
A comprehensive analysis
focusing on cuproptosis to
investigate its clinical and
biological relevance in uterine
corpus endometrial carcinoma
and its potential in indicating
prognosis

Qihui Wu1,2, Ruotong Tian3, Hong Tan4, Jiaxin Liu5,
Chunlin Ou2,6*, Yimin Li7,8* and Xiaodan Fu2,6*
1Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha,
China, 2National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,
3Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan
University, Shanghai, China, 4Department of Pathology, Second Xiangya Hospital, Central South
University, Changsha, China, 5Department of Pathology, School of Basic Medical Sciences, Central
South University, Changsha, China, 6Department of Pathology, Xiangya Hospital, Central South
University, Changsha, China, 7Department of Pathology, Fudan University Shanghai Cancer Center,
Shanghai, China, 8Department of Oncology, Shanghai Medical College, Fudan University, Shanghai,
China

Cuproptosis, a novel copper-dependent cell death involving mitochondrial

respiration, is distinct from other known death mechanisms, which inspires

us to study further in uterine corpus endometrial carcinoma (UCEC). Herein,

leveraging comprehensive data from TCGA-UCEC, we conducted

transcriptional and genetic analyses of 13 recently identified cuproptosis

genes. We discovered severe genetic instability of cuproptosis genes,

extensive positive correlations among those genes with each other at the

mRNA level, and their involvement in oncogenic pathways in UCEC samples.

Next, WGCNA was performed to identify a potential module regulating

cuproptosis, in which the hub genes, in addition to 13 cuproptosis genes,

were drawn to construct a scoring system termed Cu. Score. Furthermore,

its clinical and biological relevance and tumor immune landscape, genetic

alterations, as well as predicted sensitivity of chemotherapy drugs in

different Cu. Score subgroups had been discussed extensively and in detail.

Additionally, univariate Cox and LASSO regression were performed to identify

13 cuproptosis-related prognostic genes to establish a prognostic signature, the

Risk. Score. Integrating the Risk. Score and clinical parameters, we established a

nomogram with excellent performance to predict the 1-/3-/5-year survival

probabilities of UCEC patients. To conclude, we conducted a comprehensive

analysis encompassing cuproptosis and developed a cuproptosis scoring

system and a prognostic prediction model for UCEC, which may offer help

with individualized assessment and treatment for UCEC patients from the

perspective of a novel death mechanism.
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Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the

most prevalent types of gynecological cancers worldwide.

According to epidemiological data, the global incidence of

endometrial carcinoma has increased steadily over the last

decade. There are estimated to be 417,000 new cases and

97,000 deaths worldwide in 2020 (Wang et al., 2020; Sung

et al., 2021). Despite advancements in medical devices and

treatments, endometrial carcinoma deaths have continued to

rise over the past decade. The uncertainty of recurrences and

prognoses still confuses clinicians (Lu and Broaddus, 2020; Abu-

Zaid et al., 2021). To evaluate the prognosis of endometrial

carcinoma patients, traditional risk assessment methods are

far from sufficient. Prognostic factors for patients with

endometrial carcinoma are currently mainly based on clinical

variables such as age, FIGO stage, and pathological subtype.

Researchers have shown that certain genetic and molecular

factors can also affect the endometrial carcinoma prognosis

(Cancer Genome Atlas Research et al., 2013; Bell and

Ellenson, 2019). As the pathogenesis and clinical

manifestations of endometrial carcinoma are heterogeneous

(Gupta, 2017), an effective prognosis prediction method that

combines genetic as well as transcriptome alterations with the

clinical characteristics of patients with endometrial carcinoma is

urgently needed.

As a catalytic cofactor for essential enzymes involved in

oxygen transport and energy metabolism, Copper (Cu) exerts

paramount effects in providing basic functions for cell survival

(Kim et al., 2008). Generally, the concentration of copper in

cells is so subtly regulated by metabolic demands and variations

of the cellular environment that unusual concentrations bring

significant damages to cells (Rae et al., 1999). A previous study

suggested that patients with endometrial cancer exhibited lower

Cu levels than those of controls. It was found that ever use of

intrauterine devices containing Cu was inversely associated

with endometrial cancer risk, independent of known risk

factors (Felix et al., 2015). However, the mechanism behind

it is still unclear. A recent study has shown that copper toxicity-

mediated cell death is different from other forms of cell death,

and this novel mechanism is termed cuproptosis (Tsvetkov

et al., 2022). Cuproptosis occurs when copper binds directly to

the aliphatic component of the tricarboxylic acid (TCA) cycle.

It leads to the aggregation of lipoacylated proteins and the loss

of iron-sulfur cluster proteins, which may ultimately result in

cell death due to toxic effects (Tsvetkov et al., 2022). These

findings suggest a novel perspective for investigating the

application of cuproptosis in cancer treatment (Wang et al.,

2022a).

The tumor microenvironment (TME) is a complex system

composed of mesenchymal cells, immune cells, extracellular

matrix molecules, and inflammatory mediators that determine

tumor progression and clinical outcome (Mao et al., 2021).

