
In silico prediction of siRNA
ionizable-lipid nanoparticles In
vivo efficacy: Machine learning
modeling based on formulation
and molecular descriptors

Abdelkader A. Metwally1,2*, Amira A. Nayel3,4 and
Rania M. Hathout2

1Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University,
Kuwait City, Kuwait, 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain
Shams University, Cairo, Egypt, 3Clinical Pharmacy Department, Alexandria Ophthalmology Hospital,
Alexandria, Egypt, 4Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy,
Alexandria University, Alexandria, Egypt

In silico prediction of the in vivo efficacy of siRNA ionizable-lipid nanoparticles is

desirable as it can save time and resources dedicated to wet-lab experimentation.

This study aims to computationally predict siRNA nanoparticles in vivo efficacy. A

data set containing 120 entries was prepared by combining molecular descriptors

of the ionizable lipids together with two nanoparticles formulation characteristics.

Input descriptor combinationswere selected by an evolutionary algorithm. Artificial

neural networks, support vectormachines and partial least squares regressionwere

used for QSAR modeling. Depending on how the data set is split, two training sets

and two external validation sets were prepared. Training and validation sets

contained 90 and 30 entries respectively. The results showed the successful

predictions of validation set log (siRNA dose) with Rval
2 = 0.86–0.89 and

0.75–80 for validation sets one and two, respectively. Artificial neural networks

resulted in the best Rval
2 for both validation sets. For predictions that have high bias,

improvement of Rval
2 from 0.47 to 0.96 was achieved by selecting the training set

lipids lying within the applicability domain. In conclusion, in vivo performance of

siRNA nanoparticles was successfully predicted by combining cheminformatics

with machine learning techniques.
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1 Introduction

The process of developing short interfering RNA (siRNA) lipid nanoparticles is

lengthy and time consuming because it involves the initial chemical synthesis of a usually

large number of ionizable lipids and lipid-like molecules (Jayaraman et al., 2012; Sato

et al., 2019; Molla et al., 2020), the formulation of siRNA nanoparticles and the subsequent

in vitro and in vivo evaluation of these nanoparticles, in an attempt to find the best
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ionizable lipid that is suitable for clinical use in terms of efficacy

and safety. Alnylam’s small interfering RNA (siRNA) stable

nucleic acid lipid nanoparticles, currently marketed as

Onpattro™ (Patisiran), obtained FDA approval in 2018. This

was followed by FDA approval of Alnylam’s Givosiran™ and

Lumasiran™ in 2019 and 2020 respectively (Zhang et al., 2021).

Gene silencing by double-stranded RNA (dsRNA) was

reported by Fire and Mello in Caenorhabditis elegans (Fire

et al., 1998) and later siRNA duplexes of length 21-

22 nucleotides proved to promote post-transcriptional gene

silencing in mammalian cells (Elbashir et al., 2001). Since

then, the potential of siRNA as a therapeutic macromolecule

against many diseases has been investigated, with more than

40 siRNA based therapies already reaching phases 2, 3 or 4 of

clinical trials (Titze-de-Almeida et al., 2017; Dong et al., 2019;

ClinicalTrials.gov, 2020). The major barriers against the

successful employment of therapeutic siRNA include the lack

of stability of the siRNA duplex, the immune response mediated

by Toll-like receptors, the rapid renal clearance of naked siRNA,

and the difficulty of the intracellular delivery of unmodified

siRNA due to its large size and the large number of negative

charges on its back-bone (Whitehead et al., 2009; Dowdy, 2017).

One method to overcome the barriers of siRNA delivery is to

formulate it as siRNA ionizable lipid nanocomplexes (lipoplexes)

or lipidic nanoparticles (Metwally et al., 2012a; Metwally et al.,

2012b; Cullis & Hope, 2017; Paunovska et al., 2018). These

nanoparticles are multicomponent and may also contain

helper lipids, PEG-lipids and phospholipids. An ideal delivery

system should ensure response reproducibility, non-

immunogenicity, good payload and ease of manufacturing

(Cullis & Hope, 2017).

Lipidic nanocarriers for siRNA include liposomes,

nanoemulsions, solid lipid nanoparticles, nanostructured lipid

carriers, micelles, and liquid crystalline nanoparticles. Since the

nature and ratio of ionizable lipids affects the performance of

lipid-nucleic acid complexes, the structure of lipid-based self-

assembled nucleic acids delivery systems was investigated and

was found to tune the supramolecular organization of the

complexes (Angelov et al., 2017).

