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Editorial on the Research Topic

Methods in Structural biology: Cryo-Electron Microscopy

Cryo-electron microscopy (cryo-EM) has evolved into an important method for

determining the high-resolution structure of proteins and protein complexes

(Ku€hlbrandt, 2014; Cheng et al., 2015). It is also used for in situ studies of lower-

resolution cellular superstructures (Wan and Briggs, 2016). Further to these applications,

increasing numbers of researchers are starting to use cryo-EM to address their biological

questions, and are also contributing to the field in terms of method development and

structure determination. This Research Topic on “Methods in structural biology: Cryo-

electron microscopy” in the journal Frontiers in Molecular Biosciences aims to reflect the

most recent developments and advances in cryo-EM sample preparation, data collection,

image processing, and practices for running a shared cryo-EM facility.

Radiation damage is one factor that limits the resolution of three-dimensional

structures of biological specimens when using cryo-EM. In their contribution to the

collection, Shi and Huang thoroughly compare radiation damage assessments using single

particle analysis (SPA) and micro-crystal electron diffraction (MicroED) (Dan and Rick).

The minimum electron dose for reducing the high-resolution limit determined by SPA

was tenfold higher than that measured by MicroED. The authors also propose strategies

for collecting high-resolution data using SPA and MicroED.

Cryo-EM specimen preparation is the current bottleneck that impedes the broader use

of cryo-EM, and many groups have been working hard to improve this. Common issues

with the vitrification process include poor/non-uniform distribution of protein molecules

(particles), preferred orientation, protein denaturation/degradation at the water-air

interface, and high background noise from thick ice. One of the techniques developed

to improve cryo-EM specimen preparation is the use of support films made of graphene

and its derivatives. In their review, Fan and Sun discuss the advantages of graphene grids

over conventional holey carbon film grids, the functionalization of graphene support
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films, how to make graphene grids, and the origins of pristine

graphene contamination (Hongcheng and Fei).

Conformational heterogeneity of a biological molecule is a

prerequisite for it to be able to perform its functions. In cryo-EM,

specimen heterogeneity not only presents the challenge of

obtaining high-resolution structure but also provides the

opportunity to determine multiple structures of the same

molecule/complex, with different conformations, from the

same dataset, allowing investigation of the conformational

changes associated with its biological functions. Hybrid

electron microscopy normal mode analysis (HEMNMA) was

first developed in 2014 (Jin, et al., 2014) to analyze continuous

and large-scale conformational changes in biological specimens

studied using cryo-EM. The technique determines the

conformation, orientation, and position of the complex in

each single particle image, combining the image analyses used

in SPA and normal mode analysis (NMA) (the directions of

motion simulated for a given atomic structure or EM map),

which in turn allows the determination of the full conformational

space of the complex but at high computational cost. The study

by Ilyes Hamitouche and Slavica Jonic offers an improved

version of HEMNMA (Ilyes and Slavica), referred to as

DeepHEMNMA, that speeds up the original method by

combining it with a residual neural network (ResNet)-based

deep-learning approach. The authors demonstrate the

performance of DeepHEMNMA using synthetic and

experimental data. Two-dimensional classification has played

an important role in getting rid of junk particles from large

datasets, and in sorting out the conformational heterogeneity of

proteins/protein complexes in a dataset. However, the process

can take a long time to complete if only central processing units

(CPU) are used, especially for large datasets or large box sizes,

which are common in today’s cryo-EM environment. Fabian

et al. presented a graphics processing unit (GPU)-accelerated

version of iterative stable alignment and clustering (ISAC) (Yang,

et al., 2012) that enables users to produce high-quality two-

dimensional class averages from large datasets on a single

desktop computer equipped with affordable consumer-grade

GPUs, such as Nvidia GeForce GTX 1080 TI cards. With only

two such cards, GPU ISAC can match the performance of twelve

high-end cluster nodes (Fabian et al.).

Cryo-electron tomography (cryo-ET) has drawn much

attention in recent years, and people believe it has great

potential in the fields of cellular and structural biology. In

this regard, Paula Navarro has provided an overview of

current hardware and software developments that allow

quantitative cryo-ET studies, and discussed the limitations

of cryo-ET and how to overcome them to unleash its full

power (Paula).

Despite the wide applications of cryo-EM, which are due,

especially, to its potential to revolutionize structural biology and

new drug development, the high monetary and human resource

costs involved with establishing and maintaining a high-end

cryo-EM facility limit its accessibility. As a result,

governments, universities, research institutes, and

pharmaceutical companies around the globe have established

high-end cryo-EM centers that provide access to researchers for

free or at a reduced cost (Zimanyi et al., 2022). How these shared

cryo-EM facilities can be run efficiently and accessed by diverse

user groups presents many challenges, especially for centers that

do not have well-trained and experienced staff. In their

contribution to this Research Topic, Walsh et al. present a

practical routine for running a research-oriented shared cryo-

EM facility, developed by the Harvard Cryo-EM Center for

Structural Biology. From user training in sample preparation

to data collection to help facilitate biology-focused research

projects, the authors share their experiences and practices,

providing valuable resources for other cryo-EM facilities

(Richard et al.).
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