction network. Here, we substituted

host diet parameters for “environmental conditions” in the MAP

model. The data from “Effect of Diet on Microbiome

Community” was used in this analysis.

While there are other tools available for predicting

metagenomic data from microbiome community structure

[e.g., PiCRUST (Langille et al., 2013), Tax4Fun (Asshauer

et al., 2015; Scott et al., 2015)] these alternative tools use

OTU-level microbiome data as input. Microbiome community

data considered here was collected at a higher level of taxonomy,

necessitating an alternative approach.

The network of community interactions between initial

microbiome community was generated as a Bayesian

Interaction Network, such that root nodes of the directed

acyclic network were diet parameters and initial microbiome

community, using BANJO (https://users.cs.duke.edu/~amink/

software/banjo/). BANJO was run using the parameters for

“Greedy” searcher, and with a maximum of five parents per node.

The resulting microbial interaction network can be

represented as the following regression model:

taxonti � ⎛⎜⎝∑CINdiet
i

j�1 wj,idiet
t
j
⎞⎟⎠ +⎛⎝∑CINtaxat

i

k�1 wk,itaxon
t
k
⎞⎠

+⎛⎝∑CINtaxat−1
i

l�1 wl,itaxon
t−1
l
⎞⎠ + ci (1)

Where taxonti is the relative abundance of taxon i at time t.

CINdiet
i is the set of diet parameters that are parents of taxon i in

microbial interaction network, CINtaxat
i is the set of taxa

abundances that are parents of taxon i in microbial

TABLE 1 Taxa used in mouse microbiome community structures.

Order Genus Description*

Actinobacteria Collinsella The abundance of Collinsella correlate strongly with high levels of inflammatory compounds

Bacteroidales Bacteroides Bacteroides species commonly found in the human gut, where they play a fundamental role in processing of complex
carbohydrates

Parabacteroides Parabacteroides help digest high-fiber diets and their levels are elevated in the presence of resistant starches

Bacteroidetes Porphyromonas Porphyromonas are Gram-negative obligate anaerobes. Some species are associated with autoimmune diseases

Anaerostipes Anaerostipes is anaerobic, Gram-positive, and occurs in the human gut

Clostridiales Blautia Blautia are common in the human gut microbiome and produce acetate. IBS patients have increased levels of Blautia species

Butyrivibrio Butyrivibrio are common in the gastrointestinal systems of many plant-eating animals

Clostridium Clostridium are Gram-positive bacteria, and includes the diarrhea-causing Clostridium difficile

Eubacterium Eubacterium are common in the gut microbiome and help to digest resistant starches

Lachnospiraceae The Lachnospiraceae are an anaerobic bacteria found in the human gut. Members of this family are linked to obesity and may
protect against colon cancer in humans by producing butyric acid

Oribacterium Oribacterium are found in higher abundance in the gut microbiome with high-fat diets and are potentially linked to inflammation

Ruminococcaceae Ruminococcaceae are common bacteria in the gut microbiome and help to digest resistant starches. Ruminococcaceae increase in
abundance with a diet high in plant starches

Ruminococcus Ruminococcus are Gram-positive gut anaerobes commonly found in gut microbiome. They help digest resistance starches and are
associated with reduced risk of diabetes and colon cancer

Other Clostridia are obligate anaerobes. They are commonly found in animal microbiomes and some can be pathogens

Erysipelotrichia Erysipelotrichaceae Erysipelotrichaceae increase abundance with a high-fat diet and are associated with inflammation-related disorders of the
gastrointestinal tract

Lactobacillales Lactobacillus Lactobacillus are Gram-positive, facultative anaerobes or microaerophilic and are commonly found in the gut microbiome

Atopobium Any Atopobium are Gram-positive anaerobes

Desulfotomaculum Any Desulfotomaculum are sulfate-reducing, obligate anaerobes. Desulfotomaculum can cause food spoilage in poorly processed
canned foods

Lactococcus Any Lactococcus produce lactic acid as the sole product of glucose fermentation

OTHER N/A

*Descriptions of taxa are collected and summarized from the NCBI taxonomy browser, (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi).
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interaction network at time point t, and CINtaxat−1
i is the set of

taxa abundances from previous time point, t-1, that are parents of

taxon i in microbial interaction network. wj,i, wk,i, and wl,i are

weights between taxon i and diet or taxon nodes at time t, or

taxon nodes as time t-1 in the microbial interaction network

respectively. For interactions between taxa at time t, forwk,i when

k = i, wk,i is defined as 0 (i.e. a taxon is not permitted to influence

its own abundance at time t).