The process of preparing siRNA lipoplexes and

nanoparticles involves many steps: the synthesis of the

ionizable lipids, their purification and characterization, then

the process of preparing the nanoparticles including

determining the siRNA to cationic lipid ratio, the cationic

lipid to helper lipid (if any) ratio, and nanoparticles

characterization in terms of their size, zeta potential, pKa,

stability and in vivo evaluation of their safety and silencing

efficacy. All of these steps require time and resources and

indeed if the in vivo efficacy, as measured by either the

siRNA dose or knockdown efficiency, could be predicted

within reasonable accuracy by using computational means,

the process of developing siRNA nanomedicines would be

vastly improved in terms of time and costs. Therefore, it is

important to attempt to predict the in vivo efficacy of siRNA

cationic lipid nanoparticles by using machine learning

techniques. These techniques can be generally classified into

two main groups: supervised and unsupervised learning

methods. Supervised learning is used in tasks such as

regression and classification, i.e., when there is a dependent

variable and one or more independent variables.

In order to extract chemical information from the structures

of the molecules under investigation, molecular descriptors,

which are important cheminformatics tools, are employed to

carry out this task (Hathout et al., 2018; Hathout et al., 2020a).

Molecular descriptors are numerical values resulting from either

an experimental procedure or from a set of mathematical and/or

logical algorithms that are performed on chemical structures

(Todeschini & Consonni, 2008). The descriptors can be generally

classified as 0D and 1D, when only molecular formula or

constitutional properties of a molecule are considered, while

2D descriptors are calculated based on topological properties of a

molecule and 3D descriptors depend on geometrical properties of

a molecule. Further classifications include 2.5D chiral descriptors

and descriptors with more than three dimensions (Consonni &

Todeschini, 2010; Valdés-Martiní et al., 2017). Molecular

descriptors have been used as predictors of the self-assembly

of drug molecules into nanoparticles (Shamay et al., 2018), to

model drug binding kinetics (De Benedetti & Fanelli, 2018), in

QSAR modeling (Kausar & Falcao, 2018) and in target

identification (Reker et al., 2014). Molecular descriptors were

also used to successfully predict the binding energy between drug

molecules and their nanocarriers and hence predict drug loading

onto lipidic and polymeric nanoparticles (Metwally & Hathout,

2015).

Previous QSAR studies on nanoparticles have mostly

addressed predicting the cellular uptake and toxicological

properties of inorganic nanoparticles, with either

unmodified or modified surfaces (Liu et al., 2015; Basant &

Gupta, 2017; Wang et al., 2017), however, developing QSAR

models for predicting siRNA in vivo efficacy has not been

achieved before.

In the current work, a data set is prepared using five

publications (Jayaraman et al., 2012; Alabi et al., 2013;

Kumar et al., 2014; Whitehead et al., 2014; Rajappan et al.,

2020). This data set contains the 1D and 2D descriptors of

ionizable lipids together with the formulation descriptors

(PEG mol%) and the percentage knockdown resulting from

a specific siRNA dose. The siRNA nanoparticles in vivo

efficacy when formulated with these ionizable lipids was

included as the response variable; logarithm of the siRNA

dose resulting in a specific knockdown percent of the target

gene. The data set is split into training and validation sets,

where the training set is used to construct the machine

learning models, and the validation set is used as an

external test set that is used only to evaluate the predictive

models constructed by modeling the training set. An
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evolutionary algorithm is used to select the best descriptor

combinations and is combined with three machine learning

techniques; ANN, SVM and PLS regression, to build the

predictive models. The performance of the predictive

models using the three machine learning techniques and

the quality of predictions and how to improve them is

presented and discussed. Figure 1 shows the workflow of

the modeling and evaluation process. A graphical abstract

image is provided in Supplementary Files.

2 Materials and methods

2.1 Data set preparation

2.1.1 Data selection from available literature
For preparing the data set, five publications(Jayaraman et al.,

2012; Alabi et al., 2013; Kumar et al., 2014; Whitehead et al., 2014;

Rajappan et al., 2020) were retrieved after carrying out online search

using PUBMED and Google Scholar servers, where all of them

fulfilled the following requirements: siRNA is delivered by means of

ionizable lipids, siRNA in vivo performance is evaluated in vivo

against factor FVII expression, all nanoparticles contained the

ionizable lipid, DSPC, cholesterol and PEG-lipid (with PEG

average molecular weight = 2000), and the PEG-lipid mole % in

the formulation is either given or can be calculated. In addition, both

the siRNA dose and the percentage knockdown or percentage gene

expression resulting from a specific siRNA dose must be provided.

Five papers were selected to prepare the data set (Jayaraman et al.,

2012; Alabi et al., 2013; Kumar et al., 2014; Whitehead et al., 2014;

Rajappan et al., 2020). Wherever the values for the gene expression

or dose were not provided numerically, these values were obtained

from the relative figures usingWebPlotDigitizer v4.2. In case two or

more lipids had the same 2D structure, one of them was retained. If

an ionizable lipid lacked a well defined in vivo efficacymeasure, such

as a definite dose or knockdown %, it was omitted.