Previous studies have suggested a positive correlation between

immune and stromal scores and the clinical characteristics and

outcomes of UCEC (Chen et al., 2020; Zhao et al., 2021), and

several genes manipulating the immune environment of UCEC

can be used to predict prognosis (Ma et al., 2020). Emerging

evidence suggests that copper deficiency adversely affects

immune function and enables the organism to be susceptible

to microbial infection (Munoz et al., 2007). Copper plays an

indispensable role in tumor immunity and antitumor therapy

(Percival, 1998; Prajapati et al., 2020), and intratumoral copper

can regulate PD-L1 expression and affect tumor immune escape

(Voli et al., 2020). Recently, some researchers have investigated

the relationships between cuproptosis and the immune

environment of bladder cancer, glioma, and head and neck

squamous carcinomas (Wang et al., 2022b; Song et al., 2022;

Tang et al., 2022).

By far, most studies only focus on a few genes involved in

cuproptosis. So, there are limited new findings that deserve

further exploration. In addition to the 13 cuproptosis genes

mentioned in the literature (Tsvetkov et al., 2022), to expand

our horizons in cuproptosis, we employ the WGNCA to identify

potential cuproptosis-related modules and genes, as well as their

associations with the immune microenvironment of endometrial

tumors. Also, we developed a cuproptosis scoring system

(Cu.Score) and a prognosis prediction gene panel (Risk.Score)

for UCEC potential cuproptosis-related modules and genes that

were identified byWGCNA. As for the Cu. Score, its relevance to

clinical characteristics, immune modulation in the UCEC

microenvironment, genetic alterations, and its possibility to

guide chemotherapeutic drug selection were comprehensively

analyzed. To accurately predict the prognosis of UCEC based on

cuproptosis, cuproptosis-related genes with prognostic

significance were selected to construct the Risk. Score which

exhibited excellent performance in predicting the survival of

UCEC patients.

Materials and methods

Data source and preprocessing

RNA sequencing data (Fragments per kilobase million,

FPKM), somatic mutations, the copy number alteration

(CNA), and relevant prognostic and clinicopathological data

of UCEC patients were downloaded from the UCSC Xena
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browser (https://xena.ucsc.edu/public-hubs) and cBioPortal

(http://www.cbioportal.org/datasets). The FPKM values were

transformed into transcripts per kilobase million (TPM)

values and further transformed using a log-2 transformation.

Patients with no information on their survival were removed. In

this study, 558 samples were included, including 523 tumor

samples and 35 normal samples. After that, 523 patients from

the TCGA-UCEC cohort were randomly assigned to a training

cohort (n = 262) and a validation cohort (n = 261) in a 1:1 ratio

via the R package “caret”. Secondly, the expression data of

GSE17025 was downloaded from the Gene Expression

Omnibus (GEO) and used for subsequent validation. The

Human Protein Atlas (HPA) database was used to analyze the

protein expression levels in tumor samples and normal samples

(Colwill, 2011).

Somatic mutation and CNA analysis

The mutation data for endometrial carcinoma patients was

obtained in “maf” format from the TCGA GDC Data Portal. The

R package “maftools” and the “ComplexHeatmap” were used to

analyze and visualize the top 20 mutation genes. TMB was

defined as the total number of nonsynonymous mutations per

megabase in the coding region (Budczies et al., 2018). GISTIC

2.0 and GenePattern (https://www.genepattern.org/) were used

to find significant amplifications or deletions in the whole

genome for the CNAs. The number of copies greater than one

is the threshold for copy amplification, and less than -1 is the

threshold for copy deletion.

Functional and pathway enrichment
analyses

We used the R package “clusterprofiler” to perform Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses to functionally annotate cuproptosis-

related genes (Yu et al., 2012). Gene Set Variation Analysis

(GSVA) was used to investigate the differences between Cu.

Score subgroups in biological processes (Hanzelmann et al.,

2013). On the other hand, the R package “clusterprofiler” was

used to performGene Set Enrichment Analysis (GSEA) (Yu et al.,

2012). For GSVA and GSEA, the gene sets “h.all.v7.5.1” and “c2.

cp.kegg.v7.5.1” were downloaded from the MSigDB database

(http://www.gsea-msigdb.org/gsea/index.jsp).

Estimation of immune infiltration

The ESTIMATE algorithm was used to calculate the immune

score, stromal score, ESTIMATE score, and tumor purity

(Yoshihara et al., 2013). As previously described, the activity of

immune-related pathways in the tumor microenvironment was

estimated using single-sample GSEA (ssGSEA) (Tian et al.,

2021). Immune cell infiltration was measured using a variety of

methods, including ssGSEA, EPIC, TIMER, QUANTISEQ,

MCPCOUNTER, XCELL, CIBERSORT, and CIBERSORT-ABS

(Newman et al., 2015; Becht et al., 2016; Aran et al., 2017;

Finotello et al., 2019; Racle and Gfeller, 2020; Zeng et al., 2021).