As a control, we also considered a non-networked model. For

our non-networked model, the abundance of a microbial taxa

after diet change is computed as the following regression model:

taxonti � ∑ALLdiet
t

j�1
wj,idiet

t
j + ∑ALLtaxa

t−1

l�1
wl,itaxon

t−1
l + ci (2)

Where ALLdiet
t

and ALLtaxa
t−1

indicate that all nutrient

parameters and taxa relative abundances, not just those that

are parent nodes in the microbiome interaction network, are

considered as parameters in these equations.

The w parameters of the above regression models for

microbiome community were solved using least squares

estimate (QR decomposition of matrix in R). Predictive

performance of the models was determined by the Pearson

Correlation Coefficient (PCC) between the predicted and

observed microbiome community structures (as log2 relative

abundances) where each community structure is comprised of

20 taxa. For calculating the edge weights for MAP-models, the

dataset was repeatedly divided into five non-overlapping training

(80%) and testing (20%) datasets.

2.3 Predict enzyme function profile from
microbiome community structure

We have used a previously published approach for predicting

the relative abundance of genes for metabolic enzymes, the

microbiome’s Enzyme Function Profile (EFP), from

microbiome community data, that is, presented as the relative

TABLE 2 Mouse diet compositions for High Fat (HF) and Low Fat (LF).

Nutrient (g/Kg) HF LF Nutrient (g/Kg) HF LF

Protein 19.3 18 Minerals Calcium 1.5351 1.17

Amino Acids Ile 0.89 0.87 Potassium 1.347534 0.66

Leu 1.73 1.52 Magnesium 0.10449 0.22

Lys 1.51 0.97 Iron 0.026058 0.038

Met+Cys 0.62 0.98 Zinc 0.007095 0.0085

Phe+Tyr 1.97 1.41 Magnesium 0.002709 0.016

Thr 0.78 0.68 Copper 0.001333 0.0011

Val 1.09 0.9 Iodine 0.000043 0.00021

Trp 0.20 0.23 Vitamins Niacin 0.0057 0.009

His 0.49 0.44 Panthothenate 0.00304 0.0037

Ala 0.53 1.13 Pyridoxine 0.00133 0.001

Arg 0.65 1.03 Riboflavin 0.00114 0.0009

Asp 1.47 1.87 Folic acid 0.00038 0.00019

Glu 4.25 4.52 Biotin 0.000038 0.00003

Gly 0.33 0.94 Vit B12 0.00475 0.005

Pro 1.81 1.53 Vit E 0.0285 0.0045

Ser 1.08 0.98 Vit A 0.00152 0.002

Carbohydrates Carbohydrate 50.34 39.79 Vit D3 0.00038 0.00043

Starch 11.7 38.9 Vit K 0.000143 0.002

Glucose 0 0.12 Kcal/g 4.7 3.17

Fructose 0 0.15

Sucrose 34.84 0.62

Lactose 3.8 0

Fats Fiber (cellulose) 5 15

Total Fat 23.2 6.2

Saturated 14.15 1.24

Mono saturated 7.192 1.37

Poly unsaturated 1.856 0.24
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abundance of bacterial taxa (Larsen et al., 2015a; Larsen and Dai,

2015b). Briefly, the EPF for a microbiome community can be

estimated by:

ECn
i � ∑Taxa

j�1 AveECj
i × Taxonnj (3)

Where ECn
i is the abundance of enzyme function i in microbiome

n, Taxa is the set of bacterial taxa that comprise in the

microbiome community structure, AveECj
i is the average

number of genes for enzyme function i in taxon j, and

Taxonnj is the relative abundance of taxa j in microbiome n.