2.1.2 Calculation of the 2Dmolecular descriptors
The structures of the ionizable lipids were drawn using

ACD Chemsketch, and the structures were saved as either

individual MDL.mol files or combined together into a

single.sdf file using OpenBabel v2.4 (O’Boyle et al., 2011).

The following software packages were used for the

calculation of the 1D/2D molecular descriptors: Padel

Descriptor v2.21 (Yap, 2011), RDKit 2017, and ToMoCoMD

QuBiLS-MAS 2020 (Valdés-Martiní et al., 2017). For the

calculation of the QuBiLS-MAS descriptors, the following

settings were selected: linear algebraic form, atom-based,

non-stochastic matrix form, and total groups.

2.1.3 Data set preprocessing
The initial data set containing the descriptors was further

processed by removing columns having one or more of either

missing or not available (NA) entries. Columns with same-

value entries were also removed. If certain columns in the data

set showed a high correlation (cutoff r = 0.98) with each other

(Racz et al., 2019), all the columns were removed except for

one column which has the lowest average correlation with the

other descriptor (predictor) columns in the data set. In

addition, the formulation descriptor (PEG mol%) and

percentage knockdown resulting from a specific siRNA

dose were added as predictors. The data set descriptor

columns were scaled by calculating the z-scores. The siRNA

nanoparticles in vivo efficacy was included as the response

variable; logarithm of the dose resulting in a specific

knockdown percent.

FIGURE 1
The workflow of the predictive model building process.
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2.2 Principal component analysis of
data set

PCA of the scaled data set predictor columns (without

response columns) was carried out using ChemometricsWithR

package through R software v3.5.

2.3 Splitting the data set into training and
validation sets

For modeling purposes, the data set entries were split into a

training set (75% of entries) and a validation set (25% of entries).

This process was carried out two times separately on the data set

where the validation set entries (or observations) were selected

either by random selection or by selecting sequentially every

fourth entry in the set, with the remainder of the entries in the

data set taken as the training set.

2.4 Machine learning models

The modeling process was carried out using either R software

version 3.5 or Microsoft Open R v3.5. The following R packages

were used for all modeling methods: caret (Deist et al., 2018) and

Metrics (Hamner et al., 2018).

Artificial neural networks (ANNs) are a collection of linear and

non-linear functions that map an input to an output. These

functions can approximate a non-linear complex function. The

idea behind the inner working of ANNs is that input data (x)

are scaled and combined in a linear manner in the form ofWx + b,

where W is the weights matrix and b is bias, and then the output of

this linear combination is fed into a non-linear function (called

activation function), the output of which could be used as an input to

the next layer and/or to a final output layer (Wesolowski & Suchacz,

2019). For ANN modeling, nnet package was used. The

hyperparameters were one hidden layer, two nodes and a weight

decay of 0.1 for training and 0.001 for final validation set predictions.

Support vector machines (SVM) are a supervised machine

learning technique. For classification, SVM aims to find a

hyperplane (decision surface) that can separate two classes of

observations with a maximum margin of separation (Maltarollo

et al., 2019). Similarly, SVM regression follows the same logic of

finding a hyperplane, but with a fixed margin width, epsilon (ε),
within which the prediction error is considered zero, and the

hyperplane found should minimize the sum of squared error. To

enable the formulation of non-linear decision surfaces, a kernel

function is applied. The general form of the kernel functions is K

(x1,x2) = <φ(x1),φ(x2)>, where x1 and x2 are two data points. The
kernel function thus avoids the actual calculation of the function φ
(Heikamp & Bajorath, 2014). SVM regression modeling (epsilon-

regression) was carried out using kernlab package (Karatzoglou

et al., 2004), with epsilon value of 0.1 and the kernel chosen to be the

Gaussian radial basis function kernel defined as

K(x, xi) � −σ||x − xi||2, where σ is the inverse width parameter

and is determined by the package’s sigest function.

Partial least squares (PLS) regression is another supervised

learning technique (Hathout et al., 2020b). PLS combines

dimensionality reduction of the data with a regression model.

PLS formulation of the latent variables (scores or components) is

carried out with the aim of maximizing the covariance of the

components with the response variable, which differentiates PLS

from regular principal component analysis (PCA) (Boulesteix &

Strimmer, 2007). The response variable in PLS may be univariate

or multivariate. For the prediction of a new data point response

ŷ′
o from a predictor point x′

o, the following equation applies:

ŷ′
o � (1n)∑n

i�1y
′
i + BT(xo − (1n)∑n

i�1x
′
i). B is the matrix of

regression coefficients, and is defined as: B = W (TTT)−1TTY,

where W is the matrix of weights and T = XW (Boulesteix &

Strimmer, 2007). PLS modeling was carried out using pls package

(Mevik & Wehrens, 2007) with the number of principal

components covering 98% of the variance.