Weighted gene Co-Expression network
construction and module identification

WGCNA was performed in this study to screen genes related

to cuproptosis using the R package “WGCNA”. The detailed

processes were carried out as previously described (Langfelder

and Horvath, 2008). We selected genes with the top 25% absolute

deviation from the median to screen highly variable genes in the

WGCNA expression data. The “goodSampleGenes” function was

used to verify the data’s integrity. A standard scale-free network

was built using soft threshold power = 4 (scale-free R2 = 0.941) in

our study. Genes with similar expression profiles were grouped

using a dynamic tree-cut algorithm, and similar modules were

merged using a height cutoff of 0.5. For further investigation, the

module with the highest correlation with cuproptosis genes was

chosen. The hub genes were identified at a threshold of the

absolute value of gene significance (GS) > 0.20 and the absolute

value of module membership (MM) > 0.80.

Generation of the cuproptosis score
(Cu.Score) and cuproptosis-related risk
score (Risk.Score)

WGCNA first screened a total of 75 hub genes in the brown

module. Based on the expression of 75 hub genes and

13 cuproptosis genes, the ssGSEA algorithm was used to

create a cuproptosis score (Cu.Score). The optimal cut-off

value obtained by the R package ‘Survminer’ was used to

divide the 523 endometrial cancer patients in the entire

cohort into high- and low-Cu. Score groups. Also, we

constructed a cuproptosis-related risk score (Risk.Score) to

find the best biomarker for predicting UCEC prognosis. In

simple terms, a univariate Cox regression analysis was first

used to perform the prognostic analysis for each gene from

the brown module, as well as 13 cuproptosis genes. In the

entire cohort with p < 0.001, a total of 180 genes with

significant prognostic value was extracted for further analysis.

In the training cohort, a prognostic signature consisting of

13 genes was established using the least absolute shrinkage

and selection operator Cox regression analysis (LASSO-Cox).

The Risk. Score was then calculated using the LASSO regression

coefficients and 13 prognostic-related gene expression levels. The

formula for the Risk. Score was as follows:
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Risk score � ∑
n

i�1
Coef i*xi

(Coefi stands for coefficients, and xi is the expression level of

each prognostic gene) UCEC patients from the training,

validation and entire cohorts were divided into low- and high-

risk groups based on the training cohort’s median Risk. Score. Its

prognostic capability was assessed using a time-dependent

receiver operating characteristic (ROC) and a Kaplan-Meier

curve analysis. The Risk. Score was verified as an independent

prognostic factor in the training, validation, and entire cohorts

using univariate and multivariate Cox regression analyses.

Construction of a predictive nomogram

On the basis of the Risk. Score and clinicopathology factors, the

R package “rms” was used to create a nomogram that was used to

predict 1-/3-/5-year survival possibilities (overall survival: OS,

progression-free survival: PFS). The nomogram’s prognostic value

was validated using calibration plots and decision curve analysis.

Meanwhile, the concordance index (C-index) was computed to

determine the nomogram’s predictive potential.

Statistical analysis

The log-rank test and Kaplan-Meier were used to examine the

statistical significance of differences in the survival analysis. The link

between two continuous variables was calculated using Spearman’s

correlation coefficient. Student’s t-tests (normally distributed

variables) and the Wilcoxon rank-sum test (nonnormally

distributed variables) were used to compare a continuous variable

between two groups. For comparisons of more than two groups,

one-way ANOVA tests and Kruskal–Wallis tests were used as

parametric and nonparametric tests, respectively. Chi-square and

Fisher’s exact tests were utilized for categorical data. R software was

used for all statistical analyses (version 4.0.5). Statistical significance:

*, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant.

Results

Revealing transcriptional abnormalities
and genetic alterations of cuproptosis
genes in UCEC

In this study, we examined the role of 13 cuproptosis genes in

UCEC that were identified in recent literature (Tsvetkov et al.,

2022). The locations of 13 cuproptosis genes on the

chromosomes are shown in Figure 1A. We first compared

these genes in endometrial cancer and normal samples from

the TCGA-UCEC cohort. The results showed that, in tumor

samples, ATP7B, PDHA1, and SLC31A1 were significantly

upregulated compared with normal tissues, whereas ATP7A,

DLST, GCSH, LIAS, and LIPT1 were significantly

downregulated (Figure 1B). Similar results were obtained in

the GSE17025 and HPA databases (Supplementary Figure

S1A, S1B). To test whether the genetic variation is involved in

the dysregulation of cuproptosis gene expression, we examined

the frequency change of CNVs in these genes. One of the

differentially expressed genes, PDHA1, exhibited widespread

copy number variation (CNV) increases, while GCSH

experienced CNV decreases (Figures 1B,C). Next, we

wondered whether methylation of these genes correlated with

corresponding mRNA expression levels. The mRNA levels of

DLAT1, LIPT1, and GCSH were negatively correlated with

methylation (Figure 1D). Also, we analyzed the incidence of

mutations of cuproptosis genes in UCEC. The highest mutation

frequency was found for ATP7A (9%), followed by ATP7B (7%)

(Figure 1E, Supplementary Figure S1C). Furthermore, UCEC

patients with ATP7Bmutations tended to have a better prognosis

(Supplementary Figure S1D).