The data from “Metagenomic Diversity of Mouse

Microbiomes” provides an opportunity to improve on this

approach by optimizing equations to fit observed

metagenomic data. To optimize EFP-prediction for mouse gut

microbiomes, an additional term to equation was added (Yang

et al., 2016a):

ECn
i � ∑Taxa

j�1
(AveECj

i + eij)*Taxonnj (4)

Where eij is a constant that is added to the average enzyme

function abundance for enzyme activity i in bacterial taxon j.

This error term is calculated such that the range of possible values

is determined from the observed standard deviation (SD) in

published genomes for the number of genes for enzyme function

i in taxon j.

We applied a Stochastic Hill Climbing algorithm approach

and the “Metagenomic Diversity of Mouse Microbiomes”

dataset to determine the values of eij so that the prediction

of EFP is optimized for mouse microbiomes. Stochastic Hill

Climbing is an iterative local search optimization method

which chooses randomly from the set of all possible moves to

reduce the possibility of achieving a local maximum (Russell

et al., 2010; Wu et al., 2011). The selection of random taxon

and random enzyme function follows a Boltzmann

distribution, such that observations with higher SDs are

selected more frequently that observations with lower SDs.

The metric for determination of improvement of prediction is

the PCC of the predicted EFPs and observed mouse

microbiome EFPs.

2.4 Predict host obesity from the
microbiome

A previous study (Larsen and Dai, 2015a) has suggested that

microbiome community metabolome is more predictive of host

dysbiosis than microbiome community structure. We use a similar

approach here to predict host obesity from microbiome data.

Microbiome community metabolome was modeled using

Predictive Relative Metabolic Turnover (PRMT) (Larsen et al.,

2011). Briefly, PRMT is a metabolic network topology approach

to quantifying the predicted relative capacity for a microbiome

community to synthesize and/or catabolize specific metabolites.

PRMT has been used in similar contexts in other microbiome

analyses (Larsen et al., 2011; Larsen et al., 2015a; Larsen et al.,

2015b).

Microbiome dataset “Obesity and Microbiome” was used for

this analysis. Predictors for host diet and obesity, using either

PRMT or microbiome community data, were modeled as non-

linear functions, using the AI tool “Eureqa” (v 1.2) (https://www.

nutonian.com/). “Eureqa” uses an evolutionary search algorithm

to determine simplest mathematical equations that describe user-

defined relationships in a dataset. The following functions were

determined using Eureqa:

OBESITYpop � f(microbiome community structure) (5)
OBESITYmet � f(predicted microbiome community metabolome)

(6)
DIETpop � f(microbiome community structure) (7)

DIETmet � f(predicted microbiome community metabolome)
(8)

Where OBESITY = 1 for obese phenotype and 0 for non-

obese phenotype and DIET = 1 for HF diet and 0 for LF diet.

“Microbiome community structure” was all 20 bacterial taxa

present in community data. For “predicted microbiome

community metabolome”, the top 5% of PRMT-scored

metabolites significant for Obesity, as ranked by the Fisher-

score (128 metabolites) were used. All data was divided into

training (80%) and testing (20%) subsets. The “Eureqa”

evolutionary algorithm was allowed to run until “stability”

and “convergence” were greater than 95%. Function values

greater than 0.5 were considered Obese or HF, values less

than 0.5 were Non-obese or LF. Accuracy of predictions were

quantified as Mathews Correlation Coefficients (MCC).

2.5 Integrated host-microbiome model
system

To demonstrate network-based models’ ability to effectively

predict novel host-microbiome interactions, the collection of

previously generated models were combined and used to

recapitulate, in silico, the results of Ridura’s Microbiome

Transplant Experiment.

Thethree previous models are combined such that 1) given a

starting “obese” or “lean” microbiome community and a HF or

LF diet, predict the changes to microbiome community structure,

2) given a predicted microbiome community structure, predict

the EFP, and 3) given a predicted EFP, calculate microbiome

community metabolome and host obesity. “Obese” and “Lean”

microbiome community structures were taken from

“Microbiome Transplant” data. An obesogenesis score, to

compare results of different starting microbiomes and diets,

was calculated as:
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OBESOGENESISi � logs( OBESITYmet(PredictedMetabolome i)
Ave OBESITYmet(All PredictedMetabolomes))

(9)

Were OBESOGENESISi is the predicted obesogenesis for

microbiome i, OBESITYmet is the function from equation

(Bianchi et al., 2018), and Ave_OBEISITYmet is the average

OBESITYmet for all predicted microbiomes. By this metric,

values greater than 0 are more obese than the average host,

and less than 0 are less obese/leaner than the average host.