2.5 Selection of the molecular descriptors
by the evolutionary algorithm

An evolutionary algorithm was written as an R script to select

the best descriptors for model building. 400 initial parent

combinations of descriptors were randomly selected, and then

each one of them was used as an input to construct the machine

learning models that are used to predict the training set log (dose)

values and their associated RMSEs (training RMSE).

The training RMSE is calculated as follows: the training set is

split into three folds, two folds are used to construct the machine

learning model, and the third fold is used as a test set to calculate

training RMSE. After evaluating the training RMSE for all predictor

combinations, the best combinations are kept as parents and are

used to construct offspring combinations. The process is repeated

until no further improvement in training RMSE for this specific test

fold. The whole selection process is repeated for each of the

remaining two test folds. The parameters for the evolutionary

algorithm are as follows: population size 400, 25% elitism, 20%

mutation, number of generations 10-20 and multipoint cross-over.

RMSE is calculated as: RMSE �
����������
(∑n

i�1(Pi−Ai)2
n )

√
Bias is calculated as: Bias � Pi − Aiwhere Pi and Ai are the

predicted and actual log (dose) values of observation (lipid or

entry) i respectively, and n is the number of observations.

2.6 Ensemble learning by averaging of the
validation set predictions

The best descriptor combinations that result in the lowest

training RMSE were used as inputs for the machine learning
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modeling algorithm that was used in the training; either

ANN, SVM or PLS regression. The central tendency of the

validation set predictions were calculated as median of these

values for each validation set lipid. The validation set RMSE

(RMSEval) and coefficient of determination (Rval
2 ) were

calculated using these median values. The Rval
2 is

calculated as:

R2
val �

∑n
i�1 xi − �x( ) yi − �y( )( )2∑n

i�1 xi − �x( )2∑n
i�1 yi − �y( )2 (1)

where xi and yi are the i
th predicted (the median value) and actual

responses respectively, �x and �y are the mean values of predicted

and actual responses respectively.

2.7 Y-randomization of data set

To evaluate the validity of the resulting descriptor

combinations, and the possibility that the obtained

validation set predictions might be due to random chance,

a Y-randomization of the training data set was carried out by

randomizing the training set responses (Žuvela et al., 2015).

The predictive models were then constructed by using these

randomized responses for model training and subsequent

validation as described in Section 2.6.

3 Results

3.1 Data set preprocessing and
preparation

The number of observations included in the data set after

omitting the lipids or entries that fit the omitting criteria

explained in section 2.1.1 was 120 entries (rows). The

resulting data set contained 438 predictor columns:

436 columns of molecular descriptors, and 2 columns for PEG

mol% and knockdown %. In addition, one response column was

included; logarithm of siRNA dose that results in a specific

knockdown of the target gene. Table 1 provides summary of

the data set.

3.2 Splitting the data set into training and
validation sets

Two different methods were used to select the validation set

entries, with the remainder of the entries in each splitting method

being used for training the machine learning models. These

selection processes resulted in the following data sets: training

set1, validation set 1, training set 2 and validation set 2. These sets

are shown in Table 2. Each training and validation set contained

90 and 30 entries, respectively.

PCA is a dimensionality reduction method that transforms

dataset features into a smaller number of new features called

principal components. PCA scores are the weighted sums of the

original features, and they represent the variance in the

observations and can be used to detect similarities or

dissimilarities among these observations.

The PCA score plots are shown in Figure 2. Principal

components 1, 2 and 3 (PC 1, PC 2 and PC 3) contributed to

22%, 19%, and 12% of the total variance, respectively. When

points are near each other, this means that they represent

observations that share similarities. The observations of

validation set 1 and 2, shown as colored triangles, show

uniform spread among those of training set 1 and

2 respectively, which infers that the training sets reasonably

represent the characteristics of the validation sets.

3.3 Selection of the molecular descriptors
by the evolutionary algorithm

When constructing the descriptor combinations to be used as

inputs for the machine learning algorithm, the PEG mol% and

the knockdown % were always included in the combinations.

Any additional molecular descriptors were added and selected by

the evolutionary algorithm. Figure 3 shows the top six molecular

descriptors with the highest frequencies of appearance in the

descriptor combinations that are selected by the evolutionary

algorithm. For each machine learning method, ANN, SVM or

PLS, the descriptor with highest frequency was considered 100%

and the other descriptors frequencies were calculated relative to

it. It is evident that each machine learning model resulted in

TABLE 1 Summary of data set. The entries represent either distinct lipids or the same lipid but with different PEG mol% and/or knockdown %.