Associating cuproptosis genes with
clinical parameters and biological
pathways

We then examined the correlations between any two

cuproptosis genes in the TCGA-UCEC cohort, and the

results showed most were positive (Figures 2A,B). A

heatmap and box diagram illustrated the correlation between

cuproptosis genes and pathological parameters (age, grade,

stage, histological type, and TCGA molecular subtype)

(Figure 2A, Supplementary Figures S2A–S2E). PDHA1, a

subunit of the pyruvate dehydrogenase complex, was

significantly increased in individuals with serious histological

types or CN-high molecular subtypes. There was significant

upregulation of PDHA1 expression among patients with

advanced UCEC (elder, older grades and/or stages) and a

worse prognosis (Figure 2B, Supplementary Figures

S2A–S2E). Other cuproptosis genes like ATP7A, ATP7B,

DLD, GCSH, and LIPT1 were highly expressed in patients

with poor prognosis, while SLC31A1, with higher expression,

was related to prognostic advantages (Supplementary Figure

S3A). To study the molecular mechanisms of cuproptosis genes

involved in UCEC, we examined the associations between

expression of each cuproptosis gene and the status of

hallmark pathways. Interestingly, we found that the

expression of cuproptosis genes was positively correlated

with tumor-related pathways, such as P53, Pi3K-Akt-mTOR,

G2m Checkpoint, DNA Repair, and Androgen Response

(Figure 2D). Taken together, these findings suggested that

cuproptosis genes might play critical roles in the

development and progression of UCEC.
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Identifying cuproptosis-related modules
and genes by WGCNA in UCEC and
annotating their biological functions

As the mechanisms involved in regulating cuproptosis

are as yet unclear, we used WGCNA to identify genes related

to cuproptosis. Seven modules were identified by WGCNA

analysis, among which MEbrown correlated well with

cuproptosis genes (Supplementary Figures S3A,B,S4A).

MEbrown was significantly correlated with ATP7A, DBT,

and DLAT (Figures 3C–E). A total of 2407 genes from

MEbrown were considered to be cuproptosis-related genes.

To reveal the potential biological functions of those genes, we

conducted GO and KEGG analyses (Supplementary Figures

S5A, S5B). The GO analysis showed these genes were mostly

enriched in functions related to axonogenesis, cell-cell

junctions, and growth factor binding (Supplementary

Figure S5A). The KEGG pathway enrichment revealed that

these genes were mainly associated with axon guidance, cell

cycle, and transcriptional misregulation in cancer

(Supplementary Figure S5B).

Constructing the Cu.Score and
investigating its clinical and biological
relevance

According to research, hub genes are paramount in

managing the behavior of biological modules (Han et al.,

2004). We thus identified 75 hub genes in MEbrown with abs

(GS) > 0.2 and abs (MM) > 0.8. To assess the level of cuproptosis

in patients with UCEC, we constructed a scoring scheme using

75 hub genes and 13 cuproptosis genes (Figure 4A). It was

observed that Cu. Score was positively correlated with the

above cuproptosis-related genes (Figure 4A). Since cuproptosis

genes are related to the clinical characteristics and prognosis of

UCEC patients, the UCEC patients were classified into high- and

low-Cu. Score groups based on the optimal cut-off value. Kaplan-

Meier survival curves revealed that patients with a lower Cu.

Score had better clinical outcomes (Figure 4B). The principal

component analysis (PCA) demonstrated that the expressions of

hub genes and cuproptosis genes could distinguish the two

groups well (Figure 4C). Moreover, the high-Cu. Score group

showed poorer disease progression and survival status than the

FIGURE 1
Genetic and transcriptional alterations of cuproptosis genes in endometrial cancer (A). The locations of cuproptosis genes on chromosomes.
(B) ThemRNA levels of 13 cuproptosis genes were compared between normal and tumor tissues in TCGA-UCEC cohort. (C) The CNV frequencies of
13 cuproptosis genes in TCGA-UCEC cohort. (D) The bubble chart revealing the correlation between the promotermethylation levels of cuproptosis
genes and their mRNA levels in TCGA-UCEC cohort. (E) The mutation frequencies of 13 cuproptosis genes in TCGA-UCEC cohort.
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low-Cu. Score group (Figure 4D). Next, we performed GSVA and

GSEA to investigate biological molecular changes between two

Cu. Score groups (Figures 4E,F). On one hand, pathways

associated with tumorigenesis, like G2M checkpoints, E2F

targets, TGF-beta signaling, MYC targets, and PI3K-AKT-

mTOR, are primarily enriched in the high-Cu. Score

group. On the other hand, immune-related pathways, like the

inflammatory response, are mainly enriched in the low-Cu. Score

group (Figures 4E,F). This suggests that the high-Cu. Score

groups were related to tumor-related pathways, whereas the

low-Cu. Score groups were related to immune-related pathways.

Characteristics of the tumor immune
microenvironment in different Cu.Score
subgroups

The effect of cuproptosis on the TME of UCECwas investigated

using ESTIMATION analysis to compare immune status between

Cu. Score subgroups (Figures 5A–D). ImmuneScore, StromalScore,

and ESTIMATEScore were significantly lower in people with a

higher Cu. Score. Patients with a high Cu. Score had higher

TumorPurity than those with a lower Cu. Score (Figures 5A–D).