3 Results

3.1 A network-based model is more
predictive of change in microbiome
community in response to diet than a non-
network model

In the generated network ofmicrobiome community interactions

constructed from the “Effect of Diet on Microbiome” dataset, 24 of

the 48 (50%) possible diet parameters were found to impact the

microbiome community (Figure 1). In the microbiome community

interaction network, 46% of nutrient parameters are amino acids,

13% are carbohydrates, 4% are fats, 13% are minerals, and 25% are

vitamins. Diet nodes are significantly enriched for vitamins, relative to

the distribution of nutrient types in the total set of diet parameters

(calculated as hypergeometric mean, p-value less than 0.05). The

bacteria that have the greatest influence on population structure

(i.e., have the largest out-degrees in the network) are Parabacteroides

and Butyrivibrio. The bacterial nodes most regulated by other

community interactions are Desulfotomaculum, Ruminococcus,

Clostridium, and “Other”. Only Bacteroides and Lactobacillus have

no parent nodes that are nutrient parameters. Porphyromonas, the

most abundant bacteria in the mouse microbiome in this dataset, has

only nutrient parameter parents and no predicted interactions with

other taxa. The complete microbiome interaction network can be

found in Supplementary Data Sheet S2.

The average correlations between the MAP-model predicted

and observed microbiome community structures are 0.92 (SD

0.20) and 0.90 (SD 0.029) for the training and test datasets,

respectively. The “Non-Network” model predicts microbiome

community with an average correlation of 0.56 (SD 0.027) and

0.41 (SD 0.22) compared to the observed values in the training

and test datasets, respectively (Figure 2).

3.2 Using diverse mouse microbiome data
improves predictions of microbiome
enzyme function profiles

The results of EFP-predict approach correlated with the

observed EFP with PCCs of 0.88 for both training and test

datasets (Figure 3). The optimized EFP predictions

demonstrated a 10% increase in prediction accuracy with

average PCC values of 0.96 (SD 0.005) and 0.97 (SD 0.001)

for training and validation subsets respectively. Repeated runs

of the Stochastic Hill Climbing approach results had percent

coefficient of variation of 0.16%, indicating that the approach

converges on very similar solutions in multiple runs. The

complete list of observed and predicted EFPs can be found in

Supplementary Data Sheet S3.

FIGURE 1
A community interaction network for mouse microbiome
communities. This figure shows the result from the MAP-model.
Diamonds are diet parameters, amino acids are blue,
carbohydrates are yellow, fats are green, minerals are purple,
and vitamins are orange. Circles are bacterial taxa and the size of
bacterial node is proportionate to their average relative abundance
across all analyzed microbiomes. Solid lines indicate interaction
between taxa at final time point, dashed line indicate interactions
between taxa at time initial and final time point.

FIGURE 2
Predictions for change in microbiome in response to host
diet. Y-axis is average PCC between predicted and observed
mouse gut microbiome community structures for randomly
generated subsets of training and validation data. On x-axis is
the two modeling approaches considered: “Network-based” and
“Non-network Based” models. Average results for Training and
Test data subsets are shown. Error bars are +/− one standard
deviation.
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3.3 Microbiome community
metametabolome is more predictive of
host obesity than microbiome community
structure

Both microbiome community structure and predicted

microbiome community metametabolome achieved

approximately equal accuracy at predicting host HF-diet

phenotype with MCCs of 0.89 and 1 respectively for training

subset and perfect predictions of validation subset (Figure 4).

Considering host obesity however, for the test data subset,

microbiome community metametabolome data generated a

substantially better predictions than microbiome community

structure data, with an MCC of 0.48 and 0.79 for microbiome

community structure and predicted microbiome community

metabolome respectively.