Index of entries Number of entries per study Reference

1-30 30 Rajappan et al. (2020)

31-62 32 Alabi et al. (2013)

63-95, 105 34 Jayaraman et al. (2012)

96-104 9 Kumar et al. (2014)

106-120 15 Whitehead et al. (2014)
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different top descriptors. It is also clear that the training sets one

and two resulted in different top descriptors for the same

machine learning method. The only common descriptors,

taking the two training sets and the three machine learning

methods in consideration, were PEOE_VSA9, GATS3m, and

GATS8p. PEOE_VSA9 is a Van derWaals surface area descriptor

that describes atomic partial charges. GATS3m and GATS8p are

Geary autocorrelation - lag three weighted by atomic masses and

Geary autocorrelation - lag 8 weighted by atomic polarizabilities

respectively. It should be noted that these descriptors are present

in combinations of descriptors (predictors) including the PEG

mol% and the knockdown%, thus, their direct influence on the in

vivo performance of the ionizable lipids should be limited to this

context.

The number of molecular descriptors in each descriptor

combination as selected by the evolutionary algorithm is listed

in Table 3. It is to be noted that these molecular descriptors are

present in each combination in addition to both PEG mol% and

knockdown %, with the latter two being present in each predictor

combination. It was noticed that there were repeated

combinations in the final selected combinations, as omission

of descriptors by the evolutionary algorithm results eventually in

offspring combinations of the same descriptors.

The improvement in predictions of the validation set

responses at the end of the evolutionary algorithm is

shown in Table 4. The RMSEval in the table are calculated

as the first quartile of the RMSE of predictions using the

initial 400 descriptor combinations and the final

400 descriptor combinations at the end of the evolutionary

algorithm iterations. It is clear that there were improvement in

the quality of individual predictions for both validation

sets and for all methods as evident by the decrease in the

RMSEval.

The predictive performance of the machine learning

models was evaluated by predicting the validation sets

responses. The validation sets were neither used in the

selection of best descriptor combinations by the

evolutionary algorithm nor they were used in the training

of the predictive models, thus, the validation sets represent

external unkown test samples for the machine learning

models. Using the descriptor combinations selected by the

evolutionary algorithm, the median (averaged) predictions of

the validation sets one and two resulted in Rval
2 of

0.72–0.89 and RMSEval of 0.23–0.36 (Table 5). The machine

learning method used to predict the validation set responses

had a strong effect on the predictive performance, with the

ANN predictions resulting in the highest Rval
2 of 0.89 and

0.80 for validation sets one and two respectively. Similarly,

ANN resulted in the lowest RMSEval of 0.23 and 0.30 for

validation sets one and two respectively. There were also a

difference in the predictive performance between validation

sets one and two (Table 5), which reflects the effect of both the

training set and validation sets compositions. Supplementary

Figure S1 shows the structure of a model ANN, with one input

layer, 2 nodes in the hidden layer, and one outcome node. The

weights are also provided. To investigate if the ANN will

perform better even if a different random sampling of

training/validation sets was carried out, a third set (set 3)

where validation lipids were selected randomly was prepared

(Supplementary Table S1). The predictive performance of this

set is presented in Supplementary Table S2 where the RMSEval
and R2 of ANN were better than those of SVM and PLS. Taken

together, sequential sampling of validation lipids (set 2) as

well as random sampling (set 1 and set 3) showed better

performance for ANN.

3.4 Evaluation of predictive performance
by predicting validation set responses

Figure 4 shows that the three machine learning methods

resulted in good validation sets predcitions, as evident from

the predicted points being close to the straight lines (shown in

red and representing perfect correlation) in the actual vs

predicted plots. It is also clear that the different machine

learning models were capable of differentiating between the

lipids (entries) with low log (dose), which are the desirable

lipids (or formulations), and the lipids/formulations with

higher doses.

The curated scaled data set together with an example of the

resulting predictor combinations (training set 1) after selection

by the evolutionary algorithm and ANN is provided as

Supplementary Materials. An R script for calculating the

median predictions of validation set 1 and the assocciated

Rval
2 and RMSEval using the data set and the descriptor

combinations is also provided as Supplementary Material.

TABLE 2 Training and validation sets 1 and 2.

Set Training entries index Validation entries index

1 3–6, 8–11, 13, 14, 18, 20, 21, 24–30, 33–37, 39, 43–49, 51, 54–60, 62–64, 66–69,
71–73, 75, 78–80, 82–84, 86, 89, 90, 92-108, 110–115, 117–120

1, 2, 7, 12, 15–17, 19, 22, 23, 31, 32, 38, 44, 50, 52, 53, 61, 65, 70, 74, 76, 77, 81,
85, 87, 88, 91, 109, 116

2 1–3, 5–7, 9–11, 13–15, 17-19, 21–23, 25–27, 29–31, 33–35, 37–39, 41–43, 45–47,
49–51, 53–55, 57–59, 61–63, 65–67, 69–71, 73–75, 77–79, 81–83, 85–87, 89–91,
93–95, 97–99, 101–103, 105–107, 109–111, 113–115, 117–119