Additionally, we carried out a correlation analysis to determine the

relationships between the two subgroups and immune cells and

immune-related functions using the ssGSEA algorithm. Infiltration

levels of CD8+ T cells, cytotoxic cells, DC, iDC, macrophages, mast

cells, neutrophils, NK CD56 (bright) cells, NK cells, pDC, Th17, and

Tregs cells were higher in the low-Cu. Score group compared to the

high-Cu. Score group, but T helper cells, Tcm, Tgd, Th1 cells, and

Th2 cells were significantly lower in the low-Cu. Score group

(Figure 5E). Consistently, most immune cells were significantly

higher in the low-Cu. Score group, which was confirmed by

cross-validation with EPIC, TIMER, QUANTISEQ,

MCPCOUNTER, XCELL, CIBERSORT, and CIBERSORT-ABS

(Supplementary Figure S6A). We further examined the

associations between the expression of 13 cuproptosis genes and

the tumor-infiltrating immune cells. The expression of cuproptosis

genes was positively correlated with T-helper cells, Tcm, Tgd, and

Th2 cells, as well as negatively correlated with other immune cells

(Supplementary Figure S7A). Meanwhile, the Cu. Score was

negatively related to most immune-related functions and cancer

FIGURE 2
Associations between cuproptosis gene expression and clinicopathological characters and prognostic (A) The heatmap revealing the
correlations between clinicopathological characters and 13 cuproptosis genes’ expression in TCGA-UCEC cohort. (B) The correlation among the
mRNA levels of cuproptosis genes in TCGA-UCEC cohort. (C) The Kaplan-Meier analysis demonstrating the prognostic significance of PDHA1 in
TCGA-UCEC cohort. (D) The correlation between cuproptosis genes and cancer hallmark pathways. The colors represent different
correlations.
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immunity cycles (Figures 5F, Supplementary Figure S7B).Moreover,

we examined the differences between the high- and low-Cu. Score

groups in terms of immune checkpoints and HLA genes. Only a few

immune checkpoints and HLA genes were expressed differently

between the two subgroups (Figure 5G).

Discovering genetic alterations and
estimating drug sensitivity in high- and
Low-Cu.Score subgroups

In tumorigenesis, genetic alterations like somatic mutations

and CNAs play significant roles. We examined somatic

mutations and CNVs to reveal differences between the high-

and low-Cu. Score groups at the genomic level in the TCGA-

UCEC cohort. The high-Cu. Score group presented more

synonymous mutations than the low-Cu. Score group

(Supplementary Figures S8A, S8B). A further analysis was

performed on the top 20 mutated genes. TP53 mutations were

more frequent in high-Cu. Score groups, while PTEN and

CTNNB mutations were prominent in low-Cu. Score groups

(Figure 6A). Further analysis revealed that those with

TP53 mutations achieved a higher Cu. Score (Figure 6B). A

lollipop plot revealed the differences in mutation spots of

TP53 between the two subgroups (Figure 6C). The

TP53 mutation is considered a surrogate biomarker of the

serous-like “copy number high” UCEC subtype (Singh et al.,

2020). As shown in Figure 6A, the Cu. Score group had more

CNV-altered regions. In detail, several oncogenes or tumor

suppressor genes were amplified or deleted, respectively, in

the high-Cu. Score group, including MYC, FGFR1, ERBB2

(HER2), E2F1, CDKN2A, CDKN2B, DNMT3A, MET,

CCND1, and CDK4 (Figure 6D). According to prior studies,

patients with high TMB and MSI-L/H have a better prognosis

(Liu et al., 2021; Liu et al., 2022). Thus, we examined the effect of

TMB/MSI combined with Cu. Score on the prognosis of UCEC

patients. The results showed that TMB/MSI combined with Cu.

Score could better predict the survival of UCEC patients

(Supplementary Figures S8C, S8D). What’s more, we analyzed

correlations between the Cu. Score and IC50 of drug candidates in

the GDSC database and selected six chemotherapeutic agents to

evaluate the IC50 of these drugs in the high- and low-Cu. Score

groups. The patients in the high-Cu. Score group had lower IC50

values for cisplatin, docetaxel, doxorubicin, and gemcitabine,

while the IC50 values of chemotherapeutics such as imatinib and

lapatinib were significantly lower in the patients with low Cu.

Score (Supplementary Figure S9A).

Constructing and validating the
cuproptosis-related prognostic signature

To identify the best biomarker for the prognosis of UCEC

based on cuproptosis, we randomly divided the entire cohort

FIGURE 3
Identification of cuproptosis-related genes in the TCGA-UCEC cohort through WGCNA (A). Dendrogram of all cuproptosis genes clustered
based on a dissimilarity measure (1-TOM). (B) The heatmap of the correlation between module eigengenes and cuproptosis genes in TCGA-UCEC
cohort. (C–E) The scatter plots of module eigengenes in MEbrown modules.