Tables of PRMT scores can be found in Supplementary Data

Sheet S4. The models for diet and obesity can be found in

Supplementary Data Sheet S5.

3.4 Integrated model of host-microbiome
interactions correctly predicts results of
microbiome transplant experiment

The results of the in silicomicrobiome transplant experiment

are summarized in Figure 5. Although overall host obesogenesis

increases with a HF diet, for a given diet a host with an “obese”

microbiome transplant consistently have a higher predicted level

of obesity than a host with a “lean” microbiome transplant.

4 Discussion

4.1 Using network-based modeling
approaches improves models of
obesogenesis in host-microbiome
interactions

4.1.1 Network-based approaches provide insight
into the mechanisms of host-microbiome
interaction in obesogenesis

In addition to improving the accuracy of predicting

changes in MCS in response to host diet, the microbiome

FIGURE 3
Predict microbiome enzyme function profiles from community structures. On x-axis is the two modeling approaches considered: “Initial
Prediction” and “Optimized Prediction”Y-axis is the average PCC between predicted and observed mouse gut EFPs. Error bars are +/− one standard
deviation.

FIGURE 4
Predictions for host diet and obesity. In the top graph, results
for prediction of host diet frommicrobiome data are shown. In the
bottom graph, results for prediction of host obesity state from
microbiome data are shown. Y-axis is MCC score for binary
classification quality. The nature of the data used, “Microbial
Community Structure” or “Microbial Community Metabolome”, to
train the models are listed on the X-axis. Results are presented for
both training and validation data subsets.
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community interaction network (Figure 1) provides insights

into the interactions between taxa and between taxa and diet

parameters in the mouse gut microbiome (Figure 2).

Ruminococcus, which is known to be associated with

digestion of complex carbohydrates in the microbiome

(Ze et al., 2012), is positively affected by the nutrient

parameter “Fiber” in the interaction network. The only

bacterial taxon associated with fat intake in the network

is Eubacterium, which was previously shown to have an

increase relative abundance in the microbiome in high fat,

high sugar diets (Turnbaugh et al., 2008). The enrichment

for vitamins in the set of nutrients predicted to affect the

microbiome community is supported by biological

observations demonstrating the important role

micronutrients play in host-microbiome interactions

(Biesalski, 2016; Hibberd et al., 2017; Tabatabaeizadeh

et al., 2018; Waterhouse et al., 2018). The key role of

vitamins in the gut microbiome community suggests a

mechanism by which the microbiome could be rationally

modified through manipulation of the host’s micronutrient

intake.

Metabolic functions linked to metabolites associated with a

HF diet are primarily associated with bacterial metabolism:

amino acid metabolism, carbohydrate metabolism,

biosynthesis of co-factors, and metabolism of complex ringed

molecules. This is consistent with a microbial population that

changes its community structure in response to new nutrient

sources, which in this case is the different sugar and fat contents

between a LF and HF host diet.

For metabolic functions associated with host obesity-

predictive metabolites, “Glycerolipid metabolism, Fat

digestion and absorption, and Vitamin digestion and

absorption” are pathways associated with the host’s ability to

absorb nutrients from diet rather than a bacteria’s capacity to

consume them. Pathways “Neuroactive ligand-receptor

interaction, Arachidonic acid metabolism, and Fc epsilon RI

signaling pathway” seem to point directly to the specific

molecules that mediate interactions in the gut-brain axis,

interfacing the microbiome community directly with the

host’s regulatory networks and perhaps even the host’s

behavior. Leukotriene is directly associated with obesity

(Back et al., 2014), inflammatory pathways (Busse, 1998),

and response to insulin (Martinez-Clemente et al., 2011; Li

et al., 2015). Phenylalanine pathways have been previously

observed to be highly enriched in the microbiomes of obese

hosts (Liu et al., 2017) and pyrimidine metabolism has been

FIGURE 5
Results of in silico microbiome transplant experiment. The in silico results of the microbiome experiment, in which mice with a “Lean” or
“Obese” starting microbiome are fed a Low Fat (LF) or High Fat (HF) diet. Y-axis is the predicted obesogenesis of host-microbiome-diet interactions
with larger values indicated increased obesogenesis.
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observed to be reduced in non-obese animals (Yang et al.,

2016b). 4-Hydroxyphenylglyoxylate is an inhibitor of fatty

acid oxidation that can lead to liver disease and affect the

digestion of fatty acids in the gut (Keung et al., 2013). Cytidine

deaminase, the enzyme responsible for deoxycytidine

metabolism in the obesity-predictive metabolites, is linked to

obesity-associated reduction of immune B-cell responses

(Frasca et al., 2008; Frasca et al., 2016).