4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88,
92, 96, 100, 104, 108, 112, 116, 120
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FIGURE 2
PCA score plots. (A–C): training and validation set 1 entries are shown as black circles and pink triangles respectively. (D–F): training and
validation set 2 entries are shown as black circles and orange triangles respectively.
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FIGURE 3
Relative frequencies of descriptors in the descriptor combinations selected by the evolutionary algorithm. (A) training set 1. (B) training set 2.
Blue: ANN, red: SVM and green: PLS.
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3.5 Y-randomization of training set
responses

Y-randomization involves randomizing the responses

column and then training the predictive models using one of

the machine learning methods, with the input descriptors and the

responses being mismatched due to the randomization of the

responses (Rucker et al., 2007). Y-randomization was carried-out

using the final combinations selected by the evolutionary

algorithm as inputs. The resulting predictions together with

the actual responses are shown in Figure 5. It can be seen that

there is no correlation between the predicted and actual

responses for both validation sets and for all of the machine

learning methods used. The Rval
2 values ranged from 0.014 to

0.116, with RMSEval values between 0.66 and 0.68. This lack of

correlation proves that the results obtained without

randomization of the responses (Figure 4 and Table 5) where

not due to random chance.

3.6 Effect of setting the formulation
descriptor PEG mol% to either the
maximum or the minimum value

To examine if the predictive models capture the changes in

the formulation descriptor; the PEG mol%, the values of this

descriptor were set to either its maximum value or rather its

minimum counterpart. It is well known that when using siRNA

lipoplexes, there is a certain PEG mol% that results in the

maximum in vivo efficacy in addition to stabilization of the

nanoparticles (Mui et al., 2013; Kumar et al., 2014; Sakurai et al.,

2020). The general trend is that increasing the PEG mol% more

than a specific mole percent results in decreasing the in vivo

efficacy. It is generally found that PEG mol% that is equal to

10 decreases efficacy, while values around 1.5% results in good in

vivo efficacy (Jayaraman et al., 2012; Kumar et al., 2014).

Hypothetically, it is assumed that if the PEG mol% descriptor

values were set to the maximum (equivalent to 10%), the in vivo

TABLE 3 The minimum, maximum and median number of the molecular descriptors in the final predictor combinations for each training set and machine
learning method.

Training set Machine learning method min max Median

1 ANN 2 7 5

1 SVM 3 7 4

1 PLS 3 7 3

2 ANN 4 9 5

2 SVM 4 9 6

2 PLS 4 9 6

TABLE 4 Improvement of quality of individual validation set predictions by the evolutionary algorithm.

Validation set Machine learning method Initial first quartile RMSEval Final first quartile RMSEval

1 ANN 0.41 0.33

1 SVM 0.40 0.31

1 PLS 0.41 0.29

2 ANN 0.40 0.35

2 SVM 0.39 0.36

2 PLS 0.44 0.37

TABLE 5 Evaluation of predictive performance of the different machine
learning models.

Set Machine learning model RMSEval R2val

1 ANN 0.23 0.89

1 SVM 0.32 0.81

1 PLS 0.26 0.86

2 ANN 0.30 0.80

2 SVM 0.36 0.72

2 PLS 0.34 0.75
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efficacy should decrease, i.e., the log (dose) should increase. On

the other hand, if the PEG mol% values are set to the minimum

(equivalent to 1.5%), then the in vivo efficacy should generally

improve for the validation sets lipids that have PEG mol% higher

than 1.5%.

It can be seen in Figures 6A,C that setting the PEG mol% to

the minimum values resulted in a decrease in log (dose) as

expected, as evident by the shift of the predictions towards

the left hand side. Similarly, setting PEG mol% to the

maximum value resulted in shifting of the predicted log

(dose) towards higher values as it would be expected (Figures

6B,D). These results prove that the predictive models could

capture the significance of the formulation descriptor in a

correct manner. ANN was the method used to train the

models because it resulted in the best predictions as shown in

Figure 4 and Table 5. Similar results were obtained with SVM and

PLS regression (data not shown).

3.7 Refining the predictions by
determining the applicability domain

AD represents a theoretical region in the chemical space of

the training set samples. It is expected that predicting the

response of unknown samples, e.g., an external validation

set, results in more reliable predictions when the unknown

samples fall within this region (Weaver & Gleeson, 2008;

Tropsha, 2010). One method to determine this region is by

FIGURE 4
Actual vs predicted log (dose) plots. (A–C): Validation set 1, (A) ANN, (B) SVM and (C) PLS. (D–F): Validation set 2, (D) ANN, (E) SVM and (F) PLS.
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applying PCA on the training and validation data, and

constructing the region of applicability accordingly (Weaver

& Gleeson, 2008). Figure 7A shows the score plot of one fold of

training set one and lipid 15 which belongs to validation set one

(shown as a red circle). The descriptors combination used to

perform PCA were chosen randomly from one of the final

combinations selected by the evolutionary algorithm. The

region encircled by the blue line is the AD, and it was

determined manually by excluding from the training entries

under consideration those which are far from lipid 15 in the

space generated by plotting PC 1 and PC 2. The first two

components capture 66% of the variance in the data. The

training lipids selected within the AD were then used by

ANN to predict the response of lipid 15. This procedure was

repeated for another three lipids from the same validation set.