Frontiers in Molecular Biosciences frontiersin.org07

Wu et al. 10.3389/fmolb.2022.1048356

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1048356


(523 tumor samples) into the training cohort (n = 262) and the

validation cohort (n = 261) in a 1:1 ratio (Supplementary

Figure S10A). In the entire cohort, we discovered

180 cuproptosis-related genes that were associated with

survival using univariate Cox regression. To generate a

cuproptosis-related prognostic signature model, LASSO-

Cox regression analysis was applied next in the training

cohort, and 13 genes from MEbrown were selected for

further study (Figure 7A, Supplementary Figures

S10B,S10C). In this case, we established a prognostic

signature correlated with cuproptosis and calculated the

Risk. Score as follows:

Risk.Score = 0.121 * ADAMTS16–0.07 * ARFGAP3 + 0.012 *

CDKN2B + 0.145 * CKMT1B + 0.088 * DCAF12L1 -0.285 *H3C1

+ 0.064 * LMO3 + 0.137 * MACC1 + 0.098 * NTS + 0.264 * SCG2

+ 0.036 * SHISA9 + 0.039 * SIX1 + 0.049 * THRB.

In the training cohort, the median Risk. Score was used to

separate samples into high- and low-risk groups. The Kaplan-

Meier survival analysis and the log-rank test revealed the survival

rate of patients with low Risk. Score was higher than that of

patients with a high score (Figure 7B). Further analysis of the

13 genes’ prognostic values was conducted on the validation

cohort and the entire cohort (Figure 7B). In addition, the Risk.

Score achieved satisfactory prognostic discrimination in patients

FIGURE 4
Construction of the Cu. Score and exploration of its clinical significance in the TCGA-UCEC cohort (A) The correlation analysis of the
relationship between cuproptosis-related genes and Cu. Score. Bar chart on the right indicates the degree of correlation. (B) The Kaplan-Meier curve
of significant difference in the survival rate between high- and low-Cu. Score groups in TCGA-UCEC cohort. (C) The PCA revealing the difference
between the high- and low-Cu. Score groups. (D) The pie charts showing the Chi-squared test of clinicopathological characters between high-
and low-Cu. Score groups. (E-F) GSVA (E) and GSEA (F) showing the status of biological pathways between high- and low-Cu. Score groups.
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with age, grade, stage, and histological type (Figure 7B).

Meanwhile, the time-dependent Area Under Curve (AUC)

suggested the Risk. Score had a significant effect on predicting

the prognosis of UCEC, no matter in the training, validation, or

entire cohorts (Figure 7C). PCA showed a discrepancy between

the high- and low-risk groups (Figure 7D). Subsequently,

combined with both univariate and multivariate Cox

regression analyses, the Risk. Score can be considered an

independent prognostic factor for UCEC (Figure 7E,

Supplementary Figures S10D, S10E). Importantly, to further

evaluate the predictive performance of the risk score in UCEC

patients, we compared the Risk. Score, Cu. Score, the Wang’s sig,

and the Yao’s sig (Yang et al., 2021; Chen et al., 2022) and

discovered that the AUC of OS for the Risk. Score is 0.753, which

is significantly higher than that of other signatures

(Supplementary Figure S10F). Further investigation suggested

a positive correlation between Risk. Score and Cu. Score

(Figure 7F). A survival analysis of Risk. Score combined with

Cu. score indicated that patients with high Risk. Score as well as

Cu. Score had a lower survival rate than other

patients (Figure 7G). Additionally, we discovered that the

TMB/MSI and Risk. Score together could more accurately

FIGURE 5
Characteristics of the tumor microenvironment in different Cu. Score subgroups (A–D). The correlation analyses between Cu. Score with
ImmuneScore (A), StromalScore (B), ESTIMATEScore (C), and TumorPurity (D). (E) Comparisons of the abundances of 24 immune cells in two
subgroups. (F). The relationships between Cu. Score and immune-related function scores. (G) The heatmap of the comparison of the immune
checkpoints and HLA genes between the high- and low-Cu. Score groups.
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predict the survival of UCEC patients (Supplementary Figures

S10G, S10H).

Establishing a nomogram for predicting
survival

Based on the Risk. Score and clinical factors, we further

constructed a nomogram that incorporated the Risk. Score into

the entire set to forecast the probability of survival of UCEC

patients within certain periods (Figure 8A). Each UCEC patient

can obtain a score calculated based on their prognostic

parameters to predict their 1-/3-/5-year survival probability

(OS, PFS) (Figure 8A, Supplementary Figure S11A). The

higher the overall score, the worse the outcome. Nomogram

prediction and actual observation reached an excellent

agreement on the 1-/3–5-year survival probability after

calibration (Figure 8B, Supplementary Figure S11B).

Moreover, the Decision Curve Analysis (DCA) revealed that

our nomogram had greater net benefits in terms of survival than

other parameters (Figure 8C, Supplementary Figure S11C). It was

also noteworthy that the C-index showed that the nomogram had

a consistent and robust ability to predict outcomes across the

entire cohort (OS: C-index = 0.755; PFS: C-index = 0.687)

(Supplementary Figure S13D).