4.1.2 The integrated multi-scale HMI-model
captures properties of obesogenesis in host-
microbiome interactions

Combining the individual model subsystems into an

integrated, multi-scale HMI-model accurately predicts

relative host obesity as a function of initial MCS and host

diet conditions. As shown in the previous section, this model

was used to successfully reproduce, in silico, the observed

results of a human microbiome transplant experiment that

was not used to train any model subsystems. This indicates

that the host-microbiome interaction model is capable of

extrapolating to biological conditions not present in its

training data.

5 Conclusion

Multiple, independent mouse gut microbiome datasets

and multiple computational modeling approaches were

used to construct an integrated multi-scale model of host

microbiome interactions in laboratory mouse experiments

for prediction of host obesity. Models that incorporate

biological networks, such as community interactions or

metabolic pathways, are more predictive than similar

models that do not utilize these networks. In addition,

calculated biological networks in computational models

identify possible molecular mechanisms of host-

microbiome interactions, such as specific nutrient

parameters and metabolites or metabolic pathways linked

to microbiome-associated obesogenesis.

Even though the integrated HMI model is capable of

successfully extrapolating to the results of the Ridura

“Microbiome Transplant” experiment, the model presented

here is likely too narrowly focused to be generalized much

beyond the specific mouse genotypes, range of diets, and

specific time-scales considered here. Additionally, while the

binary identification of obesity/lean used here was a necessity

derived from the need to bring together multiple, disparate

published biological experiments that use different

approaches for phenotypic descriptions, the label “Obesity”

is a simplification of what is in actuality a complex phenotype

(e.g., BMI, percent adiposity, fatty pad volume, and

inflammatory response). Nonetheless, the methodology

used to integrate disparate datasets into a single predictive

model capable of encapsulating emergent properties of host-

microbiome interactions is powerful. While, in general,

accuracy of predictions, reported as Pearson’s or Mathew’s

correlation coefficients, can be considered quite strong, we do

not claim that alternative modeling approaches (e.g.

incorporating flux balance for predicted metabolism or a

sufficiently trained Deep Neural Network) might not prove

at least as accurate. We do, however, propose that modeling

approaches that incorporate biological networks are more

predictive and insightful than a similar approaches that do

not leverage biological network information. Integration of

experimental datasets, as we did here, brings a risk that

different experimental studies may introduce different

biases that affect the prediction made by model trained on

that data. While biases are certainly present in the data used

here, we feel that the ability to recapitulate a biological

experiment not used in the training of models indicates

that, for this admittedly narrow application, those biases

did not prevent us from using the model to make useful

biological predictions. Microbiome community structure

used in these models was mostly considered at the

taxonomic level of Genera, which can be too coarse a level

to accurately capture some functional interactions. For

example, vitamin biosynthesis may be adequately attributed

to taxa at the level of Family (Rodionov et al., 2019), but sugar

utilization cannot (Iablokov et al., 2021). While the taxonomic

resolution used here was suitable to predicting host obesity in

this model system, other host-microbiome interaction

phenotypes might require a finer level of taxonomy. A

direct solution to many of these challenges could be

obtained through designing and implementing specific,

hypothesis driven, multi-omic host-microbiome studies

specifically with the intention for use in computational

model construction rather than collecting disparate,

previously published datasets.

The methodology described here for the integration of

multiple experimental datasets into a single, multi-scale

model has broad applicability to modeling a variety of

host-microbiome interaction types, will generate new

insights into the interactions between microbiomes and

their hosts, and will drive novel hypothesis-generated

biological experiments.
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