The four lipids selected were chosen based on them having the

highest biases in their predicted values (Table 6). It is clear by

comparing the predicted responses in Table 6 before and after

carrying out the selection of training lipids lying in the AD that

there was a vast improvement in the quality of the predictions

as seen from the much lower bias values before and after

selection. In addition, the R2 for the four lipids was 0.47 and

0.96 before and after applying AD lipid selection respectively,

showing significant improvement in the prediction accuracy of

these lipids. The impact of improvement of predictions can be

seen in Figures 7B,C, where the predictions lie much closer to

the red line in Figure 7C compared to 7B. Since this procedure is

carried out manually, we suggest that is should be performed as

a refining step for the set of lipids that will be chosen for further

wet lab experimentations.

FIGURE 5
Actual vs predicted responses of validation sets after Y-randomization of training sets responses. (A–C) validation set one. (A) ANN, (B) SVM and
(C) PLS. (D–F) validation set two. (D) ANN, (E) SVM and (F) PLS.
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FIGURE 6
Actual vs predicted responses of validation sets after setting the values of the PEG mol% descriptor to either the minimum value (A, C) or the
maximum value (B, D). Themodeling was carried out by ANN. (A) and (B) validation set one. (C) and (D) validation set 2. The validation sets entries with
the actual PEGmol% being theminimum value were omitted from A and C, while those with the actual PEGmol% being themaximumwere omitted
from B and D for visualization clarity.

FIGURE 7
Determination of the applicability domain (AD) of four lipids from validation set one. (A) PCA of training set together with one of the validation set
lipids (lipid 15) shown in red circle. (B) The actual vs predicted plot before determining AD. (C) The actual vs predicted plot after determining AD.
Predictions in C and B are carried out by ANN. The red line in B and C represents perfect correlation between actual and predicted values.
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4 Discussion

This study provides a computational framework to predict in

silico the in vivo performance of the siRNA lipid nanoparticles. The

main question answered in this manuscript is how to predict the

siRNA dose of siRNA lipid nanoparticles given a set of molecular

descriptors, formulation characteristics and a required knockdown

percent. From the results presented in this work, it is evident that

this objective was successfully achieved. In order to produce high

quality predictions, the following aspects were carefully

considered; 1) The selection of the optimal descriptor

combinations 2) The modeling approach 3) Validation of the

machine learning models using external validation sets and 4)

Improving the predictive outcome of the final models by selecting

the training set lipids according to the applicability domain.

When preparing the data set, 2D descriptors were calculated

from the ionizable lipid structures rather than 3D descriptors. The

reason for avoiding the use of 3D descriptors is that not all the

lipids were defined in terms of their stereochemistry. In addition,

the optimized 3D structure of a single molecule present in the

solution state might differ from the 3D structure of the same

molecule if present in close contact with other molecules as in the

case of nanoparticles. The effect of the source of the 3D structure

and its preparationmethod and energyminimization in relation to

the quality of predictions of three classes of molecules (anilines,

carboxylic acids and phenols) has been previously shown (Geidl

et al., 2015). There are other potentially important formulation

factors that may play a role in the modeling, e.g., particle size and

siRNA to lipid ratio, however, they were not included as they were

not reported consistently in the selected literature. For example,

particle size was reported on occasions as a wide range instead of

well defined values. Nanoparticles pKa was also not included in the

descriptors as it is not initially a controllable variable that could be

pre-determined compared to the formulation parameters, the lipid

structure (by its design) and the required percent knock-down.

As for the descriptor selection, an evolutionary algorithm was

used. The evolutionary algorithm comprised: (a) “selection” of the

descriptor combinations based on an optimization criterion; the

RMSE of the test set after splitting the training set into three folds

during training, (b) “crossover” of the selected parent combinations

to make new offspring combinations and (c) “mutations” of certain

descriptors in offspring combinations. These processes are main

elements in any evolutionary algorithm (Sipper et al., 2018).

Evolutionary algorithms are suitable for solving the problem of

finding optimized solutions of combinations from a set of inputs

(descriptors in this case) where an exhaustive search that covers all

possible combinations is computationally not feasible (Douguet

et al., 2000). In addition, evolutionary algorithms perform better

in the presence of noise in data (Arnold & Beyer, 2003). They also

offer a set of solutions, which allows for averaging of the predictions

of these solutions to get a better predictive performance.

Accordingly, evolutionary algorithms and their variants,

such as genetic algorithms, were used to refine the structure

of Au nanoparticles (Yu et al., 2016) and to optimize descriptor

combinations in counter-propagation artificial neural networks

models used to classify drugs as being either hepatotoxic or non-

hepatotoxic (Bajželj & Drgan, 2020).