Discussion

The cuproptosis process is an alternative mode of cell death

to known apoptosis, ferroptosis, necroptosis, and iron death

(Tsvetkov et al., 2022). The role of cuproptosis, especially in

tumorigenesis, remains unclear. Our research focuses on the

relationship between the cuproptosis gene and endometrial

cancer. We discovered significant differences in the expression

levels of the majority of cuproptosis genes between tumor and

normal samples. Further analysis of the relationship among

mRNA expression, CNAs, and DNA methylation revealed

FIGURE 6
Estimation of genetic alterations in high- and low-Cu. Score subgroups (A). Comparisons of somatic mutations (The top half) and CNAs (The
bottom half) between different Cu. Score subgroups. (B) The difference of Cu. Score between the TP53 mutant group and the TP53 wild-type
group. (C) The lollipop plot of the differential distribution of variants for TP53 in TCGA-UCEC cohort. (D) TheCNV frequencies of some representative
oncogenes or tumor suppressor genes in TCGA-UCEC cohort.
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that the up-regulation of PDHA1 expression might be related to

an increase in copy number, and abnormal expression of

LIPT1 might be due to DNA methylation. Moreover, the

cuproptosis genes were discovered to be strongly related to

pathological parameters and the prognosis of UCEC.

Copper is an essential micronutrient, and its deficiency

affects many important cellular functions. However, excess

copper is toxic as well (Kuo et al., 2012). The equilibrium

level of cellular Cu is maintained by a balance among the Cu

transporters (CTR1, also known as SLC31A1), Cu storage

(CTR2), Cu chaperones (ATOX1 for intracellular

distribution), and Cu exporters (ATP7A and ATP7B)

(Ferenci, 2006; Kuo et al., 2012). Overexpression of ATP7B in

endometrial carcinoma was correlated with poor outcomes in

patients treated with cisplatin-based chemotherapy (Aida et al.,

2005). The ATP7B gene mutation, resulting in copper overload

and autistic copper homeostasis, is the cause of Wilson’s disease

(Czlonkowska et al., 2018). Our study revealed that ATP7B was

up-regulated in tumor tissues, and patients who expressed high

levels of ATP7B had a poor prognosis. Compared to patients with

wild-type ATP7B, those with mutant ATP7B had a better

prognosis. In patients with POLE or MSI subtypes,

SLC31A1 expression is often overexpressed, and the prognosis

of patients improved when its expression was elevated.

According to Tsvetkov et al., copper-dependent death is

caused by copper binding directly to lipoylated components of

the TCA. Eventually, lipoylated proteins aggregate, and iron-

sulfur cluster proteins are lost, which results in proteotoxic stress

and cell death (Tsvetkov et al., 2022). In addition,

SLC31A1 overexpression dramatically increased sensitivity to

physiological copper concentrations (Tsvetkov et al., 2022).

Pyruvate dehydrogenase complexes are rate-limiting enzyme

complexes that help maintain the TCA cycle. These enzyme

complexes convert pyruvate to Ac-CoA and link glycolysis with

FIGURE 7
Construction and validation of the cuproptosis-related prognostic signature (A). The heatmap revealing the correlations between
clinicopathological characters and 13 cuproptosis-related prognostic genes (B). The prognostic performance of the cuproptosis-related prognostic
signature in different cohorts, age, grade, stage, and histological types. (C) The time-dependent AUC value in the training, validation, and entire
cohorts. (D) The PCA revealing the difference between the high- and low-risk groups based on 13 cuproptosis-related genes. (E). The univariate
and multivariate Cox analyses suggesting the independent prognostic value of the Risk. Score in the entire cohort. (F) The correlation between Cu.
Score and Risk. Score. (G) The survival analyses of patients with different Cu. Score combined with the Risk. Score.
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oxidative phosphorylation (Sun et al., 2015). A recent study

suggested that PDHA1, a subunit of the PDH complex,

helped breast cancer cells adapt to metabolic and oxidative

stresses (Cai et al., 2020). Jingjing Chen et al. also found that

PDHA1 controlled lipid biosynthesis during prostate cancer

progression (Chen et al., 2018). Our study had shown that

individuals with advanced UCEC (elderly, higher grades, and/

or stages) and worse prognosis had significantly higher

expression of PDHA1.

Not limited to a few cuproptosis genes, our study used

WGCNA to explore many potential cuproptosis-related genes.

We identified a total of MEbrown and 75 hub genes relevant to

cuproptosis. Based on the 75 hub genes and 13 cuproptosis genes,

we constructed a scoring system termed the Cu. Score. A higher

Cu. Score tended to represent a worse prognosis. In addition,

carcinogenic pathways were activated in the high-Cu. Score

group in enrichment analyses based on GSVA and GSEA,

whereas the low-Cu. Score groups were linked to immune

regulation and stromal-related signaling.