The R software or Microsoft Open R as well as the

cheminformatic packages used in this study are available for

free, which makes them completely accessible for a wider

population of researchers. Using free modeling tools is gaining

momentum, for example, additional web-accessible prediction

tools and machine-learning based algorithms were successfully

utilized to design amphiphilic peptide scaffolds for engineering

drug delivery nanoassemblies (Feger et al., 2020).

The modeling approach in the current work involved three

machine learning methods: ANN, SVM and PLS. These methods

differ in their inner workings. The ANNs are considered a collection

of linear and non-linear functions that are governed by the choice of

the ANN architecture and activation functions. The SVMbelongs to

the class of kernel algorithms while PLS regression depends on the

construction of latent components (principal components) that

result in the best covariance with the response variable. Thus, the

difference in their predictive performance could be expected. In

order to improve the predictive outcome of the final models,

averaging of the predicted response values was carried out.

Averaging of predictions belongs to a set of machine learning

methods called ensemble learning, and usually results in better

prediction outcome (Oprisiu et al., 2012).

Machine learning models require reliable validation to be

sure about their ability to successfully predict unknown

observations responses. For this purpose, many metrics were

suggested and used such as R2, Q2 and external validation set R2.

Similarly, RMSE of training set predictions, cross-validation

TABLE 6 Refinement of predictions by selecting training lipids within AD.

Lipid
index

Actual response
Log (dose)

Predicted response
before applying AD

Predicted response
after applying AD

Bias before applying
AD selection

Bias after applying
AD selection

15 −1.52 −0.55 −1.43 0.97 0.09

16 −1.52 −0.47 −1.40 1.05 0.12

70 0.18 −0.47 −0.04 −0.65 −0.22

109 0.17 −0.43 0.37 −0.60 0.20
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RMSE and external validation RMSE are used for the same

purpose. In addition, techniques such as Y-randomization are

used to exclude the possibility of the model predictions being due

to random chance. Q2, the cross-validation coefficient of

determination, does not necessarily correlate with good

predictive performance for external validation sets (Golbraikh

& Tropsha, 2002). Thus, in this work the validation of the final

machine learning models was carried out by predicting responses

of two external validation sets as well as performing

Y-randomization of training set responses, conforming to the

best model validation practices (Tropsha, 2010; Maleki et al.,

2020). The results showed that the obtained models are reliable.

It is suggested that training set composition and/or the relevant

properties of the validation set in relation to the training set

governs the predictive performance (Martin et al., 2012; Nalepa

& Kawulok, 2019). One way to overcome this is to make sure that

the validation set observations are within the applicability domain

of the training set (Tropsha, 2010; Maleki et al., 2020). In the

current work, rather than selecting the validation set observations

that lie within the training set applicability domain, a reverse

approach was followed; a subset of the training set elements was

selected to be close in the predictor space to the validation element

under investigation, i.e., these selected training set elements were

used to construct the applicability domain. PCA of the training set

and the validation set lipid was carried out to determine this

applicability domain visually (Figure 7A). It is evident from the

results presented in Figures 7B,C and Table 6 that this protocol

resulted in significant improvement in performance.

Recently, in vitro cellular uptake of siRNA nanoparticles

formulated with hydrophobic derivatives of polyethyleneimine

(PEI) was predicted by QSAR modeling using either linear

regression, random forests or multilayer perceptron, with the

non-linear methods proving to be more efficient than linear

regression (Nademi et al., 2021). The R2 of the external test set

ranged between 0.34 and 0.50 depending on the machine

learning method used and on the number of input

descriptors, with the initial number of 26 descriptors being

reduced either by binary encoding or by backward elimination.

Overall, in the current work, in vivo performance of siRNA

nanoparticles could be predicted accurately by combiningmachine

learning techniques with cheminformatics. This framework will

greatly enhance the development of siRNA nanomedicines.

5 Conclusion

The in vivo efficacy of siRNA ionizable lipid nanoparticles

could be predicted with excellent accuracy provided careful

modeling choices. Calculating molecular descriptors of a series

of ionizable lipids followed by selecting best descriptor

combinations using an evolutionary algorithm in combination

with machine learning modeling by ANN, SVM and PLS and

then finally making an ensemble of the predictions by calculating

the median of validation set predictions resulted in successful

predictions of in vivo activity of siRNA ionizable lipids

nanoparticles. Depending on the machine learning method

and the validation set, Rval
2 of up to 0.89 could be achieved.

Further improvement of validation set entries with high bias was

achievable by selecting training lipids within the applicability

domain, with Rval
2 improvement from 0.47 to 0.96.

This in silico approach allows the evaluation of virtually an

endless number of ionizable lipids prior to their actual synthesis

and wet lab evaluation and hence saving valuable resources and

time while exploring the vast chemical space of these lipids and

their formulations.
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