There is increasing evidence supporting the importance of

TME for cancer progression and therapeutic response (Zeng et al.,

2019). By using ESTIMATE to analyze the relationship between

Cu. Score and immune status, we discovered that low-Cu. Score

groups had higher ImmuneScores, StromalScores, and

ESTIMATEScores. The TME context correlated with the

immune response and benefit of chemotherapy, and different

dominant cell populations within the TME could result in

distinct clinical outcomes of cancers (Zeng et al., 2019). CD8+

T cells, cytotoxic cells, DC, iDC, macrophages, Mast cells,

neutrophils, NK CD56bright cells, NK cells, pDC, Th17, and

Treg cells were predominant in samples with a low Cu. Score.

Patients with a high Cu. Score had higher infiltration of T helper

cells, Tcm, Tgd, Th1 cells, and Th2 cells. There were also some

correlations between tumor-infiltrating cells and cuproptosis

genes. A negative correlation was also found between the Cu.

Score and the activities of several immune-related functions and

cancer immunity cycles. Treg cells, which suppress aberrant

immune responses against self-antigens, also suppress anti-

tumor immune responses. Infiltration of lots of Treg cells into

tumor tissues is often associated with a poor prognosis (Tanaka

and Sakaguchi, 2017). In our study, the low Cu. Score group

contained various immune cells, but their functions may be

suppressed by immune regulatory cells. Recent studies have

shown that immunosuppressive blockers such as the inhibitors

of programmed death ligand 1 (PD-L1) and cytotoxic

T-lymphocyte-associated protein-4 (CTLA-4) may be used as

novel treatment targets (Powles et al., 2020). There was no

significant difference between the two Cu. Score groups in the

expression level of immune checkpoints. TMB represents the total

number of coding mutations in a tumor and is related to the

emergence of neoantigens that trigger antitumor immunity

(Allgauer et al., 2018). Studies have shown that TMB is a

valuable biomarker to predict patient response to PD-L1

treatment (Topalian et al., 2016). The Cu. Score and TMB only

exhibited a weak correlation. Based on our findings, a low Cu.

Score was characterized by the presence of immune cells and

FIGURE 8
Establishment of the nomogram for predicting OS of endometrial cancer patients in the entire cohort (A) The nomogram predicting the
probability of the 1-/3-/5-year overall survival rate of UCEC patients. (B) The calibration curve for evaluating the accuracy of the nomogram model.
The dashed diagonal line in grey color represents the ideal nomogram. (C) The decision curve analysis showing predicted 5-year OS based on the
nomogram, the Risk. Score, and the stage.
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immune regulatory cells, as well as patterns of angiogenesis, which

corresponded to the immune excluded phenotype, whereas a high

Cu. Score was characterized by an immunosuppressive TME,

resembling the immune desert phenotype.

The evaluation of CNVs and somatic mutations at the genome

level is fundamental to cancer diagnosis and treatment. Our findings

revealed that the TP53 mutation rate and CNV alteration frequency

were elevated in the high-Cu. Score subgroup. The high-Cu. Score

subgroup exhibited p53 mutations and HER2 amplification, while

the low-Cu. Score subgroup exhibited mutations in PTEN, PIP3CA,

ARID1A, and CTNNB1. Further analysis was carried out on the

relationship between Cu. Score and chemotherapy. Those in the

high-Cu. Score groupmight bemore sensitive to cisplatin, docetaxel,

and doxorubicin, while those in the low-Cu. Score group could

benefit from imatinib and lapatinib. As for individualized therapy,

selecting potentially sensitive agents for UCEC patients according to

the Cu. Score may improve clinical outcomes. These agents can be

used as complementary agents in combination therapy or as new

options for the treatment of first-line drug resistance.

The Cu. Score, constructed with 75 hub genes in MEbrown

and 13 cuproptosis genes, reveals the cuproptosis levels of patient

samples. To identify the best biomarker to predict the prognosis

of UCEC patients, we also developed a risk prediction model

signature of 13 cuproptosis-related prognostic genes and

classified UCEC patients into high- and low-risk groups. In

the log-rank test, ROC curve analyses, univariate and

multivariate Cox regression analyses, our signature exhibited

great capability in predicting OS or PFS, suggesting that the Risk.

Score is a reliable prognostic indicator for UCEC patients. A

nomogram using a combination of the risk scores and stage was

found to be more effective than other clinical features.

There are still some limitations to our study. Firstly, the

data is mostly from TCGA, with a single data source and a

small sample size, which requires verification across multiple

datasets. Moreover, the cuproptosis-related modules and

genes discovered through WGCNA still need to be further

validated through experimental and clinical studies. In

addition, to fully comprehend the clinical significance of

cuproptosis, more prognosis-related factors should be

contained and analyzed.

Conclusion

To conclude, we conducted a comprehensive analysis of

cuproptosis-related genes and developed a cuproptosis scoring

system and a prognostic prediction model for UCEC. The

clinicopathological features, enriched pathways, components in

the immune microenvironment of UCEC, genomic alterations,

and chemotherapy selection were widely investigated in two

different Cu. Score groups. Furthermore, the Risk. Score was

confirmed to be an independent prognosis factor of UCEC and

was included to construct a nomogram. The findings might help to

improve our understanding of cuproptosis in tumors and provide

new ideas for treating UCEC patients individually.
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